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NONAUTONOMOUS DYNAMICS
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EXAMPLE: 2D FLUIDS

e Assume incompressible:

e v — 0

* = fluid particle motion is Hamiltonian:

oY 0
v:2XV¢=<—az,ai>

e [f the velocity is independent of time, 1 is
conserved “energy” = motion is

along streamlines O
Lo

y

- oy

L. Or

e However if nonautonomous, then fluid particles advection may be chaotic.
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OSCILLATING DOUBLE
GYRE

e Time-Periodic flow with fixed boundaries
Y(z,y,t) = wAsin|rx + erx(x — 2) sin(wt)] sin(my)

Poincaré Section at
t, =2mn/ w

A=e=02%
(=247
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Froyland, G. and K. Padberg (2009). "Almost-invariant sets and invariant manifolds — Connecting
probabilistic and geometric descriptions of coherent structures in flows." Physica D 238: 1507-1523.
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TRANSPORT
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TRANSPORT

e The turnstile mechanism & lobe dynamics

MacKay, R. S., J. D. Meiss and I. C. Percival (1984). “Transport in Hamiltonian Systems.” Physica D 13: 55-81.
Rom-Kedar, V. and S. Wiggins (1990). “Transport in Two-Dimensional Maps.” Arc. Rational Mech. Anal. 109(3):
239-298.

e Nearly autonomous: Melnikov Theory
Sandstede, B., S. Balasuriya, C. K. R. T. Jones and P. Miller (2000). “Melnikov theory for finite-time vector

fields.” Nonlinearity 13(4): 1357-1377.
Recall Balasuriya MS 12

e Slow perturbations

Kaper, T. J. and S. Wiggins (1991). “Lobe Area in Adiabatic Hamiltonian Systems.” Physica D 51: 205-212.
Haller, G. and A. C. Poje (1998). “Finite Time Transport in Aperiodic Flows.” Physica D 119: 352-380.

e Transient Perturbations

Malhotra, N. and S. Wiggins (1998). “Geometric structures, lobe dynamics, and Lagrangian transport in
flows with aperiodic time-dependence, with applications to Rossby wave flow.” J. Non. Sci. 8: 401—

456.
Mosovsky, B. A. and J. D. Meiss (2011). “Transport in Transitory Dynamical Systems.” Siam J. Dyn. Sys.
10(1): 35-65.

Recall Mosovsky MS 12
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Recall Mosovsky MS512
TRANSITORY DYNAMICS

 Past and Future autonomous dynamics:

b V(x,t):{ﬁgg .

e for a transition time .

e For example:

Viz,t) = (1 —s(t))P(x) + s(t)F(x)

s(2)

e Transition function
Ot 0
=) {1 P

S a3 0

Polynomial s(t)
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ROTATING DOUBLE GYRE

pp(z,y) = sin(Brgpsitdry)  dr(z,y) = sin(rz) sin(27y)
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ROTATING DOUBLE GYRE

wP (:C7 y) e Sin(Qﬂ-x) Sj‘n(ﬂ-y) s=0.000000

Yp(x,y) = sin(wx) sin(27y)
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Particle Advection:t =0
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CED code for Sarsia Tubulosa Jellyfish

LAGRANGIAN COHERENT

STRUCTURES

Lipinski, D. and K. Mosheni (2010). “A ridge tracking algorithm and error estimate for efficient
computation of Lagrangian coherent structures.” Chaos 20: 017504.
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LAGRANGIAN COHERENT
STRUCTURES

e Coherent trajectory patterns on a
finite time interval f li

| PR
| NI
i b
Il IR
I RIREA i
LR
w C v 3 =

(a b

* boundary is codimension-one & “simple”
e =~ invariant under nonautonomous flow
* may live for finite time

e Hyperbolic boundaries: material lines with locally
the longest or shortest stability or instability time
(Haller & Yuan 2000)

e Almost Invariant Sets

BADGu (D)~ p(4) o

quasi-geostrophic flow
¢ In the sense of measure (Haller & Yuan 2000)
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FINDING LCS

e Finite Time/Size Lyapunov Exponents:

e Pierrehumbert, R. T. (1991). “Large-Scale Horizontal Mixing in Planetary
Atmospheres.” Phys. Fluids 3A(5): 1250-1260.

e Liu, M., E. J. Muzzio and R. L. Peskin (1994). “Quantification of Mixing in Aperiodic
Chaotic Flows.” Chaos, Solitons and Fractals 4(6): 869-893.

e Distinguished Hyperbolicity

e Haller, G. (2001). “Distinguished material surfaces and coherent structures in three-
dimensional fluid flows.” Physica D 149(4): 248-277.

e Jiménez Madrid, J. A. and A. M. Mancho (2009). “Distinguished Trajectories in Time
Dependent Vector Fields.” Chaos 19: 013111.

