
The Last 
Invariant Torus

J.D. Meiss
University of Colorado



Poincaré Sections of Natural Hamiltonians 

Symplectic  Twist 
Maps

dz

dt
= J∇H(z) z = (q, p) J =

�
0 I
−I 0

�

H(q, p) = T (p) + V (q)



Symplectic Twist Maps 
Froeshlé Map

Symplectic  if T symmetric

Exact Symplectic (zero net flux)

Twist Condition:

f∗ω = ω
ω = dx ∧ dy =

n�

i=1

dxi ∧ dyi

f∗(ydx)− ydx = dL

L(x, x�) = 1
2 (x� − x)T K(x� − x)− V (x)

x� = x + Ty� mod 1
y� = y −∇V (x)

T = K−1 > 0

y = −L1 = K(x� − x)
y� = L2 = K(x� − x)−∇V (x)



a=0.1, b=0.2 c = 0.1

y2 projection x1 projection

T = I

V (x) = 1
4π2 (a cos(2πx1) + b cos(2πx2) + c cos(2π(x1 + x2))



Symplectic Stability
Characteristic Polynomial is reflexive

Pairs & Quartets of Multipliers

, -1 , , -1, , -1

CK

CSCCPD

det(Df − λI) = λ4 − τλ3 + σλ2 − τλ + 1



Frequency Maps
Frequency: Action to ω

KAM: assumes Ω is a local diffeomorphism

No good theory of multi-dim cont. fractions 

✦ Best approximates?  Periodicity?

Farey Tree generalization

✦ binary encoding of frequency vectors

✦ natural self-similar patterns

✦ spiral mean

✦ Diophantine vector (σ, σ2,1)

Ω : Rn → Rn
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σ3 = σ + 1

Kim, S. and S. Ostlund (1986). “Simultaneous Rational Approximations in the Study of Dynamical Systems.” Phys. Rev. A 34: 3426-3434.

Ω(y) = Ty
Froeshlé case



A Tale of Three 
Methods

Converse KAM Theory
Frequency Analysis

Crossing Time



#1 Converse KAM Theory
Nonexistence criteria

✦ Birkhoff’s Theorem: every rotational invariant circle of an 
area-preserving twist map is a graph
✦ Confinement Corollary: if all orbits below y = a remain below y = b, then there is a 

rotational invariant circle in (a,b).

✦ By twist condition, S is Lipschitz

Cone Criterion Df =
�

1− F �(x) 1
−F �(x) 1

�
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Converse KAM Theory
Mather: no rotational circles if k > 4/3

✦ Rigorous numerics: if k > 63/64

Higher Dimensions?

✦ Analogue of Birkhoff’s theorem: Lagrangian invariant 
tori on which dynamics is chain recurrent are graphs

✦ Every orbit on an invariant Lagrangian graph as minimal 
action

✦ Simplest criterion: need |a| + |c| < 2 and |b| + |c| < 2 for tori.

{(x,∇S(x)) : x ∈ T2}

Mather, J. N. (1984). “Non-Existence of Invariant Circles.” Ergodic Theory and Dynamical Systems 4: 301-309.
MacKay, R. S. and I. C. Percival (1985). “Converse KAM: Theory and Practice.” Comm. Math. Phys. 98: 469-512.

Bialy, M. L. and L. Polterovich (1992). “Hamiltonian Systems, Lagrangian Tori and Birkhoff's Theorem.” Math. Ann. 292: 619-627.



Higher Dimensions
Froeshlé Map, a = 0.05, b = 0.2, c = 0.02

Convene KAM theory for symplectic twist maps 561 

6. Example continued 

We applied the algorithm of 05 to the example of 04 on a computer. We tested 
every point y of an N x N grid covering the square [0,1] X [0,1] on the plane 
x = (0, 0), to see if it has an orbit segment ( x - ~ - ' ,  . . . , x"+ ' )  which is not a 
non-degenerate minimum of the action, for n up to a maximum of M .  If 
A", n E (0, . . . , M } ,  are all positve definite we turn the pixel black, otherwise we 
leave it white. Thus there is no invariant Lagrangian graph through any white point. 
A typical result is shown in figure 2 (a = 0.05, p = 0.2, y = 0.02, N = 250, M = 400). 

