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Abstract

A natural generalization of the H�enon map of the plane is a quadratic

di�eomorphism that has a quadratic inverse. We study the case when these

maps are volume preserving, which generalizes the the family of symplectic

quadratic maps studied by Moser. In this paper we obtain a characteriza-

tion of these maps for dimension four and less. In addition, we use Moser's

result to construct a subfamily of in n dimensions.
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1 Introduction

Some of the simplest nonlinear systems are given by quadratic maps: for example
the logistic map in one dimension and the quadratic map introduced by H�enon
[1, 2] in the plane. It is easy to see that any quadratic, one dimensional map
with a �xed point is a�nely conjugate to the logistic map, x 7! rx(1� x). In a
similar way, H�enon showed that a generic quadratic area-preserving mapping of
the plane can be written in normal form as

�
x
y

�
7!
�

k + y + x2

�x
�
;

which has a single parameter, k.
H�enon's study can be generalized in several directions. Moser [3] studied

the class of quadratic, symplectic maps, obtaining a useful decomposition and
normal form. For example, when the map is quadratic and symplectic in R2n,
Moser [3, 4] showed that it can be written as the composition of two a�ne
symplectic maps and a map of the form

�
q
p

�
7!
�

q +rW (p)
p

�
; (1)

where W is a homogeneous cubic polynomial in p. The map given in (1) is a
particular example of what we call a quadratic shear.

De�nition 1.1. A quadratic shear is a bijective map of the form

x 7! f(x) = x+
1

2
Q(x); (2)

where Q(x) is a vector of homogeneous, quadratic polynomials such that f�1 is
also a quadratic map.

In this wayMoser's result is basically a characterization of all symplectic quadratic
shears. One of the remarkable aspects of this is that quadratic symplectic maps
necessarily have quadratic inverses. In general we can write a quadratic map on
R

n as the composition of an a�ne map with a quadratic map that is zero at the
origin and is the identity at linear order:

x 7! f(x) = x0 + L(x+
1

2
Q(x)); (3)

where x0 2 Rn, L is a matrix, and Q(x) is a vector of homogeneous, quadratic
polynomials. Note that if the map f is volume preserving then it is necessary that
L satis�es det(L) = 1. Similarly if f is symplectic, then L must be a symplectic
matrix. Of course, the quadratic terms also can not be chosen arbitrarily in
these cases.
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Polynomial maps are of interest from a mathematical perspective. Much
work has been done on the \Cremona maps," that is polynomial maps with
constant Jacobians [5]. An interesting mathematical problem concerning such
maps is the conjecture proposed by O.T. Keller in 1939:

Conjecture 1.1 (Real Jacobian Conjecture). Let f : Rn ! R
n be a Cre-

mona map. Then f is bijective and has a polynomial inverse.

This conjecture is still open. It is known that injective polynomial maps are
automatically surjective and have polynomial inverses [6, 7], so it would su�ce
to prove that f is injective. It is easy to see (cf. lemma [2.1] below) that a
quadratic map with constant Jacobian is injective, thus the Jacobian conjecture
holds for the quadratic case.

Even if the conjecture is true, the degree of the inverse of a Cremona map
could be large. For example, the upper bound for the degree of the inverse of
a quadratic map on Rn is known to be 2n�1 [7]. Thus in two dimensions the
inverse of a quadratic area-preserving mapping is quadratic, as was discussed by
H�enon.

The question of integrability of Cremona maps has been addressed by Moser.
In [8], he constructs a family of cubic polynomials that are nonintegrable. This
was one of the �rst attempts to show the possibility of complicated behavior in
a simple system, i.e., chaos. Related to this, there is an interesting family of
Cremona maps that have exactly one integral, the so called trace maps (cf. [9]).
For instance, if we let �(x1; x2; x3) = a+b(x1+x2+x3)+c(x1x2+x1x3+x2x3)+
d(x1x2x3) and T : R4! R

4 be given by

T

0
BB@

x1
x2
x3
x4

1
CCA =

0
BB@

�(x1; x2; x3)� x4
x1
x2
x3

1
CCA ;

then T is a cubic Cremona map that has the following integral

I(x1; x2; x3; x4) = x21 + x22 + x23 + x24 � a(x1 + x2 + x3 + x4)

�b(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)

�c(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)� d(x1x2x3x4) :

