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Abstract

Chaotic dynamics can be e�ectively studied by continuation from
an anti-integrable limit. We use this limit to assign global symbols to
orbits and use continuation from the limit to study their bifurcations.
We �nd a bound on the parameter range for which the H�enon map
exhibits a complete binary horseshoe as well as a subshift of �nite
type, and study these numerically. We classify homoclinic bifurcations,
and study those for the area-preserving case in detail. Simple forcing
relations between homoclinic orbits are established. We show that a
symmetry of the map gives rise to constraints on certain sequences
of homoclinic bifurcations. Our numerical studies of the number of
periodic orbits con�rm and extend the results of Davis, MacKay and
Sannami.
AMS classi�cation scheme numbers: 58F05, 58F03, 58C15

1 Introduction

The problem of determining the sequence of bifurcations that result in the
creation of a Smale horseshoe is an interesting one [1, 2, 3]. In this paper
we use a continuation technique based on an \anti-integrable" (AI) limit
[4] to study some of these bifurcations from the opposite side, that is, as
bifurcations that destroy the horseshoe.

As a simple example, we study the two parameter H�enon family of maps�
x0

y0

�
=

�
y � k + x2

�bx
�
: (1)

As we recall in x2, the AI limit for this map is essentially k !1. In order to
represent this with �nite parameters, we need only rescale the map, letting
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z = �x, where

� =
1p
k
:

As was shown by Devaney and Nitecki [5], the H�enon map has a hyper-
bolic horseshoe when

k > (1 + b2)
5 + 2

p
5

4
: (2)

The H�enon map has at most 2n �xed points of period n, and when the map
has a hyperbolic horseshoe, all these orbits exist and are easily identi�ed by
their symbolic labels.

We showed earlier [6] that a contraction mapping argument implies there
is a one-to-one correspondence between orbits in the AI limit and bounded
orbits of the H�enon map in precisely the range Eq. (2). In x5 we show
that this result can be easily extended for a particular subset of the orbits.
Moreover, in x6, we present results of numerical investigations that tighten
these bounds to what we believe are their optimal values.

In general, the existence of an anti-integrable limit leads to a natural
symbolic characterization of orbits|for the H�enon map this is the same as
the horseshoe coding. We use this coding, and as discussed in x3, a predictor-
corrector continuation method [7], to give each orbit a global code. That is,
we label an orbit with the AI code, and use this designation up to the max-
imal value of � for which the orbit exists. For the H�enon map, this gives a
correspondance between bounded orbits of the map and sequences of sym-
bols s 2 2Z, providing only that every orbit can be continuously connected
to the AI limit. This hypothesis, which we call the \no-bubbles" hypoth-
esis, is essential to our method. It is certainly valid when the hyperbolic
horseshoe exists, but we know of no more general proof.

Our global code contrasts with other methods for constructing symbolic
dynamics for maps, which rely on some attempt to obtain a generating par-
tition for the map [8, 2, 9, 10, 11]. These methods rely on somewhat ad hoc
techniques for constructing the partition, especially when there exist elliptic
orbits. Our method gives a natural partition that is continuously connected
to the horseshoe, though it does rely on the no-bubbles hypothesis.

In our computations of the H�enon map, we observe that the horseshoe
destroying bifurcation appears to be a homoclinic saddle-node bifurcation
when the map is orientation preserving, and a heteroclinic saddle-node when
it is not. In x7 we study in detail the homoclinic orbits of the area-preserving
H�enon map, and show how the AI code directly gives other properties of the
orbits, such as their \type," \transition time," and \Poincar�e signature."

For an area-preserving map, the destruction of a horseshoe by a homo-
clinic bifurcation gives rise generically to elliptic orbits. Speci�cally, if f is
a C1 area-preserving di�eomorphism with a homoclinic tangency at x then
for any neighborhood U of x, there is an area preserving di�eomorphism
C1-close to f which has an elliptic periodic point in U [12].
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Much more is known about the behavior of area-contracting maps near
a homoclinic tangency. Gavrilov and Silnikov proved that if a C3 map has
a quadratic homoclinic tangency at a parameter k� then there exists a se-
quence of parameter values kn ! k� such that at kn there is a saddle-node
bifurcation creating orbits of period n [13, 14]; because one of the created
orbits is a sink, this is called a cascade of sinks. Robinson extended these
results for the real analytic case where the intersection is created degener-
ately [15]. In our computations we will �nd a similar cascade of saddle-node
bifurcations for the area-preserving H�enon map|this gives a sequence of el-
liptic orbits that limit on the homoclinic bifurcation. Thus the destruction
of the horseshoe is associated with the creation of the �rst stable \island."

The ordering on the invariant manifolds poses severe restrictions on the
possible bifurcations. In x8 we use it to prove which homoclinic bifurcation
of the hyperbolic �xed point is the �rst one. We observe that the forc-
ing relations between homoclinic orbits up to type 6 is essentially like the
unimodal ordering of one dimensional maps. Generically a homoclinic bi-
furcation corresponds to a quadratic tangency of the stable and unstable
manifolds|a \homoclinic saddle-node bifurcation." There are two more
generic bifurcations in maps with a symmetry: a homoclinic pitchfork when
the manifolds exhibit a cubic tangency, and a simultaneous pair of asym-
metric saddle node bifurcations. In x9 we show that a symmetric homoclinic
bifurcation forbids certain other bifurcation to occur after it, leading to a
natural mechanism to create homoclinic pitchfork bifurcations or asymmet-
ric saddle node pairs. We observe all three of these bifurcations for the
area-preserving H�enon map, which has a time-reversal symmetry.

Davis, MacKay, and Sannami [3] conjectured that there are intervals of k
below the horseshoe for which the H�enon map is a hyperbolic Markov shift.
They also identi�ed the Markov partitions for these cases. Their conjecture
was based on computing all the periodic orbits up to a period 20 using the
technique of Biham and Wenzel [16, 17]. In x10, we con�rm their compu-
tations with our continuation technique and extend them to period 24|an
order of magnitude more orbits. Moreover, we identify the bifurcations re-
sponsible for the creation and destruction of these apparently hyperbolic
intervals; as be�ts with the theme of this paper, they are homoclinic bifur-
cations.

2 Anti-Integrable Limit

Dynamics in discrete time can be represented by a relation, F (x; x0) = 0
where x and x0 are points in some manifold. Normally, we can explicitly
solve for x0 = f(x), giving a map on the manifold, with orbits de�ned
by sequences xt = f(xt�1). Suppose, however, that F depends upon a
parameter �, in such a way that this is not always possible; for example,
F (x; x0) = �G(x; x0) + H(x). In this case the implicit equation F = 0
can no longer be solved for x0 when � = 0; instead \orbits" correspond to
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arbitrary sequences of points, xt that are zeros of H|the dynamics are
not deterministic. In this case we say that � = 0 corresponds to an anti-
integrable limit (AI) of the map f [18]. If the derivative of H is nonsingular,
then a straightforward implicit function argument can be used to show that
the AI orbits can be continued for � 6= 0 to orbits of the map f [4, 19]. An
AI limit with this property is called nondegenerate.

For example, consider the H�enon map Eq. (1). Denoting points on an
orbit by a sequence xt; t 2 Z, we can rewrite Eq. (1) as a second order
di�erence equation

xt+1 + bxt�1 + k � x2t = 0:

Introducing the scaled coordinate z = �x and choosing � = k�1=2 gives an
implicit map in the variable z with parameter �

�(zt+1 + bzt�1) + 1� z2t = 0 : (3)

With this choice of �, we can study only the range 0 < k <1; however, one
could rede�ne � to shift this range 1.

In the AI limit, the map Eq. (3) reduces to

z2t = 1 :

Thus \orbits" in this limit are arbitrary sequences of �1, which we abbre-
viate with + and �. Let � denote the space of such sequences

� � f�;+gZ= fs : st 2 f�;+g ; t 2 Zg : (4)

It is often convenient to make � a metric space by mapping the symbols to
f0; 1g respectively and using the metric

�(s; t) �
1X

j=�1

jsj � tjj
2jjj

;

for any two sequences s; t 2 �.
For ease of notation we denote the corresponding sequence of f+1;�1g 2

R
Z by the same symbol s. Hence every sequence s 2 � is an orbit s 2 RZ in

the anti-integrable limit, and each of these can be continued to an orbit of
the H�enon map for small enough � [20, 19]. Previously we gave an explicit
upper bound on � for the existence of orbits for every symbol sequence [6]:

Theorem 1. For every symbol sequence s 2 � there exists a unique orbit
z(�) of the H�enon map Eq. (3), such that z(0) = s providing

j�j(1 + jbj) < 2

q
1� 2=

p
5 � 0:649839 : (5)

1For example, choosing � = (k+�)�1=2, maps positive values of � to the range �� < k <

1. Our numerical routines typically use � = 1 so that we can cover the entire parameter
range where there are bounded orbits.
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The basic idea of the proof of this theorem is as follows [6]. Let BM be
the closed ball of radius M around the point s 2 �,

BM (s) = fz : jjz� sjj1 �Mg : (6)

For each symbol sequence s 2 � and small enough M , de�ne a map
T : BM ! BM by

Ti(z) � si
p
1 + �(zi+1 + bzi�1) : (7)

Then the corresponding H�enon map orbit z(�) is a �xed point of T. The
conclusion of Thm. 1 follows from �nding the maximum value of � for which
there is an n such that Tn is a contraction mapping (i.e., Tn : BM !
BM and jjDT njj < 1).