Note that a further symmetry consideration is that the results are invariant under 

( Y l  + 1, Y2) 
( Y l ,  Y2 + 1) ( Y l ,  Y2) i (-Y1, -Y2h 

If a = /3 they are also invariant under (yl, y2)  ( y 2 ,  y l ) .  
A striking feature of figure 2 is that the white region is formed from 
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Figure 2. No invariant Lagrangian graphs pass through the white points of the 
symmetry plane n = (0,O) for (Y = 0.05, #J = 0.2, y =0.02. The maximum number of 
iterations is 400 and the grid size is 250. 
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Figure 3. Primitive periodic orbits on the symmetry plane x = (0, 0) for (Y = 0.05, 
p = 0.2, y = 0.02. 

‘channels’. These correspond closely to channels we observe in the arrangement of 
primitive periodic points on the symmetry plane x = 0 (figure 3). These are periodic 
points with minimum period compatible with their rotation vector. Figure 3 was 
constructed by finding periodic points on the symmetry plane with rotation vectors 
corresponding to the first 13 levels in Kim and Ostlund’s analogue of the Farey 
tree. See Kook and Meiss (1988) for more on this. They can also be compared with 
the channels that Kaneko and Bagley (1985) see by taking a thin neighbourhood of 
the symmetry plane and plotting the projection of a chaotic orbit onto the plane 
whenever it enters the neighbourhood. 

One might ask which are the last points on the symmetry plane whose orbits are 
minimising, as we increase a, /3 and y. Restricting attention to a = 6, we found that 
the last points to go on the symmetry plane x = 0 appear to be on the diagonal 
y ,  = y2 .  This implies that their rotation vectors are on the diagonal w, = w2, and so 
are commensurate. Thus they are unlikely to correspond to tori. There can be other 
locally minimising orbits besides those on invariant Lagrangian graphs, for example, 
minimising periodic orbits. But our experience leads us to believe that for a, /3, 
y > 0 there are no minimising periodic points on the symmetry plane x = 0 (see 
Kook and Meiss 1988). Thus the last locally minimising points that we see on x = 0 
probably belong to invariant circles. 

There are very few channels visible in figure 2 with positive slope, whereas there 
is viritually no distinction between positive and negative slope in figure 3. This is 

MacKay, R. S., J. D. Meiss and J. Stark (1989). “Converse KAM Theory for Symplectic Twist Maps.” 
Nonlinearity 2: 555-570.

symmetry plane x = 0 symmetric periodic orbits



#2 Frequency Analysis
KAM Tori have well-defined rotation vectors

Each torus crosses every plane x = const, so sufficient to 
look on one 

✦ for example, symmetry plane Fix(S1) ={x = 0}.

Finite time approximate frequencies

May use windowed-FFT methods (Laskar)

ω = lim
t→∞

xt − x0

t



Birkhoff: invariant circles are graphs

Twist ⇒ frequency is monotone on circles

Frequency Analysis

.......
o .....

·0.05
a

x
? -5
I
2-

c
-0.1

272 272.5 273
(x-Xo)xIO'

273.5 274 ·80 ·60 ·40 ·20
(x-",,)xIO'

20

o ------------:--"".:.------------------

400

d

380340 360
(x-",,)x'O'

320

a.0.9720

300

x
? ·5
I
2-

·10

31,310.53'0
(x-Xo)xI0'

b
..-..-

309.5

0.05

·0.1
309

-0.05

Fig.2(a)-(d). Variation of the fundamental frequency v for the standard mapping (13) for different values of the parameter a, in
the vicinity of the golden rotation number 1'0 which corresponds to the zero dotted line. The origin in the x scale is arbitrarily
taken to be Xo= 4.17655. The origin of frequencies is the golden value v. = H3 - Y5). The unit for v and x is 10-°. If x, < x, and
vex,) > vex,), we can conclude that there exist no KAM invariant curves of irrational rotation number between v(xJ and vex,).
In fig. 9b, we can see that the golden invariant curve does not persist for a = 0.9718.

Laskar, J. (1993). “Frequency Analysis for Multi-Dimensional 
Systems. Global Dynamics and Diffusion.” Physica D 67: 257-283.

Irregular 
Frequency Maps 

⇒ no tori



Birkhoff: invariant circles are graphs

Twist ⇒ frequency is monotone on circles

Frequency Analysis
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Fig.2(a)-(d). Variation of the fundamental frequency v for the standard mapping (13) for different values of the parameter a, in
the vicinity of the golden rotation number 1'0 which corresponds to the zero dotted line. The origin in the x scale is arbitrarily
taken to be Xo= 4.17655. The origin of frequencies is the golden value v. = H3 - Y5). The unit for v and x is 10-°. If x, < x, and
vex,) > vex,), we can conclude that there exist no KAM invariant curves of irrational rotation number between v(xJ and vex,).
In fig. 9b, we can see that the golden invariant curve does not persist for a = 0.9718.