We believe that the class of quadratic maps that have quadratic inverses is
an interesting one [4]. The study of such maps hinges upon the characteriza-
tion of quadratic shears in Rn. For instance, it is known that a necessary and
su�cient condition for bijective maps of the form (2) to be quadratic shears is
that DQ(x)Q(x) = 0. However, simpler characterizations are needed; these are
known for the cases n = 2 and n = 3 [4]. In this paper we extend the results
of [4] to higher dimensions, in particular to the case n = 4. In addition, we
apply Moser's theorem in order to characterize a subfamily of quadratic shears.
A simpli�ed proof of his result is provided.
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2 Quadratic Shears

It is convenient to rewrite (2) as

f(x) = x+
1

2
M(x)x; (4)

where M : Rn ! R
n�n is a linear function into the set of n � n matrices. Since

Q(x) = M(x)x,M must satisfy the symmetry propertyM(x)y = M(y)x so that
Dx(M(x)x) = 2M(x). Thus

Df(x) = I +M(x) ;

and so there is a unique M for any quadratic Q.
In this section we study characterizations of quadratic shears in Rn. First

we show that a necessary and su�cient condition for a map of the form (4) to
be a quadratic shear is that M(x)2x = 0. After some work, we will see that the
matrix must also satisfy M(x)3 = 0.

In the penultimate section of this paper we will demonstrate that when n � 4
the matrix M satis�es M(x)2 = 0. Though we do not know if this is true in
general, we have been unable to construct an example matrix M(x) such that
M(x)2 6= 0. Whenever M2 = 0, the matrix M has all zero eigenvalues and its

largest Jordan blocks are of the form

�
0 1
0 0

�
, which implies that M has rank

at most bn=2c.
We begin our characterization of quadratic shears by recalling the following

lemma that was obtained in [4].

Lemma 2.1. Let f(x) = x + 1

2
M(x)x be a quadratic map of Rn in standard

form. The following statements are equivalent

1. For all x 2 Rn, det(Df(x)) = 1.

2. f is bijective with polynomial inverse.

3. [M(x)]n = 0.

Proof. We will show iii))ii))i))iii).

iii))ii) The condition implies that the matrix I +M(x) is invertible with
inverse I �M(x) +M(x)2 � � � � � (�1)nM(x)n�1. We can write

f(x)� f(y) =

�
I +M

�
x+ y

2

��
(x� y):

So the function is injective. Using theorem A in [6], we conclude that f is
bijective with a polynomial inverse.
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ii))i) By assumption, det(Df(x)) and det(Df�1(f(x))) are polynomials
in x1; x2; : : : ; xn. However, di�erentiation of f�1(f(x)) = x gives

det(Df�1(f(x))) det(Df(x)) = 1 ;

and therefore, since both are polynomials, det(Df(x)) has to be a constant
independent of x. We notice that det(Df(x)) = det(Df(0)) = det(I) = 1.

i))iii) Since det(I +M(x)) = 1 and M is linear in x, then for any � 6= 0

det(M(x)� �I) = (�1)n�n det(I +M(�1

�
x)) = (�1)n�n:

This implies that the characteristic polynomial of M(x) is (��)n and therefore
[M(x)]n = 0.

At this point, we restrict to the case of quadratic maps in standard form
whose inverse is also quadratic, i. e. quadratic shears. The next lemma was
obtained by Lomeli and Meiss [4]:

Lemma 2.2. Let f(x) = x + 1

2
M(x)x be a quadratic map of Rn. Then f is a

quadratic shear if and only if M(x)2x � 0, for all x 2 Rn.

It is a simple consequence of this lemma and the linearity of M that when f
is a quadratic shear, then for all x; y; z 2 Rn, the matrixM satis�es the following
properties

M(M(x)x)M(x)x = 0 : (5)

M(x)M(y)z +M(y)M(z)x+M(z)M(x)y = 0 : (6)

Property (5) implies that for each x, M(x)x is a �xed vector of f(x). Choos-
ing y = x in property (6) gives

M(z)M(x)x = M(M(x)x)z = �2M2(x)z 8x; z : (7)

Therefore

M(M(x)x) = �2M2(x) 8x : (8)

It follows from property (8) that, if for some x� 2 R
n M(x�)x� = 0, then

M2(x�) = 0. Also, if M(x�)2 = 0, then M(M(x�)x�) = 0. Using this, we obtain
the following.