The main point of the theorem is that there are no bifurcations in the
range Eq. (5). In x6 we will use numerical continuation to estimate the
parameters at which the �rst bifurcation occurs, giving an improvement in
this bound, albeit a numerical one.

It is interesting that Devaney and Nitecki [5] obtained precisely the same
bound, Eq. (5), for the domain in which the non-wandering set of the H�enon
map is a hyperbolic horseshoe. Nevertheless the AI continuation argument
has has two advantages over the geometrical arguments of Devaney and
Nitecki. First, it easily generalizes to higher dimensions allowing one to
compute parameter bounds for the existence of horseshoes in higher dimen-
sional maps [21]. Second, it allows us to easily bound the parameter range
for which certain subsets of orbits exist (i.e. the parameter range where the
map is conjugate to a subshift of �nite type). We present such a bound on
the subshift of �nite type in x5.

3 Numerical Method

In this section we formulate the problem of following H�enon map orbits away
from the anti-integrable limit as a classical continuation problem [22].

A period n orbit of the H�enon map is given by a sequence z0; z2; : : : ; zn�1
that satis�es Eq. (3), together with the condition that zt+n = zt. Formally
we can write this as a single functionG : Rn�R ! R

n whose tth component
is given by the left hand side of Eq. (3). We say that a sequence z(�) �
(z0; z2; : : : ; zn�1)1 is a period n orbit of the H�enon map with corresponding
symbol sequence s if z(�) is a continuous function on some closed interval
� 2 [0; �max] that satis�es �

G(z; �) = 0

z(0) = s
:

Given an anti-integrable symbol sequence s and �xed �, we continue z(0)
away from the anti-integrable limit to locate the corresponding H�enon map
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orbit z(�). This is a standard continuation problem, which we solve using a
predictor-corrector method with a linear tangent predictor and a Newton's
method corrector. The algorithm incorporates an adaptive step size control
with bisection backtracking if the corrector fails to converge. The algorithm
terminates when a user-speci�ed value of � is reached or, when the tangent
direction is not uniquely de�ned. The process of continuing a sequence of
orbits is trivially parallelizable since the operations performed on each orbit
are completely independent of each other. We use a \divide and conquer"
strategy to spread the total computational e�ort across several di�erent
machines running simultaneously. This is especially advantageous when the
number of orbits continued reaches into the millions.

In the sections below we discuss the results obtained by using this method.

4 Symbolic Dynamics

In this section we introduce some notation for symbol sequences and bifur-
cations. For simplicity we concentrate mostly on the area-preserving case,
b = 1, though many results apply generally.

Orbits in the anti-integrable limit are bi-in�nite sequences s 2 �. When
it is needed, we will indicate the current time along an orbit using a \.",
so that s = : : : s�2s�1.s0s1s2 : : : . The dynamics on s 2 � are given by the
shift map, � : �! � de�ned as

�(: : : s�1.s0s1s2 : : : ) = : : : s�1s0.s1s2 : : :

An orbit of the symbolic dynamics is periodic if the sequence s is periodic.
We will denote an orbit of least period n by the string of n symbols and a
superscript 1 to represent repetition:

(s0s1 : : : sn�1)1 = : : : sn�2sn�1.s0s1 : : : sn�1s0 : : :

Of course any cyclic permutation of a periodic orbit gives another point on
the same orbit.

Trivially, the map � has two �xed points, (+)1 and (�)1, and these
correspond to the two �xed points of the H�enon map. These are born in a
saddle-node bifurcation at k = �(1 + b)2=4, which we denote by

sn f(+)1; (�)1g :

We denote bifurcations with the general template

parent! type fchildreng ;

where parent refers to the orbit that is undergoing the bifurcation, if any,
and type is one of sn, pf, pd, or m=n, corresponding to a saddle-node,
pitchfork, period doubling, or rotational bifurcation, respectively. The set
of orbits created in the bifurcation is listed as the children. When the
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stability of these di�er, we adopt the convention that the unstable child is
listed �rst, and the stable one second.

When b = 1 the �xed points of the H�enon map are located at

z� = �
p
1 + �2 + � =

p
k �p

1 + k :

The stability of a period n orbit of an area preserving map f is conveniently
classi�ed by the \residue" de�ned as

R =
1

4
(2� Tr(Dfn)) ;

so that an orbit is hyperbolic if it has negative residue, elliptic when 0 <
R < 1 and is re
ection hyperbolic when R > 1 [23]. The residues of the
�xed points are

R� = � 1

2�

p
1 + �2 = �1

2

p
1 + k ; (8)

so the sign of the symbol is opposite to the sign of the residue of the �xed
point. Thus the orbit (+)1 is always hyperbolic, while the orbit (�)1 is
re
ection hyperbolic for small �, or large k, but becomes elliptic at � = 1=

p
3,

or k = 3.
The sequence (+�)1 corresponds to the period two orbit

(+�)1 : (z0; z1) = (
p
1� 3�2 � �;�

p
1� 3�2 � �) :

This orbit exists only for � < 1=
p
3, and is created by a period doubling of

the elliptic �xed point (when R� = 1). We denote this bifurcation by

(�)1 ! pd f(+�)1g :

Similarly there are two period three orbits,

(��+)1 : (z0; z1; z2) = (�
p
1� �2;�

p
1� �2;

p
1� �2 � �)

(�++)1 : (z0; z1; z2) = (�
p
1� �2 � �;

p
1� �2;

p
1� �2) :

These are created in a saddle-node bifurcation at � = 1;

sn f(��+)1; (�++)1g :

We list the low period orbits and their bifurcation values in Table 1.
Another class of bifurcations shown in the table are rotational bifurcations.
A rotational bifurcation occurs when the winding number of an elliptic orbit
becomes ! = m=n; we denote such bifurcations by the winding number of
the parent orbit. For example the birth of orbits with winding number 1=n
at the �xed point (�)1 is denoted

(�)1 ! 1=n f(� �+n�2)1; (�++n�2)1g : (9)
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Parent Type Child Child k-Value

sn (�)1 (+)1 �1
(�)1 pd (+�)1 3

sn (�+�)1 (+�+)1 1
(�)1 1=3 (�+�)1 5

4

(�)1 1=4 (+��+)1 (+�++)1 0
(+�)1 pd (�+��)1 4

(�)1 1=5 (�+++�)1 (+ +�++)1 7�5p5
8

(�)1 2=5 (��+��)1 (�+�+�)1 7+5
p
5

8

sn (+�+�+)1 (+���+)1 5:5517014y

(�)1 1=6 (�+4 �)1 (+ +�+3)1 �3
4

(+�+)1 pd (+�4 +)1 5
4

(+�4 +)1 pf (+ +�+��)1 (��+�++)1 3
sn (��+�+�)1 (��+�3)1 3:7016569z

(+�)1 1=3 (��+�+�)1 15
4

sn (+�+3�)1 (��+3�)1 5:6793695z
y 16k5 � 108k4 + 105k3 + 27k2 � 97k � 47
z 16k6 � 136k5 + 213k4 + 220k3 + 126k2 + 108k + 81

Table 1: Periodic orbits of the H�enon map up to period 6 and their bifur-
cations when b = 1. In the \type" column, \sn" indicates a saddle-node
bifurcation, \pf" a pitchfork bifurcation, and \pd" a period doubling bifur-
cation. A rotational bifurcation is denoted by m=n, referring to the winding
number of the parent at the bifurcation. For 1=3 the child is not created in
the bifurcation, it exists before and after the bifurcation. If there are two
children, the one listed in the �rst column has negative residue just after
birth (except for the pf case). The real roots of the polynomials in the last
rows give exact bifurcation values for the three approximations shown.

This particular rotational bifurcation occurs when the multipliers of the
�xed point are ei2�! or using Eq. (8), when k is given by

k! = cos(2�!)(cos(2�!)� 2) : (10)

We have empirically identi�ed the symbol sequences for rotational bifur-
cations, and will present the general symbolic formula for these and for
rotational \islands around islands" orbits in [21].

The residue of any periodic orbit of a Lagrangian system is easily com-
puted from the matrix M formed from the second variation of the action
[24]. For a period n orbit of the H�enon map this formula gives:

R(z(�)) = �1

4

det(M)

�n
;

where M is the periodic tridiagonal matrix with elements elements

Mt;t�1 = �b� ; Mt;t = 2zt(�) ; Mt;t+1 = �� :
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As we approach the anti-integrable limit, z(�) ! s as � ! 0 and M ap-
proaches the diagonal matrix Diag(2si). Thus we see that the residue be-
comes in�nite at the anti-integrable limit and its sign is given by �Qn�1

t=0 st.
Hence,

sign(R(s)) = �(�1)j ; (11)

where j is the number of �'s in the symbol sequence s.

5 A Subshift of Finite Type

In this section, we extend Thm. 1 to the case of a subshift of �nite type. In
particular, the biggest restriction in the proof of the theorem arises from the
fact that the bounds on the operator T given in Eq. (7) are weakest when
the signs si+1 = si�1 = �1. We can improve the bound by restricting the
set of admissible symbol sequences to forbid this particular case. The shift
map restricted to this subspace is a subshift of �nite type with the forbidden
set F = f�+�;� � �g; that is, we de�ne the shift space

�F9 t 2 Z such that st�1 = st+1 = �g :

This subshift can be easily described as a subshift on 2-blocks represented
by the space f��;�+;+�;++gZ, so that any point s 2 �F becomes the
overlapping sequence : : : (st�1st)(stst+1) : : : . The subshift on the two-block
space is represented by a vertex graph with the state transition matrix

S =

0
BB@

0 0 1 0
1 0 1 0
0 0 0 1
0 1 0 1

1
CCA ;

which indicates by 1 the allowed transitions among the four states. The
number of periodic orbits of period n for the subshift is given by

Tr(Sn) = 
n + (1� 
)n + 2(�1)n=2(n� 1 mod 2) ;

where 
 = (1+
p
5)=2 is the golden mean. Thus the topological entropy for

�F is ln
. The number of distinct periodic orbits can be obtained from this
by subtracting the number of periodic orbits for all factors of n and then
dividing by the number of cyclic permutations, n. For comparison with the
full shift and with the numerical results below, we give a list of these in
Table 2. For example there are a total of 1; 465; 020 periodic points of the
full shift with period n � 24, while there are only 12; 216 in the subshift �F .