Laskar, J. (1993). “Frequency Analysis for Multi-Dimensional 
Systems. Global Dynamics and Diffusion.” Physica D 67: 257-283.

Nonmonotone 
Frequency Maps 

⇒ no tori



Higher Dimensions?
Froeshlé Map, a= b = 1.3270 J. Laskar / Global dynamics and diffusion
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Fig.7(a)-(e). Visualisating in the frequency plane Up f2) of the frequency application a, = a, = -1.3 and various values of the
coupling parameter b.

270 J. Laskar / Global dynamics and diffusion
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Fig.7(a)-(e). Visualisating in the frequency plane Up f2) of the frequency application a, = a, = -1.3 and various values of the
coupling parameter b.

c=0.001 c=0.01

Laskar, J. (1993). “Frequency Analysis for Multi-Dimensional Systems.” Physica D 67: 257-283.
Dullin, H. R. and J. D. Meiss (2003). “Twist Singularities for Symplectic Maps.” Chaos 13: 1-16.
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#3 Crossing Time

78 R.S. MacKay et aL / Transport in Hamiltonian systems 

In fact, there appears to be a universal periodic 
function, 

U(x)  = U(x + 1), (11.3) 

such that there exist scales A in area and Ak 0 in 
parameter such that 

avr(  + Zk ) = a(  Zk/Zgo) log,( zag/A o) ), 
(11.4) 

where 

= log 8 aft ~ 3.0117220. (11.5) 

The universal function U is very close to constant 
[18]. Thus for practical purposes U can be treated 
as constant, and it is not necessary to find Ak o. 

This scaling law for AW leads to important 
conclusions for the flux. In the simplest case when 
we ignore all other cantori in the neighbourhood, 
this gives a conductivity scaling like Akn. Even if 
we keep all the cantori in the neighbourhood, the 
scaling properties of the universal one parameter 
family imply that for every resistor at parameter 
k c + Ak there is one aft times larger at k c + A k / &  
Of course, a new one comes in at the outside, but 
if the total effect out to infinity is convergent, one 
could regard oneself as being at infinity. The areas 
of the regions between them also scale, but since in 
the formula for expected time from one region to 
another all the numerators are dominated by the 

,area of the initial region, this still gives an ex- 
pected transit time scaling like Ak-~. 

Since ~ is fairly large, this means that the flux 
grows very slowly with k. This explains why it is 
hard to determine critical parameter values for 
circles by looking for orbits to cross from one side 
to the other [30]. Chirikov [9] measured average 
transit times from p -- 0 to p -- 0.5 in the standard 
map (considered on the torus). He fitted his results 
to a scaling law of the form 

Expected time ~ C ( k - kc) ~ , (11.6) 

the best fit giving k c --- 0.989, /x --- 2.55. For small 

k, however, his results are also consistent with 
exponent t/ and critical value 

k c --- 0.972, (11.7) 
i 

corresponding to Greene's conjecture [10] that the 
last circle to break is the golden one. 

In fig. 16, we see that apart from statistical 
fluctuations, the flux given by our scaling law with 
a constant determined by the turnstile of the golden 
cantorus is an effective lower bound on the 
numerical results of Chirikov. For  k far enough 
from kc, however, deviations from the scaling law 
become apparent. 

How far from critical the scaling law will be a 
good approximation depends on the particular 
system. For the standard map and rotation num- 
ber 1/ ' f  2, we find that AWdiffers from the scaling 
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k 

Fig. 16. Comparison of Chirikov's numerical experiments and 
our formulae. N is the number of iterations to cross the region 
near the golden cantorus and k is the parameter. The continu- 
ous line is for our scaling law (11.7) fitted to the value for the 
golden cantorus alone, giving N = 25(A k)-~. 

Chirikov: fit to data
kc = 0.989, µ = 2.55 

MMP : cantorus flux
kc = 0.971635, 
µ = η= 3.01177

C = 25

N =
C

(k − kc)µ

Chirikov, B. V. (1979). “A Universal Instability of Many-Dimensional Oscillator Systems.” 
Phys. Rep. 52: 265-379.

MacKay, R. S., J. D. Meiss and I. C. Percival (1984). “Transport in Hamiltonian Systems.” 
Physica D 13: 55-81.