Lemma 2.3. Let f(x) = x+ 1

2
M(x)x be a quadratic shear. Then for all x 2 Rn,

M(x)3 = 0.
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Proof. Suppose that, for some x 2 Rn, M(x)x 6= 0. Then, for any z, property
(6) implies

M(M(x)x)M(x)z +M(x)M(z)M(x)x+M(z)M(M(x)x)x = 0 :

From this, the symmetry property and (8) we have

M(x)2M(x)z +M(x)M(x)2z +M(z)M(x)2x = 0 :

Hence, we �nd that 2M(x)3z = �M(z)M(x)2x. But this is zero by lemma
[2.2].

Example 1. A simple family of quadratic shears is determined by any vector
u 2 Rn and a symmetric matrix P such that Pu = 0. For all x; y 2 Rn let
M(x)y = (xTPy)u. Then

M(x)2x = (xTPu)(xTPx)u = 0 :

We will see that for the case n = 3 every quadratic shear can be expressed in
this form.

Example 2. A more general example of a quadratic shear is

1

2
M(x)x =

1

2

rX
j=1

(xTPjx)uj ; (9)

where the r matrices Pj are symmetric and for all i; j we have that Piuj = 0.
We will see in the next sections that this is the most general form when n = 4.
More generally, if M satis�es (9), then since there is a maximum number of
independent quadratic forms, we can use a linear coordinate transformation to
transform the map to re
ect this.

Proposition 2.4. Choose M as in (9). Then it is always possible to assume
that

r � n �
�p

9 + 8n� 3

2

�
:

Proof. Let k = n� dim (Spanfu1; : : : ; urg).
Since f(uj) = uj , after a linear change of coordinates, we can assume that

the shear is of the form (q+ V (p); p) where V (p) is a vector of quadratic forms,
q 2 Rn�k and p 2 Rk. We know that the space of quadratic forms in Rk has
dimension k(k + 1)=2. If k(k + 1)=2 < (n � k) then there are some quadratic
forms in V that are linearly dependent, and so with a linear transformation in
the q�space we can reduce them by one. We can continue doing this, until
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k(k + 1)=2 � (n � k). This implies that k2 + 3k � 2n � 0 and therefore k �
d
p
9+8n�3

2
e. Going back to the original function, we let r = n� k.

The following table illustrates the maximum number, rn, of quadratic forms
needed, if the quadratic shear is chosen as in (9). In this case, each quadratic
form is a function in at least kn variables, since rn + kn = n.

n 1 2 3 4 5 6 7 8 9 10

rn 0 1 1 2 3 3 4 5 6 6

kn 1 1 2 2 2 3 3 3 3 4

Table 1: Maximum number rn of quadratic forms needed. Each of the rn quadratic

forms will be a function of kn variables.

3 Moser's result and consequences

In this section we use the characterization of quadratic shears in lemma [2.2]
to give an alternate proof of the result of Moser [3] for quadratic symplectic
maps. As a consequence we are able to characterize quadratic shears for which
M(x)2 = 0.

The standard symplectic form, !, is de�ned as !(v; v0) = vTJv0 where J is
the 2n� 2n matrix,

J =

�
0 I

�I 0

�
:

A map f is symplectic with respect to ! if !(Dfv;Dfv0) = !(v; v0) for all vectors
v; v0 2 R2n, or consequently when

DfTJDf = J : (10)

The main part of Moser's theorem characterizes quadratic symplectic shears.

Theorem 3.1. Let F be a quadratic symplectic map of (R2n; !). Then F can
be decomposed as F = T � S where T is a�ne symplectic and S is a symplectic
quadratic shear. Furthermore, if S is any symplectic quadratic shear, then there
is a symplectic linear map � such that � � S � ��1(q; p) = (q +rW (p); p) where
W is a homogeneous cubic polynomial in p.

Proof. Let b = F (0) and L = DF (0). Clearly L is a symplectic matrix and if
we let T (x) = b+Lx, then S = T�1 � F is a symplectic quadratic map. We can
write S(x) = x+ 1

2
M(x)x, where M(x) is linear in x and satis�es the symmetry

property M(x)y = M(y)x. By (10), S is symplectic provided

(I +M(x))TJ(I +M(x)) = J :
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Homogeneity of M(x) implies that M(x)TJ = JTM(x), and M(x)TJM(x) = 0.
These conditions imply that

M(x)2 = 0 : (11)

Lemma [2.2] then implies that S is a quadratic shear.
To �nish the proof, we follow Moser [3] and de�ne the null space of M in the

following way N = N (M) = fy 2 R2n : M(y) = 0g : Notice that y 2 N if and
only if M(x)y = 0, for all x 2 R2n.