When b is non-negative, orbits with symbol sequences in the subspace
�F , can be shown to persist longer than a general orbit:
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Period � �F
1 2 1
2 1 0
3 2 1
4 3 2
5 6 2
6 9 2
7 18 4
8 30 5
9 56 8
10 99 11
11 186 18
12 335 25
13 630 40
14 1161 58
15 2182 90
16 4080 135
17 7710 210
18 14532 316
19 27594 492
20 52377 750
21 99858 1164
22 190557 1791
23 364722 2786
24 698870 4305
25 1342176 6710
26 2580795 10420
27 4971008 16264
28 9586395 25350
29 18512790 39650
30 35790267 61967

Table 2: Number of orbits with minimal period n of the 2-shift and the
subshift �F .
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Theorem 2 (Existence and Uniqueness of �F orbits). Suppose 0 �
b � 1. For every symbol sequence s 2 �F there exists a unique orbit z(�) of
the H�enon map Eq. (1) such that z(0) � s providing 0 � � < �max, where

�max � 2

1 + b

s
�b2 + 2b+ 5� 2

p
5 + 4b

(b� 1)(b� 5)
: (12)

This theorem follows from the same argument that gave Thm. 1 with only
minor modi�cations. We summarize the changes in the argument in the
following discussion.

When 0 � b � 1, s 2 �F , and z 2 BM , we can bound the norm of
iterates of T in Eq. (7) using the inequalities

�k � jjTk(z)jj1 � �k ;

where the coe�cients �k and �k are determined by the recursions

�k =
p
1 + �(1 + b)�k�1 ;

�k =
p
1 + �(b�n�1 � �n�1) ;

with �0 = 1 +M and �0 = 1�M . The sequence �k is the same as that in
[6]; it has the unique attracting �xed point

�1 =
1

2

n
�(1 + b) +

p
�2(1 + b)2 + 4

o
:

Since the recursion for f�ng depends on �, but not vice versa, the coupled
system also has a unique attracting �xed point, which is given by (�1; �1)
with

�1 =
1

2

n
�b+

p
�2b2 + 4(1 � ��1)

o
:

This implies that for large enough n, Tn maps the ball B1��1 into itself.
The map T is a contraction map on this ball providing jjDTkjj1 < 1. This
leads to the same bound as that in [6], namely:

�max(1 + b) < 2�1 :

After some simpli�cation, this inequality yields the formula for �max. 2

6 Horseshoe Boundary

The existence theorem 1 provides an analytical bound on the parameter
range for which the H�enon map has a hyperbolic horseshoe. This bound is
shown as the boundary of the dark grey region in Fig. 1. In addition Thm. 2



6 HORSESHOE BOUNDARY 12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ε = k−1/2

b

Numerical

Attractor
Henon

Numerical
BoundBound

FΣ

Theorem 2Theorem 1

Σ Benedicks and Carleson

Figure 1: First bifurcations for the H�enon Map. The dark shaded region represents
Thm. 1 and the lighter that of Thm. 2. The curves represent the numerical results
for the �rst orbits destroyed up to period 24. Numerical bounds for the subshift
�F are indicated with a triangle symbol.

gives an analytical bound, shown as the boundary of the lighter shaded area
in the �gure, for the existence of all orbits in the subshift �F . This bound
is valid only for b � 0, and meets the former at b = 0.

Here, we use our continuation method to estimate the boundary of exis-
tence of the horseshoe by following all orbits from the anti-integrable limit
up to some �xed period, in this case period 24. In order for the numerical
boundary to be valid, we must assume

Conjecture 1. Every orbit of the H�enon map can be continuously connected
to the anti-integrable limit;

that is, there are no isolated \bubbles" in the bifurcation diagram. As far
as we know, this is true for the H�enon map, but it has not been proven.
Moreover, we must assume that the boundary that we compute for �nitely
many orbits is indeed an approximation of the boundary for all orbits. Our
evidence for this is based on extrapolation, as we explain below.

To construct a numerical approximation for the boundaries, we �rst
generate all symbol sequences for orbits of periods up to n = 24. Then, for
�xed b, we numerically continue each orbit in � away from the anti-integrable
limit and monitor its multipliers to detect bifurcations. For each b we record
the smallest value of � at which a bifurcation occurs. The resulting numerical
bound in Fig. 1 is shown as the solid curve.

The numerical bound is similar in shape to the analytical one, but shifted
to the right in �. While the analytical bound is symmetric under b ! �b,
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the numerical results are not. For example the �rst bifurcation at b = 1
occurs for � � 0:41888, while at b = �1 it occurs for � � 0:40167. In the
logistic limit (b = 0), Eq. (1) reduces to the logistic map,

zt+1 =
1

�
(z2t � 1) ; (13)

for which the �rst bifurcation occurs at � = 1=
p
2, where the orbit of the

critical point becomes bounded.
When b is positive, the symbol sequences for the �rst pair of orbits

destroyed up to period 24 extrapolate to orbits that are homoclinic to the
�xed point (+)1; we conjecture that these are the �rst orbits destroyed as
� increases from 0:

Conjecture 2. For positive b, the �rst bifurcation as � increases from 0
corresponds to the homoclinic saddle-node bifurcation

sn f+1 � (+)�+1;+1 � (�)�+1g : (14)

A theorem of Smillie [25] implies that the �rst bifurcation destroying the
H�enon horseshoe must be a quadratic homoclinic tangency for some orbit.
Our observations imply that it is a homoclinic bifurcation of (+)1. When
b < 0, however, the most natural description of the �rst bifurcation is as a
heteroclinic tangency, which leads to

Conjecture 3. For negative b, the �rst bifurcation as � increases from 0
corresponds to the heteroclinic saddle-node bifurcation

sn f�1 + (�)�+1;�1 + (+)�+1g :

This does not contradict Smillie's theorem, as there are many homoclinic
bifurcations that accumulate on this heteroclinic bifurcation. For example,
for each m the orbits (�m++�+m)1�+(�m++�+m)1, are homoclinic
to the periodic orbit (�m + + � +m), and the bifurcation points of these
homoclinic orbits limit on that of the heteroclinic orbits as m!1.

Filtering the symbol sequences to choose only those in the subshift �F ,
we can use the same numerical data previously described to �nd the �rst
bifurcation amongst the orbits in �F . This gives the solid curve marked
with triangles in Fig. 1. This curve has a qualitatively di�erent shape than
the analytical bound.

For reference we indicate in Fig. 1 the point k = 1:4, and b = �0:3,
corresponding to the much studied H�enon attractor. We also show the
parameter range (b small enough, 1 < k < 2) for which the theorem of
Benedicks and Carleson [26] implies that the H�enon map has a transitive
attractor with positive Lyapunov exponent.
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7 Homoclinic Orbits

In this section we use the symbolic dynamics to classify the orbits of the
H�enon map that are homoclinic to the hyperbolic �xed point p = (+)1

and study some of the bifurcations that occur. We begin with some general
terminology, referring to the H�enon map as an example.

Let f be an orientation preserving map2 of the plane with hyperbolic
�xed point p. The stable and unstable manifolds of p are denoted by W u

and W s, and a closed segment of such a manifold between two points �
and � by W u[�; �]. We use a parenthesis to denote an open endpoint of a
segment. A segment that extends to the �xed point, e.g. W u(p; �], is called
an initial segment of the manifold. The set of homoclinic orbits is the set of
intersections W s \W u. A point � is on a primary (or principal) homoclinic
orbit if the two initial segments to � touch only at �, i.e.,

W u(p; �] \W s(p; �] = f�g :

Thus the initial segments to a primary homoclinic orbit de�ne a Jordan
curve; we call the interior of this curve a resonance zone. More generally, a
resonance zone is a region bounded by alternating initial segments of stable
and unstable manifolds [27, 28].

For example, in Fig. 2 we sketch the left-going branches of the manifolds
from p = (+)1 for the area-preserving H�enon map. There are precisely two
primary homoclinic orbits; in the �gure, we label points on these orbits with
� and �. We choose to use � to construct the resonance zone.

The stable manifold is divided into two invariant branches by the �xed
point. An ordering is de�ned on each branch of W s, so that � <s 
 for
two points on a branch of W s if � is nearer to p along W s than 
, i.e.,
� 2W s(p; 
). We similarly de�ne an ordering <u on each branch of W u.

A segment of a manifold from a point to its iterate, W s(�; f(�)], is called
a fundamental segment [28]. The union of the iterates of a fundamental
segment is the entire branch of the manifold. Moreover, since the iterates
are disjoint, every homoclinic orbit on this branch must have precisely one
point on each fundamental segment.

