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Why Volume Preserving Maps?
• Simpler than 4D symplectic case
• Mixing (stirring) in incompressible fluids

• Chaotic advection of dye

• Magnetic field configurations (with nulls)
• Earth’s magnetotail

• Formally, f: M → M with volume form Ω:

    x = v( x,t ) ∇⋅v = 0

Fountain, et al. (2000). “Chaotic Mixing in a Bounded Three-
Dimensional Flow.” J. Fluid Mech. 417(265–301).

   f
*Ω=Ω

   Ω= dx1 ∧ dx2 ∧ ...∧ dxn ⇒ det( Df ) = 1

   pullback:  f *Ωx (v1,v2 ,v3 ) =Ω f ( x ) ( Df ( x )v1, Df ( x )v2 , Df ( x )v3 )
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Integrability
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Integrability
• Definition?

• Birkhoff: Convergence of formal normal form series near each 
periodic orbit

• Liouville: Existence of d integrals in involution

• Lax Pairs, IST, Painlevé property, etc. = isospectral integrability

• Bogoyavlenskij: Symmetries + Integrals = broad integrability.

It is a well-known fact that for certain problems, auxiliary analytic relations can be deduced by 
means of which the solutions of the system of differential equations can be satisfactorily 
treated, in which case the system may be said to be “integrable”. When, however, one 
attempts to formulate a precise definition of integrability, many possibilities appear, each with 
a certain intrinsic interest.

— G.D. Birkhoff, “Dynamical Systems” §8.13 1927
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Liouville Integrability
• Hamiltonian system,                   , with d degrees of freedom

• d integrals Ii :

• almost everywhere independent:
• in involution: {Ii,Ij} = 0

• then on any compact components of the (regular) integral manifold, Ii  = 
ci, there exist angle-action coordinates (θ, J) such that

   ∇Ii ⋅∇I j ≠0

    
X H = ω( J ) ⋅ ∂

∂θ

   iX H
ω= dH

Note: each integral gives a symmetry Y by iY ω  = dI 

   ω= dq∧ dp

   
iX H
ω= Xq dp−X pdq =

∂H
∂p

dp +
∂H
∂q

dq

   
d
dt

Ii = X H (Ii ) = X H ⋅∇Ii = 0
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Liouville: Symplectic Maps
• symplectic: f *ω = ω,    ω = dq ⋀ dp  on 2d dimensional manifold

• d integrals,  f *Ii  = Ii ∘f = Ii, 

• involutory, {Ii,Ij} = 0, and independent
➡ In the neighborhood of any nonsingular, compact integral manifold 

there are angle-action coordinates (θ, J): 

   ( ′q , ′p ) = f ( q, p)

Veselov, A. P. (1991). “Integrable Mappings.” Russian Math. Surveys 46(5): 1-51.

Note: each integral gives rise to symmetry  Yi = ∂/∂θi
f *Y = Y

   pullback:  f *Y ( x )≡ Df ( x )( )−1 Y ( f ( x ))

    

′θ = θ+ω( J )
′J = J     ω( J ) =∇S( J )
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2D Integrable Maps
• Many examples

• McMillan (1971)

• Suris (1989) Maps of Standard type

• QRT Maps (Quispel et al 1988)

   I = ax2 y2 + b( x2 y + y2 x )+ c( x2 + y2 )+ dxy

a=0,b=c=1,d=1/2

McMillan, E. M. (1971). A Problem in the Stability of Periodic Systems. Topics in Modern Physics, a Tribute to E.V. Condon: 219-244.
Suris, Y. B. (1989). “Integrable Mappings of the Standard Type.” Functional Analysis and Applications 23: 74-76.
Quispel, G. R. W., J. A. G. Roberts and C. J. Thompson (1988). “Integrable Mappings and Soliton Equations.” Phys. Lett. A 126: 419-421.

    xn+2−2xn + xn−1 = εF( x,ε)

   
f ( x, y) = y,−x +

by2 + dy
ay2 + by + c

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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4D Integrable Maps
• Iatrou examples

• Symplectic with
• Liouville integrable

• Integrals constructed from a Lax pair 

• Or, canonical variables: ω = dq∧dp

   

f (w, x, y, z ) = x, y, z,−w− y− g( x + z )( )

g( x ) =
ax + b
cx + d

   ω= dw∧ dx + dx∧ dy + dy∧ dz

Iatrou, A. (2003). “Higher Dimensional Integrable Mappings.” Physica D 179: 229-253.
McLachlan, R. I. (1993). “Integrable Four-Dimensional Symplectic Maps of Standard Type.” Phys Lett A 177(3): 211-214.

   

q1
′ =− p1− g( q1 )

q2
′ =− p1− p2− g( q1 )

p1
′ = q1− q2

p2
′ = q2

, g( q ) =
aq + b
cq + d
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3D Volume Preserving Maps: 
One or Two Integrals?
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One Integral is Not Enough
• I is an integral if I∘f = I

• For 2D maps, Integral ⇒ Integrable

• For 3D Volume preserving maps ⇒ f reduces to A.P. map on contours 

   (α,β,γ,δ ) = (2,−2,1,0)

Gómez, A. and J. D. Meiss (2002). “Volume Preserving Maps with an Invariant.” Chaos 12: 289-299.