Recall [10] that the !�orthogonal complement of a subspace E � R
2n is

de�ned by E? = fv 2 R2n : !(v; v0) = 0; 8v0 2 Eg. We will show that N? � N .
For that purpose, we will use the following fact: for any x; y; z 2 Rn,

M(z)M(x)y =M(x� y)2z = 0 ; (12)

that follows from lemma [2.2], linearity, symmetry and equations (6) and (11).
Let u 2 N? and x 2 R2n. Now for any y 2 R2n, (12) implies that M(x)y 2

N . Therefore !(y;M(x)u) = yTJM(x)u = �yTM(x)TJu = �!(M(x)y; u) =
0. This implies that M(x)u = 0 and hence u 2 N . Standard theorems in
symplectic geometry (cf. [10]) imply that, in this case, it is possible to �nd a
lagrangian space F such that N? � F? = F � N and a symplectic linear
transformation � such that

�(F) = f(q; p) 2 Rn�Rn : p = 0g:

Clearly, if S(x) = x + 1

2
M(x)x is a symplectic quadratic shear, then so is

~S = � � S � ��1. Assume that ~S(x) = x+ 1

2
~M(x)x. Then �(F) � N ( ~M). This

implies that for all (q; p) 2 Rn�Rn,

~M(q; p)(q; p) = ~M(q; p)(0; p) = ~M(0; p)(q; p) = ~M (0; p)(0; p) :

Since, in general, the matrix ~M(0; p) can be written in n� n blocks as

~M(0; p) =

�
A(p) B(p)
C(p) D(p)

�
;

then ~M(0; p)(q; 0) = 0 implies A(p) = C(p) = 0. Moreover, since ~S is sym-
plectic, we �nd that D(p) = 0 and B(p)T = B(p). Thus, �nally, we see that
~M(q; p)(q; p) = (B(p)p; 0); where B(p)p is a gradient vector �eld.

The following corollary will allow us to simplify a certain class of quadratic
shears, as a direct application of Moser's theorem.

Corollary 3.2. Let f(x) = x+ 1

2
M(x)x be a quadratic shear in Rn. If M(x)2 =

0 then there exists a linear subspace K � Rn such that

1. 8x 2 K, f(x) = x (or M(x)x = 0).
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2. 8x 2 Rn, M(x)x 2 K.
3. Furthermore, f is linearly conjugate to a map of the form�

q
p

�
7!
�

q + V (p)
p

�
;

where V is quadratic in p, q 2 Rn�k, p 2 Rk and k � d
p
9+8n�3

2
e.

Proof. It is a well know fact that if f : Rn ! R
n is a di�eomorphism, then the

following map is symplectic in Rn�Rn.�
x

y

�
7!
�

f(x)
Df(x)�Ty

�
:

In our case, Df(x) = I +M(x) and, since M(x)2 = 0, Df(x)�T = I �M(x)T .
Therefore, if we de�ne F (x; y) = (x+ 1

2
M(x)x; y�M(x)T y) then F is quadratic

and symplectic.
Moser's theorem implies that it is possible to �nd a homogeneous cubic

potential W , and a symplectic matrix � such that F = ��1 � G � �, where
G(x; y) = (x+rW (x); y). Assume that the symplectic matrix is

� =

�
A B
C D

�
:

The symplectic condition (10) implies that the inverse of this matrix is

��1 =
�

DT �BT

�CT AT

�
;

and since �T is also symplectic, then CDT = DCT . This implies that F (x; 0) =
��1G(Ax;Cx) = ��1(Ax+rW (Cx); Cx) = (x+DTrW (Cx);�CTrW (Cx)).
Hence,

DTrW (Cx) =
1

2
M(x)x ;

and

CTrW (Cx) = 0 :

Let K = Ker(C). Notice that K = f0g implies that W � 0, thus we may
assume K 6= f0g. To �nish the proof, it is enough to notice that for all x 2 Rn,
1

2
M(x)x 2 K since

CDTrW (Cx) = DCTrW (Cx) = 0 :

The third part of the corollary follows from the �rst two, after a linear change
of coordinates and proposition [2.4].
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4 Dimensions Three and Four

Following corollary [3.2], we would like to establish the stronger result that
M(x)2 = 0 for all x. In this section we show that this is true when n = 3; 4.