For the H�enon map, we focus on the left-going branches of W s and W u

and the fundamental segments between f�1(�) and �. These also form the
boundaries of the incoming and exit sets for the resonance zone de�ned by
� [29]. The exterior halves of these segments, W s(�; �) and W u(f�1(�); �),
contain no homoclinic points since orbits on these segments are unbounded,
so it is su�cient to look for homoclinic points on the interior halves,

U � W u[�; �] ;

S � W s[f�1(�); �] : (15)

2The orientation reversing case could be included by considering f2, since its manifolds
have the same geometry as those of f .
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Figure 2: Stable and unstable manifolds for the H�enon map at k = 5 and b = 1
shown in (z; z0) coordinates.

Every homoclinic orbit must have exactly one point on both S and U .
Homoclinic orbits can be classi�ed in a number of ways. The type [28],

of a homoclinic point � is3

type(�) = supfj � 0 : W s(p; f j(�)] \W u(p; �] 6= ;g ;

i.e., the number of iterates for which the stable initial segment to f j(�)
intersects with the unstable initial segment to �. The type of a homoclinic
point is invariant along its orbit. Primary homoclinic points have type 0.

Homoclinic orbits on particular branches ofW s andW u can also be clas-
si�ed by their transition time. In general this is de�ned relative to a choice of
a primary homoclinic point, � and the fundamental segments W u(f�1(�); �]
and W s(f�1(�); �]. Any homoclinic orbit on these branches has exactly one
point, �, on the unstable segment. The transition time is the number of
iterates required for � 2W u(f�1(�); �] to reach the stable segment:

ttrans(�) = k if fk(�) 2W s(f�1(�); �]

The value of the transition time depends upon the choice of fundamental
segments, so it is not as basic a property as the type.

In the simplest case, the transition time is easily related to the type of
the orbit [1]:

3Our de�nition of the type di�ers from Easton's slightly, to comply with his de�nition
that type 1 is equivalent to the horseshoe. Rom-Kedar [30] uses the term Birkho� signature

instead of type.
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Lemma 3. Assume there are exactly two primary homoclinic orbits, � and
�, and the segments S and U de�ned as Eq. (15) contain all of the homoclinic
orbits. Then for each homoclinic point in � 2 U , ttrans(�) = type(�).

Proof: If � 2 U is of type t, then by de�nitionW s(p; f t(�)]\W u(p; �] 6=
;. Now since � <u � <u � and W s(p; �) \W u(p; �) = ;, this implies that
� <s f t(�). However, W s(p; f t+1(�)] \ W u(p; �] = ;, which means that
f t+1(�) <s �, but there are no homoclinic points on W s(�; �), so actually
f t+1(�) <s �. Now S contains every homoclinic point that reaches W s(p; �)
in one iteration, so f t(�) 2 S. 2

Each homoclinic orbit has a Poincar�e signature that determines the di-
rection of crossing of W u and W s at points on the orbit. We de�ne the
signature to be +1 if, looking along the unstable manifold in the direction
of motion, the stable manifold crosses the unstable from the left to the right
side. Crossings in the opposite direction have signature �1. If the manifolds
do not cross but only touch (a topologically even intersection), the signature
is de�ned to be zero. Since the map is orientation preserving, the signature
is invariant along an orbit. Thus in Fig. 2 � and � have signatures �1 and
+1, respectively. The signature of a particular homoclinic orbit is typically
not preserved in a bifurcation, but the total signature of the bifurcating
orbits must be the same on each side of the bifurcation value. For example
a saddle-node bifurcation creates a zero signature orbit that splits into one
positive and one negative signature orbit.

For the H�enon map, the AI symbol sequence leads to a complete clas-
si�cation of homoclinic orbits. It is easy to construct homoclinic and het-
eroclinic orbits using the symbolic dynamics: an orbit heteroclinic from a
periodic orbit (s)1 to a periodic orbit (s0)1 has a symbol sequence that
begins with a head sequence (s)1 and ends with a tail sequence (s0)1 with
some arbitrary, �nite symbol sequence separating the head and tail. For
example, the simplest orbits homoclinic to p = (+)1 are the primary ho-
moclinic orbits:

� = +1 � .+1 ;

� = +1 � .�+1 ; (16)

corresponding to those we labeled in Fig. 2. These symbol sequences arise
because as � ! 0 the point � moves to the point �.�, while � moves to
�.+ and f�1(�) to +.�.

All other orbits homoclinic to p can be written in the form +1 � (s)�
+1, where s, the core, is any �nite sequence|thus there is a one-to-one
correspondence between �nite symbol sequences and potential homoclinic
orbits (all of which exist in the AI limit). This implies, for example, that
near the anti-integrable limit there are 2k homoclinic orbits with core length
k. We will often denote a homoclinic orbit simply by writing the core, (s).
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Figure 3: Ordering of homoclinic orbits of type 3 or less at k = 6:25. The enlarge-
ment on the left shows the core sequences for the 14 homoclinic orbits.

The classi�cation of homoclinic orbits by their symbol sequence can be
used to compute other invariants. To determine the type of an orbit, we
simply note that the AI symbols give exactly the same coding for an orbit
as the standard symbolic coding for the horseshoe. This implies that the
point +1 � .(s) � +1 corresponds to a phase point on U , and the point
+1 � (s).�+1 is on S, thus

Lemma 4. The transition time of the homoclinic orbit close to the AI limit
is given by the length of the core sequence.

For example, the homoclinic orbit +1�(� �+)�+1 has the core sequence
(� �+), and therefore has transition time 3.

Similarly the signature of a homoclinic orbit in the horseshoe is given by
simply counting the number of � signs in the core sequence.

Lemma 5. The signature of a homoclinic orbit with core (s) close to the
AI limit is given by �(�1)j where j is the number of � signs in s.

Thus the orbit (� � +) has signature �1.4 We will see that, when b = 1,
some homoclinic orbits undergo pitchfork bifurcations, which change their
signature, so this rule is not valid for all parameter values.

The positions of the homoclinic orbits on U for orbits of type 1, 2 and
3, labeled by their core sequences, are shown in Fig. 3. The order of the

4Eq. (11) implies that the signature is the same as the limiting sign of the residue of
periodic orbits that approximate the homoclinic orbit.
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Figure 4: Ordering of pre-periodic points for the + �xed point of the logistic limit
of the H�enon map. The symbols are determined by the itinerary of the orbit relative
to the critical point at z = 0.

homoclinic orbits on the segments S and U , when they exist, must be the
same as the corresponding ordering of homoclinic points in the complete
horseshoe, since they cannot collide except when there is a bifurcation, and
we observe that every such collision destroys homoclinic orbits moving away
from the AI limit. This ordering is equivalent to that of the logistic map,
Eq. (13), for the orbits forward asymptotic to the + �xed point. This gives
an easy way to compute the ordering, see Fig. 4. In the logistic limit, all of
the sequences forward asymptotic to the �xed point are destroyed when the
orbit of the critical point becomes bounded at � = 1=

p
2. The �xed point

.+1 has a single preimage, which is � = .�+1. Every other orbit that is
forward asymptotic to .+1 has the form .(s)�+1.

The ordering of the orbits along S is equivalent to that on U upon time
reversal. Thus a type t point +1 � (s1s2 : : : st).�+1 on S is in the same
relative position as the point +1 � .(stst�1 : : : s1)�+1 on U .

So long as there are no homoclinic bifurcations, then the orderings >u

and >s are just given by the usual unimodal ordering as stated in

Lemma 6. The ordering >u on U and >s on S close to the AI limit is
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given by

+1 � .e+ : : : >u +1 � .e� : : :

+1 � .o+ : : : <u +1 � .o� : : :

� � �+ e.�+1 >s � � � � e.�+1

� � �+ o.�+1 <s � � � � o.�+1 ;

where e / o are �nite sequences with an even / odd number of minus signs,
respectively.

The ordering shown in Fig. 3 and Fig. 4 is exactly this one upon ap-
pending the \homoclinic tail" �+1 to the cores. The maximal orbit on U
is �, corresponding to the tail .+1, the minimal orbit is �, corresponding
to .�+1.

8 Homoclinic Bifurcations

Homoclinic bifurcations are bifurcations between homoclinic orbits. Com-
pared to ordinary bifurcations of periodic orbits they possess additional
structure because the invariant manifolds (with their ordering) must be in-
volved in the bifurcation process. Two homoclinic orbits � and 
 are double
neighbors if the segmentsW u[�; 
] andW s[�; 
] contain no other homoclinic
orbits. Three ordered homoclinic points � <u 
 <u � are triple neighbors
if both �; 
 and 
; � are double neighbors. An obvious observation with
nevertheless important consequences is the \double neighbor" lemma:

Lemma 7. Two homoclinic orbits � and 
 cannot bifurcate unless they are
double neighbors.

The converse gives a simple forcing relation: before � and 
 can bi-
furcate any homoclinic orbit on either segment between them must have
disappeared.

Another consequence is the transition time lemma:

Lemma 8. If two homoclinic orbits � and 
 bifurcate then they must have
the same transition time ttrans.

Proof: Let � and 
 be neighbors on U . If their transition time is dif-
ferent then they are not neighbors on S, so they cannot bifurcate. 2

This allows us to extend Lemma 4 away from the AI limit, so that one
can take the transition time as an adequate replacement of the period:

Corollary 9. The transition time of a homoclinic orbit never changes.
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Proof: Since the transition time is an integer it cannot change under
smooth deformations. It could only change at bifurcations, but we have just
seen that only orbits with the same transition time bifurcate. 2

Therefore bifurcations only take place between double neighbors with the
same transition time, i.e. core length. In order to determine which orbits
are neighbors we make the assumption that the following symbolic ordering
conjecture holds:

Conjecture 4. The symbolic horseshoe ordering on the invariant manifolds
given in Lemma 6 persists.