    

f ( x, y, z ) = y, z, x + F( y, z )( )

F( y, z ) =
( y− z )(α−β yz )

1+ γ( y2 + z2 )+β yz + δ y2 z2
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Trace Maps
Dynamics semi-conjugate to 
Anosov on outermost (I=0) 

bounded surface.

   

f ( x, y, z ) = (−y + 2xz, z,−x−2 yz + 4xz2 )
I = x2 + y2 + z2−2xyz−1

Roberts, J. and M. Baake (1994). “Trace Maps as 3D Reversible Dynamical Systems with an 
Invariant.” Journal of Statistical Physics 74(3): 829-888.
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Two Integrals are Too Many?
• ∃ 2 Integrals (locally independent) ⇒ Orbits confined to curves
• Example: 3D Lyness Map (2D version by Lyness in 1945)

• Volume reversing  f *Ω = – Ω

• so one definition of integrable: ∃ n-1 integrals. However, the dynamics is 
trivial in that case!

   
f ( x, y, z ) = y, z, a + y + z

x
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

   

I1 =
( a + x + y + z )(1+ x )(1+ y)(1+ z )

xyz

I2 =
a + x + y + z(1+ x )( )(1+ x + y)(1+ y + z )

xyz

Cima, A., A. Gasull and V. Mañosa (2008). “Some 
Properties of the kD Lyness Map.” J. Phys A 41: 285205.

Also: Iatrou (arXiv 0306052) for Gomez-
like 3D examples with 2 integrals

   
Ω=

1
xyz

dx∧ dy∧ dz
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KAM Theory for V.P. Maps
• integrable one-action maps: M = T2 ⨉ R + perturbation

• integrable two-action maps:  M = T ⨉ R2 + perturbation

• one-action, KAM results of Cheng & Sun and Xia require 
• exact volume-preserving perturbations (intersection property)
• nondegeneracy of frequency map or additional parameters

Xia, Z. (1992). “Existence of Invariant Tori in Volume-Preserving Diffeomorphisms.” Erg. Th. Dyn. Sys. 12(3): 621-631.
Cheng, C.-Q. and Y.-S. Sun (1990). “Existence of Invariant Tori in 3D Measure-Preserving Mappings.” Celestial Mech. 47(3): 

275-292.

    

θ1′ = θ1 +ω1 ( J )

θ2
′ = θ2 +ω2 ( J )
′J = J

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

+ O(ε)

    

θ′ = θ+ω( J1, J2 )

J1
′ = J1

′J2 = J2

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

+ O(ε)
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Symmetry
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Symmetry
• Vector field X has symmetry generated by Y  if commuting

➡Flow ψε(x) of Y commutes with flow ϕt(x) of X

• Map f has symmetry Y if    f * Y  = Y,     ⇒   ψε∘f = f∘ψε

• Sometimes Symmetry ⇒ Integral, as in Noether’s theorem

• or Bernoulli’s theorem...

   [X ,Y ] = X ⋅∇Y −Y ⋅∇X = 0

   
I = iY

∂L
∂q

dq
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

   ϕt ( x )

   ψε ( x )

   ϕt (ψt ( x ))
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Bernoulli: Symmetry ⇒ Integral
• X incompressible ⇒ ∇·X = 0

• Y incompressible symmetry ⇒   ∇·Y = 0   &   [X,Y] = 0,

• Integral
• ∇I = X⨉Y

➡I exists since

• More generally
• Ω = dα exact volume form

• incompressible: iXΩ = 0  ⇒  LX α = dβX (generating form)

• incompressible symmetry Y  ⇒    LY α = dβY    &    [X,Y] = 0

➡ Integral I = iXiY α + iXβY - iYβX

   ∇×X×Y = [X ,Y ] + (∇⋅Y )X− (∇⋅X )Y = 0
   
dI
dt

= X ⋅∇I = X ⋅X×Y = 0

An example is the vorticity ∇×v  for 
an incompressible, stationary fluid
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Symmetry ⇏ Integral
• Suppose, e.g. f commutes with a rotation

    

′r = h−1 (r + h( z ))− z
′z = h( z ) + r−1
′θ = θ+ρ(r, z )

    h( z ) = z− kcos(2πz )
0

.4

.8

0 .4 .8

h(z)

h-1(z)

z

z'

z

r

1.0

θ

   
Y =

∂
∂θ

Lomelí, H. E. and J. D. Meiss (2003). “Heteroclinic Intersections between Invariant Circles of Volume-Preserving Maps.” Nonlinearity 16(5): 1573-1595.
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Symmetry Reduction
• If  f  has symmetry Y, then 

                   f*Y = Y    ⇒    f ∘ ψθ = ψθ ∘ f 
• locally: section Σ of Y

• projection π: M → Σ using flow

➡ reduction to skew product form on Σ × [a,b]

• f volume-preserving & Y incompressible
➡ k: Σ → Σ is V.P. with form

             ω = iY Ω|Σ

    