Lemma 4.1. Let f : Rn ! R
n be a quadratic shear where n � 4. Then, for all

x, M(x)2 = 0.

Proof. Recall that by lemma 2.3, M(x)3 = 0. When n = 1, this means that
M(x) = 0; i.e., the trivial result that there are no quadratic di�eomorphisms in
one dimension. When n = 2 nilpotency of M implies that M(x)2 = 0 directly.
Now consider n = 3 or 4. If M(x)x = 0 then (8) implies that M(x)2 = 0.
Hence assume that there is some x such that M(x)x 6= 0. Suppose that for
some z, M(x)2z = u 6= 0. Then the Jordan form of M(x) has one 3 � 3 block,
and for n = 4 an additional 1 � 1 block. M(x)2x = 0 implies that M(x)x
is in Ker(M(x)). Furthermore, Ker(M(x)) \ Range(M(x)) = Spanfug. Thus
M(x)x = cu for some scalar c 6= 0. Thus, from (7), M(z)M(x)x = �2M(x)2z =
�2u. ButM(z)cu = �2u is impossible since M(z) is nilpotent. This contradicts
M(x)x 6= 0.

Using this lemma for n = 3, we can apply corollary 3.2 to directly obtain the
following.

Corollary 4.2. For n = 3, for all x, M(x)x = (xTPx)u, where P is symmetric
and Pu = 0.

Finally, corollary 3.2 also applies to the case n = 4.

Corollary 4.3. For n = 4, for all x there exist vectors u1 and u2 and symmetric
matrices P1 and P2 such that Piuj = 0 for i; j = 1; 2 and M(x)x = (xTP1x)u1+
(xTP2x)u2.

5 Conclusion

Any quadratic, volume preserving di�eomorphism that has a quadratic inverse
can be written in the form

f(x) = a � �(x)

where a(x) = f(0) + Df(0)x is an a�ne volume preserving map, and �(x) =
x + 1

2
M(x)x is a quadratic shear. When n � 4 we showed that M(x)2 = 0.

Though we know of no counter-example to this condition we have only been
able to show that M(x)3 = 0 for n > 4. When M(x)2 = 0, then there is an
additional linear transformation � such that

~�(x) = � � � � ��1



5 CONCLUSION 11

where the quadratic shear ~� takes a particularly simple form

~�

�
q

p

�
=

�
q + V (p)

p

�
;

for (q; p) 2 Rr�Rk, and V (p) a homogeneous quadratic function. We have seen
that

r � n�
�p

9 + 8n� 3

2

�

In particular when n = 3, then r � 1 and so there is at most a single quadratic
function of two variables, and when n = 4, r � 2, so there is either pair of
quadratic functions in two variables, or a single quadatic function of three vari-
ables.

The dynamics of this class of maps is certainly a least as rich as those of the
H�enon map, and we believe their study will prove equally enlightening.



REFERENCES 12

References

[1] M. H�enon. Numerical study of quadratic area-preserving mappings. Q. J.
Appl. Math., 27:291{312, 1969.

[2] M. H�enon. A two-dimensional mapping with a strange attractor. Comm.
Math. Phys., 50:69{77, 1976.

[3] J. K. Moser. On quadratic symplectic mappings. Math. Zeitschrift, 216:417{
430, 1994.

[4] H.E. Lomel�� and J.D.Meiss. Quadratic volume-preserving maps. Nonlin-
earity, 11:557{574, 1998.

[5] W. Engel. Ganze Cremona-transformationen von Prinzahlgrad in der
Ebene. Math. Ann., 136:319{325, 1958.

[6] W. Rudin. Injective polynomial maps are automorphisms. The American
Mathematical Monthly, 102:540{543, 1995.

[7] H. Bass, E. H. Cornell, and D. Wright. The Jacobian conjecture: Reduction
of degree and formal expansion of inverse. Bull. Amer. Math. Soc., 7:287{
330, 1982.

[8] J. K. Moser. On the integrability of area preserving cremona mappings near
an elliptic �xed point. Bol. Soc. Mat. Mexicana (2), 5:176{180, 1960.

[9] J Roberts and M. Baake. Trace maps as 3D reversible dynamical systems
with an invariant. Journal of statistical physics, 74(3):829{888, 1994.

[10] R. Abraham and E. Marsden. Foundations of Mechanics. Benjamin Cum-
mings, 1985.