Close to the AI limit the horseshoe is still complete. In this situation it
is possible to �nd all neighbors:

Lemma 10. Two homoclinic orbits on U are neighbors in the complete
horseshoe if and only if they are of the form +1 � .(s+)�+1 and +1 �
.(s�)�+1.

Proof: We have to show that there is no homoclinic orbit with core �
such that (o+) <u (�) <u (o�) or (e�) <u (�) <u (e+), where e = s if s has
an even number of minus signs or o = s if this number is odd. If the initial
string in � di�ers from s then � can not be between the sequences (s�) and
(s+), therefore � = s : : : . It is simple to see that

.e+ � � � �u .e+�+1; .e� � � � �u .e��+1 ;

and similarly

.o+ � � � �u .o+�+1; .o� � � � �u .o��+1 :

Since � = s : : : it must be of one of the forms on the left hand sides, but
then the inequalities show that it is not between (s+) and (s�) hence they
must be neighbors. Conversely, suppose we have two neighboring homoclinc
orbits (on U) .a and .b with .a <u .b. They must di�er in at least one
symbol so call the �rst such di�erence x. Their leading common symbols
are denoted by s, so that a = sx� and b = s�x� for some sequences � and
�. Applying the ordering relation to the possible combinations of s and x
gives either

.e� � <u .(ey)�+1 <u .e+ � or .o+ � <u .(oy)�+1 <u .o� � ;

where the choice of the symbol y depends on whether s is even or odd and
whether � and � are �+1. Speci�cally, choose y = + if either s = e and
� 6= �+1 or s = o and � 6= �+1. Choose y = � if either s = e and
� 6= �+1 or s = o and � 6= �+1. If neither � nor � are �+1 either choice
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for y works. When either �,�, or both di�er from �+1 we've constructed
an orbit

.� � .(sy)�+1

which is between .a and .b|hence .a and .b are not neighbors. But this
is a contradiction so �; � = �+1. 2

For a bifurcation to occur it is not enough that the orbits be neighbors
on U , but they must be double neighbors. This almost gives the proof of
Conjecture 2, but here we're working in the smaller class of orbits homoclinic
to p, the hyperbolic �xed point. Note that the following theorem does not
rely on the symbolic ordering conjecture, because the ordering is used in
a range of parameters before the �rst bifurcation occurs, so the horseshoe
ordering is still valid.

Theorem 11. The �rst homoclinic bifurcation of the invariant manifolds
of the �xed point (+)1 is

sn f+1 � (+)�+1;+1 � (�)�+1g :

Proof: By Lemma 10 we know that all neighbors on U in the complete
horseshoe are of the form (s�). For them to be double neighbors, these
sequences must be neighbors on S as well, but this is equivalent to the se-
quence and reverse being neighbors on U . But this only true if s is empty.
The only double neighbors in the complete horseshoe are therefore the two
orbits +1� (+)�+1 and +1� (�)�+1. Therefore they must bifurcate
�rst. 2

To approximate a homoclinic orbit, which possesses an in�nite number of
points in phase space with a periodic orbit with only a �nite number of points
we require that the Hausdor� distance of these two point sets vanishes in
the limit of in�nite period. Thus for an orbit homoclinic to (+)1, we study
a sequence of approximating periodic orbits with an increasingly long string
of + symbols. In particular the rotational orbits given in Eq. (9) converge
to � and � in the limit.

In Table 3 we list the �rst 11 members of the sequence approximating the
transit time 1 homoclinic orbit, and the corresponding sequence of values, �sn
at which these orbits undergo a saddle-node bifurcation when b = 1. These
values converge geometrically to the parameter at which the homoclinic or-
bits bifurcate, and the ratio of successive di�erences ( a \Feigenbaum ratio")
is computed in the fourth column of the table. As is known theoretically,
the convergence rate, �, approaches �, the multiplier of the �xed point, p
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Orbits �sn �1 �

(� � �+2)1 0.4244113099817847 0.418886386005370
(� � �+3)1 0.4196139686609910 0.418879425211360 7.03462660
(� � �+4)1 0.4189824163820134 0.418879238282474 7.03430596
(� � �+5)1 0.4188938699141631 0.418879233464361 7.03442728
(� � �+6)1 0.4188813132707083 0.418879233345500 7.03444522
(� � �+7)1 0.4188795290018318 0.418879233342659 7.03444521
(� � �+8)1 0.4188792753723665 0.418879233342592 7.03445672
(� � �+9)1 0.4188792393174328 0.418879233342592 7.03445932
(� � �+10)1 0.4188792341919594 0.418879233342590 7.03444699
(� � �+11)1 0.4188792334633355 0.418879233342590 7.03443417
(� � �+12)1 0.4188792333597558 0.418879233342592
(� � �+13)1 0.4188792333450313 0.418879233342590
(� � �+14)1 0.4188792333429387
(� � �+15)1 0.4188792333426405

Table 3: Bifurcations in periodic approximations to the homoclinic transit
time 1 orbit, which is the �rst orbit destroyed. Here we use a � to denote
both + and �, giving both orbits involved in the bifurcation.

[31, 15]5. Our observations verify this to six digits, since

� � 7:0344478

for the �xed point p when � � 0:41887923. The third column in the table is
the extrapolation for the converged � value, given by Aitken's �2 method

�1 = �n � �(�n+1)
2

�2(�n+2)
;

where � is the standard discrete di�erence operator. Thus we see that there
is a saddle-node bifurcation of the type 1 homoclinic orbits,

sn f+1 � (+)�+1;+1 � (�)�+1g ;

at

�sn(1) � 0:41887923334259 or ksn(1) � 5:699310787383 :

This also corresponds to the parameter value at which the topological horse-
shoe for the H�enon map is destroyed, and is the value in Fig. 1 at b = 1.

Since there is a sequence of saddle-node bifurcations that limit on the
homoclinic bifurcation, there are elliptic islands arbitrarily close to the de-
struction of the horseshoe. This is a simple illustration of the theorems

5Although Robinson proved this result for the dissipative case, the result should hold
as well for the area preserving case
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proved by Newhouse [32, 12], and corresponds to an area-preserving version
of the results of Gavrilov and Silnikov [13, 14].

Since we can in principle follow every �nite orbit from the anti-integrable
limit we can begin to study the sequence of bifurcations that occur after the
horseshoe is destroyed, see Table 4. For example, the bifurcation diagram
for all of the homoclinic orbits of type three or less is sketched in Fig. 5.
The vertical ordering in this sketch is the same as that on the segment U
with � and � shown. The bifurcation diagram is highly in
uenced by the
time-reversal symmetry of the area-preserving H�enon map|we will discuss
this symmetry in the next section. As expected from the general theory [33],
we observe three kinds of bifurcations:

Symmetric saddle-node bifurcations resulting in the creation of a pair
of type t homoclinic orbits with opposite signatures. For example, in
Fig. 5, the type 3 orbits with cores (+ + +) and (�+�) are born in
such a saddle-node at k � 0:386.

Pitchfork bifurcations of a type t symmetric homoclinic orbit, creating a
pair of type t asymmetric orbits that are related by time reversal. For
example, the (�+�) orbit pitchforks at k � 0:720 creating the orbits
(�++) and (++�). A pitchfork bifurcation requires triple neighbors
to occur.

Asymmetric saddle-node bifurcation creating two symmetry related pairs
of asymmetric orbits. This bifurcation �rst occurs at type 4. For ex-
ample the two pairs f(�+��); (�+�+)g and f(��+�); (+�+�)g
are created at k � 5:18. Generically, asymmetric saddle-node bifur-
cations require two pairs of double neighbors to occur because of the
symmetry.

The shaded region in Fig. 5 represents the range of k for which the area
preserving H�enon map exhibits a horseshoe. Along the left edge we label
each orbit with its core symbol sequence.

The �rst type t homoclinic orbits are created by a saddle-node bifurca-
tion when the segment f�t(S) �rst intersects U . We denote this parameter
value by ksn(t). This marks the creation of the subset of the incoming lobe
of the turnstile with transit time t [29]. We observe that when b = 1, this
homoclinic saddle-node bifurcation is

sn f(+t); (�+t�2 �)g ; occurring atksn(t) :

Following this, the orbit (�+t�2�) undergoes a homoclinic pitchfork bifur-
cation at kpf(t), creating the pair

(�+t�2 �)! pf f(+t�1�); (�+t�1)g at kpf(t) :
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Figure 5: Sketch of bifurcations in the homoclinic orbits up to type 3 (b = 1).

Parent Type Child Child k-Value

sn (�++�) (+ + ++) -0.133474
(�++�) pf (�+++) (+ ++�) -0.044273

sn (�+�) (+ + +) 0.385556
(�+�) pf (�++) (+ +�) 0.719630

sn (��) (++) 1.627779
(��) pf (�+) (+�) 3.091505

sn (+��+) (����) 3.98213640
(����) pf (���+) (+���) 3.98213641

sn (+�+) (���) 4.706399
(+�+) pf (��+) (+��) 4.816792

asn (�+��) (� �+�) 5.188561
asn (� �++) (+ +��) 5.619922
sn (+) (�) 5.699311

Table 4: Homoclinic bifurcations up to core length 4.
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However, when b 6= 1, the initial symmetric bifurcation and the following
symmetry breaking pitchfork are replaced by a pair of nonsymmetric saddle-
node bifurcations. In this case the �rst type t bifurcation is the homoclinic
saddle-node

sn f(+t); (+t�1�)g :
According to the double neighbor lemma, certain bifurcations cannot

occur prior to other homoclinic bifurcations. The ordering relations give a
unique construction of the order of the points on U and S, and this implies
that a schematic construction of the intersections of f�t(S) with U can be
constructed solely from a list of which orbits exist at a given parameter
value. Such a schematic manifold plot is shown in Fig. 6, for all homoclinic
orbits that exist at k = 5:53 up to type 5.