′ξ = k(ξ )
′θ = θ+ρ(ξ )

    x = ψθ (ξ )     ′x = ψ ′θ ( ′ξ )

! "=#
-$
(x)

x

x'

"'

f

f

k
$

$

%(")

#
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Example
• Hopf-Saddle-Node Normal form

• exact, V.P. diffeomorphism for any smooth p
• Symmetry (only?) if p(y) alone

• ψθ(x,y,z) = (x+s,y,z)
• (y,z) dynamics is generalized standard map
• ρ(y,z) = y

   

′x = x + y
′y = y + ′z
′z = z + p( x, y)

Dullin, H. R. and J. D. Meiss (2008). “Nilpotent 
Normal Forms for a Divergence-Free Vector 
Fields and Volume-Preserving Maps.” Phys. D 
237(2): 155-166 
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Symmetries are not enough
• T2 × R

• Two symmetries:

• No invariants
• e.g., h could be itself a circle map

 and orbits dense on T3

    

θ1′ = θ1 +ρ1 ( z )

θ2
′ = θ2 +ρ2 ( z )
′z = h( z )

   
Yi =

∂
∂θi

h any homeomorphism

z

θ
1 θ

2

f

fψ
θ

ψ
θ
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Integrals and Symmetry?
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Integral + Symplectic ⇒ Symmetry
• Anti-Noether Lemma:

      f symplectic, f *ω = ω & has an integral, I, 
➡ Hamiltonian vector field Y: 

   is symmetry

• Example: McMillan Map

➡

    

f * iYω( )= i f *Y f *ω= i f *Y f *ω

f *dI = d I ⋅ f( )= dI = iYω
⇒ i f *Y−Yω= 0

   iYω= dI

   
f ( x, y) = y,−x +

bx2 + dx
ax2 + bx + c

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

   I = ax2 y2 + b( x2 y + y2 x )+ c( x2 + y2 )+ dxy

   
Y =

2Ax2 y + 2Bxy + Bx2 + 2Cy + Dx
−2Axy2−2Bxy−By2−2Cx−Dy
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∇I

Y

ω nondegenerate
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Two Integrals+V.P ⇒ Symmetry
• f *Ω = Ω

• f *Ιi = Ii, i= 1, 2
• The restriction of f to a surface I1 = c is symplectic with form

• thus Hamiltonian vector field Y for I2,  

is a symmetry of f

• Example: Lyness map 

    iYω= dI2

   
f ( x, y, z ) = y, z, a + y + z

x
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

   

Y =
1

xyz

x( x + 1)(1+ y + z )( a + x + y− yz )
y( y + 1)( x− z )( a + x + y + z + xz )
−z( z + 1)(1+ x + y)( a + y + z− xy)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

    
ω=

i∇I1
Ω

∇I1
2

∇I1
∇I2

Y
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Broad Integrability
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Broad Integrability: Vector Fields 
• A vector field X on an n-manifold M is broadly integrable if there are

• n-k integrals Ii (almost every where independent, compact invariant 
sets); and

• k symmetries: commuting vector fields Yj ([X,Yi] = 0, [Yj,Yk] = 0), 
preserving Ii : (LYj(Ii) = 0 ).

• Or geometrically if there is a manifold P of dimension n-k and 
neighborhood U of each point in P such that 

• a fibration π : M → P with fibers of dimension k < n that are compact, connected and invariant under the flow of X;

• a loca*y +ee, infinitesimal action of Tk on π −1(U) that leaves X and the fibers of π invariant . 

• Then the fibers of π are diffeomorphic to Tk  and there exist angle-
action coordinates (θ, J) on π-1(U) ≅ Tk  ×Rn-k   so that X becomes

Bogoyavlenskij, O. J. (1998). “Extended Integrability and Bi-Hamiltonian Systems.” CMP 196: 19-51.
Fassò, F. and A. Giacobbe (2002). “Geometric Structure of ‘Broadly Integrable’ Hamiltonian Systems.” 

J. Geom. Phys. 44: 156-170.

    
X = ω( J ) ⋅ ∂

∂θ
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Broad Integrability: Maps
• 3D V.P. map 

                  1 Symmetry + 1 integral ⇒ integrable

• symmetry Y & integral I
• I invariant under Y too: Y(I) = Y ·∇I = 0

➡ Reduced map has integral I as well

➡ orbits of ξ' = k(ξ) lie on contours of I

➡ Since Σ is a section for Y, contours of I have transverse intersection

• 2D Map on Σ is symplectic & integrable in the traditional sense

• n dimensional case:
➡k symmetries, Yi,    f*Yi = Yi,    [Yi,Yj] = 0

➡n-k integrals, Ij, invariant,   Yi ·∇I = 0 

    

θi
′ = θi +ρi (I )

I j
′ = I j
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What does this have to do with 
the price of bread?

• Not really sure....

• Understanding integrable maps essential for KAM theory.
• Develop a “canonical” perturbation theory for V.P. case?
• Have an excuse to come to Mexico and get out of the snow?
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