Higher Dimensions?

?



Magnetic Field line flows

Incompressible Fluids

dx

dt
= B(x, t) ∇ · B = 0

dx

dt
= v(x, t) ∇ · v = 0Poincaré Map for 

Periodic Time 
dependence: V.P.

Volume Preserving 
Maps



Invariant Tori
KAM theory applies to one-action, n-angle, exact V.P. 
Maps

providing det(DΩ,D2Ω) ≠ 0.

Cantor sets of invariant tori for |ε|<<1, though cannot 
be identified by fixed frequency vector

Cheng, C.-Q. and Y.-S. Sun (1990). “Existence of Invariant Tori in Three 
Dimensional Measure-Preserving Mappings.” Celestial Mech. 47(3): 
275-292.

x� = x + Ω(z�) + εg1(x, z) mod 1
z� = z + εg2(x, z) �

Tn

g2dx = 0

(x, z) ∈ Tn × R

ω ∈ Rn



A Residue Criterion? 
KAM theory applies  (Cheng & Sun)

✦ However, can’t fix the frequencies!

Is there a last torus? Self-similarity?

✦ What rotation vector plays the role of the golden mean?
Perhaps a cubic irrational: spiral mean σ3= σ+1?

Are there cantori?

✦ Some results: Anti-integrability by Li & Malkin 

Is there an algebraic singularity in the crossing time?



Standard VP Map

g(x) = −a sin(2πx1)− b sin(2πx2)− c sin(2π(x1 − x2))

x�
1 = x1 + Ω1(z�) ,

x�
2 = x2 + Ω2(z�) ,

z� = z + εg(x) ,

Ω(z) = (z + γ,−δ + βz2) .

For “twist condition” need nonzero curvature

Forcing any generic periodic function

3D, one-action map

Dullin, H. R. and J. D. Meiss (2010). “Resonances and Twist in Volume-
Preserving Mappings.” Disc. Cont. Dyn. Sys. submitted.
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Ω(z) = (z + γ,−δ + βz2) .

Ω : R→ R2

Resonances

Diophantine Condition

m · ω = n

|m · ω − n| >
C

|m|τ

R ≡
�
ω ∈ Rd : m · ω = n for some (m, n) ∈ Zd+1 \ {0}

�



Resonances
Driven (1,0,0), (0,1,0) and (1,1,0) resonances

ε = 0.005 ε = 0.015

δ = 0.1γ =
1
2
(
√

5− 1) ≈ 0.61803 β = 2 a = b = c = 1.0



Frequency Analysis
Simplest numerical estimate

ωT (x0, z0) =
xT − x0

T

  

z0

1(z)

2(z)

0.0
0.0
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Frequency Maps ε = 0.01
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The Last Torus
Easiest case: z-periodic structure

Ω(z+1) = Ω(z)+m

Any invariant set for z ∈[0,1] repeated in [k,k+1].

To test for invariant tori need to bound vertical extent

Experiments indicate Δmax  is small, say < 0.1.

∴ if there are no tori in [0,1+Δmax], there are none.

∆(C) = maxC(z)−minC(z)



Periodicity in z
Periodic structure in vertical: Ω(z+1) = Ω(z)+m

Ω(z) = (z + γ,−δ + λ sin2(πz))

λ = 1 , γ = 1
2 (
√

5− 1)
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Periodicity in z
Periodic structure in vertical: Ω(z+1) = Ω(z)+m

Ω(z) = (z + γ,−δ + λ sin2(πz))

λ = 1 , γ = 1
2 (
√

5− 1)
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Crossing Time
tc = min{t > 0 : |zt − z0| ≥ 1}

!" !"

!"

!"#

!"$

!"%

!"#&'"(!)

"

!"

10 initial conditions for each ε

δ = 0.1 δ = 0.3

!" !" !"

!"

!"#

!"$

!"%

!"!"

!

"!

!"#!"#$###%&'( )"#$#*%&+,-$.#&



The Last Torus?
δ = 0.1

ε = 0.02725

ω≃ (0.618681,-0.085983)
=([0,17,5,12,],[-1,12,10,13,22,])

z0 = -0.0560



The Last Torus?
Analog of Greene’s Self-similarity?

Analog of the golden mean?

Analog of Birkhoff’s 2nd theorem?

✦ Rotational tori need not be graphs

✦ Can one explicitly bound their vertical extent?

Flux scaling exponent?

Analog of Aubry-Mather: Cantori?



Thanks!
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