We can also construct a schematic bifurcation diagram for homoclinic
orbits, as in Fig. 7, by drawing a horizontal line from k = 1 to the k-
value at which a particular homoclinic orbit is destroyed|actually we stop
the �gure at k = 6, since there are no bifurcations for larger k-values. We
order the homoclinic orbits vertically according to their unimodal ordering
on U as usual. In this bifurcation diagram the vertical connections indicate
which orbits eventually do become neighbors and bifurcate. So as to avoid
arti�cially crossing lines, we connect pairs of asymmetric saddle-nodes by
lines at the right edge of the �gure to indicate that they must bifurcate at
the same k-value.

We say that a bifurcation straddles the centerline if the pair of orbits
involved are on either side of center of the U ordering, or if one of the two
pairs of an asymmetric saddle-node straddles the center line.

Through type 6, each symmetric saddle node is followed by a pitchfork
bifurcation, just as we observed in Fig. 5, with the exception of the very �rst
bifurcation, sn f(+); (�)g, which corresponds to the smallest loop straddling
the center in the �gure.

Moreover, it is remarkable, but perhaps misleading, that through type 6
every bifurcation straddles the center. Therefore all homoclinic bifurcations
up to type 6 are forced by nesting around the center. In particular this
means that their unimodal ordering gives the bifurcation ordering, like in
unimodal maps.

This simple forcing relation is destroyed with the appearance of a sym-
metric saddle-node without pitchfork of type 7. Also at type 7, there is
an asymmetric saddle-node quadruple which does not straddle the center.
Interestingly enough, this is the same bifurcation that marks the upper k
endpoint of the gap that we discuss in x10.

It is di�cult to visualize the full homoclinic bifurcation diagram for
larger type orbits. To do so, we plot only the horizontal lines, to indicate
the range of existence of an orbit; such a diagram up to transition time 11 is
given in Fig. 8. The approximate self-similarity in this picture seems to be
related to some of the gaps we discuss in x10, namely those that are related
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Figure 6: Schematic drawing of U and f�t(S) up to type 5 for k = 5:53.
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Figure 7: Bifurcation diagram of homoclinic orbits up to type 5 (b = 1).
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to symmetric saddle-nodes without accompanying pitchforks of type 7, 9
and 11.
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Figure 8: Existence plot of homoclinic orbits up to type 11. For each homoclinic
orbit a line is drawn from large k to the parameter value where this orbit is de-
stroyed. The vertical position of each line is its formal position on U according to
the unimodal ordering.



9 SYMMETRIC HOMOCLINIC BIFURCATIONS 29

9 Symmetric homoclinic bifurcations

As we mentioned above, the bifurcation diagram of the area-preserving
H�enon map is restricted by the fact that the map has a time-reversal sym-
metry. Here we brie
y recall a few well known facts about reversible maps
[34], and apply them to the study of homoclinic bifurcations.

A map f has a time-reversal symmetry when it is di�eomorphic to its
inverse by:

Rf = f�1R :

We call the conjugacy R a reversor for f . Often, as in our case, the reversor
is an involution, R2 = I. Note that each of the maps f tR is also a reversor,
in particular, we call fR the complementary reversor to R. The �xed set of
a reversor

�x(R) = fx : Rx = xg ;
are of particular interest. For the case when R is an orientation reversing
involution of the plane, then �x(R) is always a curve that goes through
in�nity, thus dividing the plane into two pieces [35].

A reversor maps an orbit : : : zt�1; zt; zt+1 : : : of the map onto another
orbit : : : Rzt+1; Rzt; Rzt�1 : : : . A symmetric orbit is de�ned as one that is
mapped onto itself by R. It is easy to see that any symmetric orbit must
have points on �x(R)[ �x(fR). Moreover if the orbit is not periodic, it has
a unique point on one of these �xed sets, and if it is periodic it has exactly
two points on the �xed sets [36].

Reversible maps need not be area preserving, though the multipliers of
an orbit and its symmetric pair must be reciprocals of one another. In
particular, the product of the multipliers of a symmetric orbit must be one.
This implies that the H�enon map is reversible only when b = �1. For the
case b = 1 a reversor is R(x; y) = (�y;�x), and a complementary reversor
fR(x; y) = (�x� k + y2; y). The �xed curves are

�x(R) = f(x; y) : x = �yg ;
�x(fR) = f(x; y) : x =

1

2
(y2 � k)g :

Suppose that p is a symmetric, hyperbolic �xed point of a reversible map.
Then, as pointed out by Devaney [37], the stable and unstable manifolds of
the map are related by R:

Lemma 12. Let W u and W s be the stable and unstable manifolds of a
symmetric �xed point p. Then RW u(p; �] =W s(p;R�].

Proof: By de�nition, when � 2W u, then f�t(�)! p as t!1. Then
Rf�t(�) = f t(R�) ! Rp = p. Thus, R� 2 W s. Since R is a di�eomor-
phism, RW u(p; �] =W s(p;R�]. 2
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Corollary 13. If W u intersects the �xed set of a reversor, then the inter-
section point is homoclinic.

Homoclinic orbits of symmetric periodic orbits come in symmetric pairs,
and there must exist symmetric homoclinic orbits:

Lemma 14. Let p be a symmetric, hyperbolic �xed point, and � a homo-
clinic point, and suppose that R is an orientation reversing involution. Then
R� is also a homoclinic point. Moreover, there exist symmetric homoclinic
points on �x(R) and �x(fR).

Proof: By Lemma 12, since � 2 W s \W u then R� 2 W u \W s, so it
is homoclinic as well. Since �x(R) divides the plane and � and R� are on
opposite sides of this curve, the segment W u[�;R�] must cross �x(R), and
the crossing point is necessarily homoclinic. We can argue similarly for fR.
2

As is well known, pitchfork bifurcations occur with codimension one in
maps with a symmetry [33]. This occurs for homoclinic bifurcations as well,
as was suggested in [38]. We observed such pitchfork bifurcations in Fig. 5.
A pitchfork typically occurs after a symmetric, type t > 1, saddle-node
bifurcation creates a \tip" of W s inside the entry lobe of the turnstile. As
this tip grows, one would normally expect it to bend around, as sketched in
Fig. 9, creating more type t homoclinic points by saddle-node bifurcation. In
fact, it is a simple consequence of the linear ordering along W u andW s that
a single saddle-node bifurcation like that sketched in Fig. 9 is impossible:

Theorem 15. Suppose that f is an orientation preserving, reversible map,
with a symmetric �xed point p, and S and U = RS are segments of its
stable and unstable manifold bounded by adjacent primary homoclinic orbits.
Suppose that a pair of symmetric homoclinic points on U , � <s 
 are created
in a saddle-node bifurcation. Then it is impossible for there to be a single
saddle-node bifurcation as a tangency of W s(�; 
) with either piece of U n
W u[�; 
].

Proof: Since � <s 
, and RW s = W u, we have R� <u R
. Suppose
that � and 
 have transition time t. Then f t(�) 2 S, but since � is symmet-
ric this point must be the same as R�. Thus f�t(R�) = �, and similarly for

. Since the ordering is preserved by iteration, then � <u 
. Now suppose
there is a tangency at a point � =W s(�; 
)\(U nW u[�; 
]), i.e. not between
� and 
. We sketch such a con�guration in Fig. 9. Thus � <s � <s 
. By
symmetry, R� <u R� <u R
. Since the ordering is preserved by iteration,
we have � <u f�t(R�) <u 
. Thus f�t(R�) 2 W u(�; 
) and so this point
is not � (consequently the orbit of � is not symmetric). Since the manifolds
are tangent at �, they are also tangent at R� by symmetry. Thus there is
a second, simultaneous tangency, on U at f�t(R�) which contradicts the
assumption that a single tangency occurs. 2
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fix(R)

Figure 9: Impossibility of the second symmetric bifurcation as described in
Thm. 15. Stable manifolds are shown as solid and unstable manifolds as dashed
curves. Re
ection of a tangency at � gives a tangency at R� that is ordered incor-
rectly.

There are three possible resolutions: �rst one of the two orbits, � or 

could undergo a pitchfork bifurcation creating a symmetry related pair of
homoclinic orbits. For example, Fig. 10, shows part of the homoclinic tangle
at a parameter value where the type two homoclinic orbit with core sequence
(��) pitchforks. As k increases this results in the creation of a pair of type
2 orbits with cores (�+) and (+�), see Fig. 11. Note that the new orbits
are not symmetric, but that the reversal of (�+) is (+�), so they form a
symmetric pair.

The second possible bifurcation is a single-saddle node on the segment
W u(�; 
); this happens, for example, whenever a \tip" of an iterate of S
returns to U . This �rst occurs at type 3, for the bifurcation sn f(� � �)g.
We sketch a similar case, at type 4, sn f(� � ��)g, in Fig. 12.

The third possible bifurcation is a pair of asymmetric saddle-node bi-
furcations. This �rst occurs for homoclinic orbits of type 4. For example,
the bifurcations sn f(+ � +�); (� � +�)g and its time-reverse, sn f(� +
�+); (� + ��)g occur at k = 5:1885. We sketch U and f�4(S) at this bi-
furcation in Fig. 12. This bifurcation also corresponds to the lower endpoint
of an apparently hyperbolic parameter interval for the H�enon map, as we
discuss in the next section.

A symmetric saddle-node followed by a pitchfork is a common bifurca-
tion. For example, the parameter values, ksn(t), at which the �rst type t
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Figure 10: Stable and unstable manifolds for the (+)1 �xed point of the H�enon
map at b = 1 and k = 3:09151, where there is a cubic tangency of the manifolds at
the +1 � (��)�+1 homoclinic orbit.

p

-.+
-+.

α

.+ -
.- -

.- +

.+ +

ζ

ζ′
α′

-.-
+.-

+ -.- -.
+ +.

+.+

Figure 11: Type 2 homoclinic orbits of the H�enon Map at k = 3:5.
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Figure 12: Sketch of two possible homoclinic saddle-node bifurcations of type four.
A symmetric saddle-node creating (����) occurs on W u((�++�); (++++)) in
(a). An asymmetric saddle-node creating (� �+�) and (�+��) occurs with one
point on W u((�4); (+��+)) in (b).

homoclinic is created decrease monotonically with t. Thus at ksn(t) the �rst
type t orbit is born and there are no homoclinic orbits with type less than
t. For t > 1, at ksn(t � 1) the segment f t�1(U) must intersect with S, so
that f t(U) intersects with f(S). In order for this to happen (when b = 1),
there is a pitchfork bifurcation for kpf(t) 2 [ksn(t); ksn(t � 1)] of the type t
homoclinic orbit +1�(�+t�2�)�+1 giving rise to the pair of orbits with
symbol sequences

(�+t�2 �)! pf f(�+t�1); (+t�1�)g :

We see that the children of this bifurcation di�er from their parent in a
single symbol and they di�er from each other in two symbols. Table 5 lists
the �rst few such homoclinic bifurcation values obtained by extrapolation
of the �rst few members of the approximating orbit sequence.

The distance (in k) between the birth of the transit time t orbit and its
pitchfork bifurcation shrinks to zero as the transit time increases.

10 Intervals with no Bifurcations

Davis, MacKay and Sannami (DMS) [3] used the numerical method of Biham
and Wenzel [16] to compute the periodic orbits for the area preserving H�enon
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t Core ksn(t) Pitchfork Children kpf(t)

1 (�) 5.69931078670
2 (��) 1.62777931098 (�+); (+�) 3.09150542113
3 (�+ �) 0.38555621701 (�+2); (+2�) 0.71963023592
4 (�+2 �) -0.13347378530 (�+3); (+3�) -0.04427324816
5 (�+3 �) -0.39678970175 (�+4); (+4�) -0.36787481134
6 (�+4 �) -0.54918558488 (�+5); (+5�) -0.53740149261
7 (�+5 �) -0.64623270965 (�+6); (+6�) -0.64032496327
8 (�+6 �) -0.71262572399 (�+7); (+7�) -0.70916824264
9 (�+7 �) -0.76055766670 (�+8); (+8�) -0.75830622014
10 (�+8 �) -0.79659407362 (�+9); (+9�) -0.79501732767

Table 5: Pitchfork bifurcations from the �rst transit time orbits.

map. They showed that up to period 20, there are intervals of parameter
where there appear to be no orbits created or destroyed. They studied
a particular parameter interval near the destruction of the horseshoe, and
elucidated the symbolic dynamics of the corresponding homoclinic tangle.
We will refer to this interval as the DMS gap. Though the method of Biham
and Wenzel is guaranteed to work close enough to the AI limit [6], it can
fail [2]. We tested the DMS results using our continuation technique. The
use of parallel computation allowed us to extend the original experiment by
an order of magnitude in size so that we followed all orbits up to period
24|recall from Table 2 that there are a total of 1;465;020 possible orbits.
We verify the DMS results and identify the symbol sequences of the orbits
that form the boundaries of the DMS gap.

In our experiment we follow all orbits up to period 24 and record the
parameter values at which they are destroyed. This list was sorted in in-
creasing k order, and we plot the number of orbits present at each value
of k. To reduce the size of the plot the data was smoothed so that all the
orbits destroyed within a neighborhood of size �k are counted together at
the discretized value n�k. The resulting plot of the number of periodic
orbits as a function of k is shown in Fig. 13.

At the anti-integrable limit the map exhibits a horseshoe so all of the
periodic orbits are present. As we move away from the anti-integrable limit
we see a decline in the number of periodic orbits as orbits collide and are
destroyed. Flat intervals in Fig. 13 represent intervals of parameter where
very few bifurcations occur. Gaps in the plot indicate intervals of parameter
where there are no bifurcations. The creation of the �rst type t homoclinic
orbits gives rise to 
at intervals. We observe that the left endpoint of each
of the larger 
at intervals for k < 3 corresponds to ksn(t) for the saddle-node
bifurcation of the �rst type t homoclinic orbits; these are marked in Fig. 13
and in the enlargement, Fig. 14. Similarly, the parameter values kpf(t) are
also marked; note that these pitchfork bifurcations are located well beyond
the right endpoints of the 
at intervals. Each of the 
at intervals for k < 3
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Figure 13: Number of periodic orbits of the H�enon map up to period 24, for b = 1,
using �k = 7�10�4. The maximal number is reached at k � 5:69931078745, when
the horseshoe is formed. The endpoints of the largest gap studied by DMS are
labeled by L and R.

must eventually �ll in if we go to high enough period because in this range of
k the area preserving H�enon map has an elliptic �xed point. Recall that an
m=n bifurcation from the elliptic �xed point occurs at the parameter values
km=n given in Eq. (10), and these values are dense in the interval�1 � k � 3.
Moreover, invariant circles bifurcate from the elliptic �xed point for each k!
for su�ciently irrational !. The same argument can be used up to the end
of the period doubling cascade of the �xed point at k � 4:13616680392.

There are a number of distinct gaps in Fig. 13; the 3 larger gaps were
studied by DMS, especially the largest one, near k = 5:5 indicated by L
and R in Fig. 13. DMS conjecture that the dynamics in each gap is hyper-
bolic, and consequently there are no bifurcations in a gap. Our numerical
evidence, which extends their study by an order of magnitude, supports this
conjecture. Upon examining the orbits that limit on the endpoints of the
gap up to period 24, we can extrapolate and �nd that each of the �ve largest
gaps is bounded by a homoclinic bifurcation, see Table 6. Thus we see that
the gaps do not �ll-in with orbits converging on the homoclinic bifurcations,
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Left Endpoint Core kL Right Endpoint Core kR
(�+� � �+�) 4.55931896797 (+ +� � � � �++) 4.595679648027
(+3 �+� �) 4.84317164217 (+3 � � �+�++�) 4.867957620071
(�+��) 5.18851121215 (+ +� � �++) 5.537656928123
(�++� � �++�) 5.56490867348 (+ +� � �+3) 5.608721050386
(�++� �) 5.63190980280 (+3 � � �+3) 5.677692222290

Table 6: Homoclinic bifurcations bounding the gaps

but we cannot rule out that there are other, unrelated period orbits with
period larger than 24 that are created at parameter values in the middle of
a gap.

We observe that there are two types of bifurcations bounding the gaps:
symmetric and asymmetric saddle-node bifurcations. The asymmetric saddle-
nodes result in the creation of two pairs of homoclinic orbits, the one listed in
the table, and its time-reverse. Typically we observe that symmetric saddle
node bifurcations in homoclinic orbits are followed by pitchfork bifurcations.
Surprisingly, only one of the symmetric saddle node endpoint sequences is
followed by a pitchfork bifurcation. In fact we observe that among all of the
homoclinic orbits through type 11, there are only 8 such special saddle-node
bifurcations!

In Fig. 14 we show an enlargement of Fig. 13 but also include the data
from the subshift, �F . In the upper right corner of Fig. 14 we see the tail
end of the exit time 2 plateau. We also labeled the �rst large gap in �F
after the full subshift is destroyed|this is the subshift analog of the DMS
gap.

As in the DMS gap, the left and right boundaries, denoted L and R,
correspond to a pair of homoclinic saddle-node bifurcations with the core
sequences

L asn f(�+�++�); (�++�+�)g (17)

R sn f(+3 �++�+3); (+3 �4 +3)g
These bifurcations occur at the extrapolated values

ksn(L) � 1:533898312 (�sn � 0:62821082) ;

ksn(R) � 1:583387630 (�sn � 0:62216448) ;

respectively. Note that the right endpoint of the gap corresponds to an orbit
whose partner is not in the subshift!

The curves for all orbits and for the subshift are remarkably similar
and it appears that the growth of orbits in the subshift gives an accurate
representation of the overall growth of orbits in the full shift for this range
of parameters. This is especially remarkable given that fact when all the
orbits exist, the subshift contains less than 1% of the orbits in the full shift
up to period 24.
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Figure 14: Enlargement: number of periodic orbits up to period 24 for the full
shift and the subshift �F . The left and right ends of each plateau correspond to
ksn(t), and kpf(t).

The �gure shows that for small k, the number of orbits in the full shift
is nearly a constant multiple of that in the subshift.

11 Conclusions

Continuation from an anti-integrable limit is an e�ective technique for study-
ing orbits providing that there are no isolated bubbles in the bifurcation
diagram. Since the H�enon map has as most 2n �xed points of period n,
which is the number of orbits that exist in the AI limit, this hypothesis is at
least reasonable for this case, but we know of no proof. In [6] we applied the
anti-integrable theory to the H�enon map to obtain a new proof of the well-
known analytical bound of Devaney and Nitecki [5]. In Thm. 2 we applied
a similar argument to a restricted set of orbits to �nd an analytical bound
for the destruction of a subshift of �nite type. We presented both analytical
bounds together with the optimal bounds generated numerically using our
continuation method. We observed that the horseshoe was destroyed by a
type one bifurcation that was homoclinic in the area preserving case , and
heteroclinic otherwise . In either case we conjectured that this bifurcation
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was the �rst bifurcation among all orbits of the H�enon map as we receeded
from the anti-integrable limit.

With our continuation method, we were able to assign a \global code"
to each orbit, by �xing the designation as that at the AI limit. In the
H�enon map, we demonstrated that these AI codes are equivalent to the
standard horseshoe code (when it exists), but they also give a consistent
way of assigning symbols to orbits beyond the destruction of the horseshoe.
Remarkably, there appears to be a relationship between the AI codes for a
number of systems including billiards, twist maps of the cylinder and the
H�enon map. We will explore this relationship in a forthcoming paper [21].

In studying homoclinc orbits we related the properties transit time, type,
and signature to properties of the core of a homoclinic orbit. We also demon-
strated that the ordering of the homoclinic orbits on the manifold segments
U and S is the standard unimodal ordering. The notion of double neighbors
and lemmas 7 and 8 gave criteria for a pair of homoclinic orbits to bifurcate.
Surprisingly, these also gave a forcing relation that tells us which homoclinic
bifurcations are forced by other homoclinic bifurcations. Having shown that
homoclinic bifurcations can only take place between double neighbors with
the same core length, Lem. 10 gave a symbolic criterion for a pair of ho-
moclinc orbits to be neighbors. If the symbolic ordering persists after the
horseshoe was destroyed one could start to predict which homoclinic orbits
must bifurcate using only the symbolic labeling derived from the AI code.
The ordering is certainly valid until the horseshoe is destroyed, which lead
to a theorem that the �rst homoclinic bifurcation of the hyperbolic �xed
point in the area preserving H�enon map occurs between the pair of type one
orbits. In the area preserving case the H�enon map has a symmetry and we
discussed the mechanism by which pitchfork and asymmetric saddle node
bifurcations occur.

With our continuation technique we computed numerical values for var-
ious bifurcations of the homoclinic orbits up to type eleven. We hand-
sketched the bifurcation diagram at type three, but then used a simple
algorithm on the computer to construct the much more complex �gures
for higher core length. In contrast to our method, the Biham and Wenzel
[17, 39] method for �nding orbits is known to fail in certain cases [2], and can
only be justi�ed in the neighborhood of a two symbol AI limit [6]. Never-
theless, for the area-preserving H�enon map, we observed precisely the same
number of orbits using our technique as was reported by DMS using the
Biham-Wenzel method [3]. We extended the original experiment of DMS
in two ways. First, we studied an order of magnitude more orbits than the
original experiment and yet the gaps originally reported by DMS persisted.
We observed that homoclinic bifurcations are responsible for these gaps and
we listed the symbolic labels of the orbits that form the gap endpoints in
Table 6. These gaps correspond to the creation and destruction of parame-
ter intervals where the dynamics of the area-preserving H�enon map appears
to be conjugate to a subshift of �nite type. After extending the size of the



11 CONCLUSIONS 39

original experiment we extracted the �F orbits from our data. We found a
similar gap structure in the subshift data and listed the symbolic labels for
the homoclinic orbits that form the endpoints of the gap that is the analog
of the DMS gap. Having observed that the gaps are bounded by homoclinic
orbits, we regenerated the orbit growth plot using only homoclinic orbits.
As expected, the gap structure and overall shape of Fig. 13 were almost
completely captured by the homoclinic orbits alone.



REFERENCES 40

References

[1] R.W. Easton. Trellises formed by stable and unstable manifolds in the
plane. Trans. Am. Math. Soc., 294(2):719{732, 1986.

[2] P. Grassberger, H. Kantz, and U. Moenig. On the symbolic dynamics
of the H�enon map. J Phys A, 22(24):5217{5230, 1989.

[3] M.J. Davis, R.S. MacKay, and A. Sannami. Markov shifts in the H�enon
family. Physica D, 52:171{178, 1991.

[4] S. J. Aubry. The concept of anti-integrability: De�nition, theorems and
applications to the standard map. Twist Mappings and their Applica-
tions, Ed Richard McGehee, Kenneth R. Meyer, pages 7{54, 1992.

[5] R.L. Devaney and Z. Nitecki. Shift automorphisms in the H�enon map-
ping. Commun. Math. Phys., 67:137{146, 1979.

[6] D. Sterling and J.D. Meiss. Computing periodic orbits using the anti-
integrable limit. Physics Letters A, 241:46{52, 1998.

[7] R�udiger Seydel. Practical Bifurcation and Stability Analysis from Equi-
librium to Chaos, 2nd Ed. Springer-Verlag, 1992.

[8] P Cvitanovic, G.H. Gunaratne, and I. Procaccia. Topological and met-
ric properties of H�enon type strange attractors. Phys. Rev. A, 38:1503{
1520, 1988.

[9] Bai-lin Hao. Symbolic dynamics and characterization of complexity.
Phyica D., 51:161{176, 1991.

[10] K.T. Hansen. Remarks on the symbolic dynamics for the H�enon map.
Phys. Lett. A, 165:100{104, 1992.

[11] F. Christiansen and A. Politi. Symbolic encoding in symplectic maps.
Nonlinearity, 9:1623{1640, 1995.

[12] S.E. Newhouse. Quasi-elliptic periodic points in conservative dynamical
systems. Am. J. Math., 99:1061{1087, 1977.

[13] N. Gavrilov and L. Silnikov. On the three dimensional dynamical sys-
tems close to a system with a structurally unstable homoclinic curve,
i. Math. USSR Sbornik, 17:467{485, 1972.

[14] N. Gavrilov and L. Silnikov. On the three dimensional dynamical sys-
tems close to a system with a structurally unstable homoclinic curve,
ii. Math. USSR Sbornik, 19:139{156, 1973.

[15] C. Robinson. Bifurcation to in�nitely many sinks. Comm. Math. Phys.,
90:433{459, 1983.



REFERENCES 41

[16] O. Biham and W. Wenzel. Characterization of unstable periodic orbits
in chaotic attractors and repellers. Phys. Rev. Lett., 63:819{822, 1989.

[17] O. Biham and W. Wenzel. Unstable periodic orbits and symbolic dy-
namics of the complex H�enon map. Phys. Rev. A, 42:4639{4646, 1990.

[18] S. J. Aubry. Anti-integrability in dynamical and variational problems.
Physica D, 86:284{296, 1995.

[19] R.S. MacKay and J.D. Meiss. Cantori for symplectic maps near the
anti-integrable limit. Nonlinearity, 5:149{160, 1992.

[20] S. Aubry and G. Abramovici. Chaotic trajectories in the standard map,
the concept of anti-integrability. Physica D, 43:199{219, 1990.

[21] H. Dullin, D. Sterling, and J.D. Meiss. Global symbolic codes for maps.
In Progress, 1998.

[22] H.B Keller. Numerical Methods in Bifurcation Problems. Published for
the Tata Institute by Springer-Verlag, 1997.

[23] J.D. Meiss. Symplectic maps, variational principles, and transport.
Reviews of Modern Physics, 64(3):795{848, 1992.

[24] R.S. MacKay and J.D. Meiss. Linear stability of periodic orbits in
Lagrangian systems. Phys. Lett. A, 98:92{94, 1983.

[25] John Smillie. Complex dynamics in several variables. In Flavors of
geometry, volume 31 of Math. Sci. Res. Inst. Publ., pages 117{150.
Cambridge University Press, Cambridge, 1997. With notes by Gregery
T. Buzzard.

[26] M. Benedicks and L. Carleson. The dynamics of the henon map. Annals
of Mathematics, 133:73{169, 1991.

[27] R.S. MacKay, J.D. Meiss, and I.C. Percival. Resonances in area pre-
serving maps. Physica D, 27:1{20, 1987.

[28] R.W Easton. Geometric Methods for Discrete Dynamical Systems. Ox-
ford University Press, 1998.

[29] J.D. Meiss. Average exit time for volume preserving maps. Chaos,
7:139{147, 1997.

[30] V. Rom-Kedar. Homoclinic tangles-classi�cation and applications.
Nonlinearity, 7:441{473, 1992.

[31] J. H. Curry and J.R. Johnson. On the rate of approach to homoclinic
tangency. Phys. Lett. A, 92(5):217{219, 1982.



REFERENCES 42

[32] S. Newhouse. Di�eomorphism with in�nitely many sinks. Topology,
13:9{18, 1974.

[33] R. Rimmer. Symmetry and bifurcation of �xed points of area-preserving
maps. J. Di�. Eqns, 29:329{344, 1978.

[34] J.S.W.Lamb, editor. Time-Reversal Symmetry in Dynamical Systems,
volume 112 of Physica D, Amsterdam, 1998. Elsevier.

[35] R.S. MacKay. Renormalisation in Area-Preserving Maps, volume 6 of
Advanced Series in Nonlinear Dynamics. World Scienti�c, Singapore,
1993.

[36] J.W.S. Lamb and J.A.G. Roberts. Time-reversal symmetry in dynam-
ical systems: A survey. Physica D, 112:1{39, 1998.

[37] R.L. Devaney. Introduction to Chaotic Dynamical Systems. Addison-
Wesley, 1989.

[38] Vered Rom-Kedar. Secondary homoclinic bifurcation theorems. Chaos,
5(2):385{401, 1995.

[39] W. Wenzel, O. Biham, and C. Jayaprakash. Periodic orbits in the
dissipative standard map. Physical Review A, 43:6550{6567, 1991.