e Almost Invariant Sets

e Froyland, G. (2005). “Statistically optimal almost-invariant sets.” Physica D 200(3-4):
205-219.

e Froyland, G. and K. Padberg (2009). “Almost-invariant sets and invariant manifolds”
Physica D 238: 1507-1523.
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Convection model with random time dependence

EEEE

Lekien, F., S. C. Shadden and J. E. Marsden (2007). “Lagrangian coherent
structures in n-dimensional systems.” J. Math. Phys. 48(6): 065404.
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FTLE OR FSLE

e Finite Time (Nese 1989):

Nese, J. M. (1989). “Quantifying local predictability in phase space.” Physica D: Nonlinear Phenomena 35(1-2): 237-250.
Haller, G. (2001). “Distinguished material surfaces and coherent structures in three-dimensional fluid flows.” Physica D 149(4): 248-277.

e Finite Size (Aurell et al 1997):

Aurell, E., G. Boffetta, et al. (1997). “ Predictability in the large: An extension of the concept of Lyapunov exponent.” J. Phys. A: Math. Gen. 30: 1-26.
Keane, R. J., P. L. Read and G. P. King (2010). “Effectiveness of stirring measures in an axisymmetric rotating annulus flow.” Physica D: 239(10): 675-683.

e FTLE Ridges (Shadden et al 2005):

e Aridge of the FTLE field may be nearly invariant and have low flux

Shadden, S. C., F. Lekien and J. E. Marsden (2005). “Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in
two-dimensional aperiodic flows.” Phys. D 212(3-4): 271-304.

e Finite Time Manifolds for nearly autonomous case
(Sandstede et al 2000) V(z,t) = Vo(x) + eVi(x, t)

e Integration time O(In &) to compute splitting by Melnikov theory:.

Sandstede, B., S. Balasuriya, C. K. R. T. Jones and P. Miller (2000). “Melnikov theory for finite-time vector fields.” Nonlinearity 13(4): 1357-1377.
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FINITE TIME LYAPUNOV EXPONENTS

FTLE at time t, “FTLE”
integrate forward to time t+T

Ridges = Stable /

ManlfOIdS Oscillating Double Gyre €=0.25T=1.3

Grid of 1001x500 points

Similarly: backward time integration shows unstable manifolds

Thursday, June 9, 2011



FINITE TIME LYAPUNOV EXPONENTS

e Singular values of the linearized flow (eigenvalues of the
Cauchy-Green matrix) C(z, 5,t) = Do, +(x)T Dy +(x)

1
M, t) = o log [Bign Oz, t + 1) t)]

e For T— oo: Invariant surfaces normal to VA

e Ridges: curves of flow of VA transverse to direction of
minimum curvature

o Low fluxit T “large enough”
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LIMITATIONS OF FTLE

eShear causes ridges
*Ridges break-up
eStrength = Low Flux?

e Excess computation™
e Time-scale dependent

117 = Il
0.9] 0.9
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0.7 0.7\\
[
0.6] 0.6}
> 0.5 > 0.5
0.4 ( 04}
0.3 ‘ 0.3
0.2\ ; 0.2
0.1 0.1
= — : : -
T A 0506 07 08 09 1 0. 01 - 0.2:°03 04 050060 D e

Backwards FILEatt=1=08 T=-12

* Ridge tracking may help: see e.g. Lipinski, D. and K. Mosheni (2010). “A ridge tracking algorithm and error estimate
for efficient computation of Lagrangian coherent structures.” Chaos 20: 017504.
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LOCAL HYPERBOLICITY

Haller, G. and T. Sapsis (2010). “Localized Instability and Attraction along Invariant
Manifolds.” SIAM J. App. Math. 9(2): 611-633.
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Recall Haller MS 12
LOCAL HYPERBOLICITY

e The boundary of a hyperbolic LCS over a finite time
interval [ is a locally strongest repelling or attracting

N M) N, M(0)

material surface over I.

(n;, VF} (Xo)no )

A . i
codimension-one surface S: Rt — M VF|, (x0)no

e Transition map [ = Glp it -
* projected normal vector flow:

dr = <nt—|—7'7 T*nt>
e Normally repelling:

aT
ad- > e
7 A —bt
t < d 6 Haller, G. (2000). “Finding finite-time invariant manifolds in two-dimensional velocity fields ” Chaos 10: 99-108
x qE Haller, G. and T. Sapsis (2010). “Localized Instability and Attraction along Invariant Manifolds.” SIAM J. App.

Math. 9(2): 611-633.
Haller, G. (2011). “A variational theory of hyperbolic Lagrangian Coherent Structures.” Phys. D 240: 573-598.
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PARTIAL HYPERBOLICITY: TRANSIENT CASE

* No reason LCS boundaries need be fully hyperbolic

e A e MxR invariant if
(T,

At = 1 (Ato) i :
i
e Transient extension: extend vector e
field outside finite interval by T(p
autonomous V(x) IZ\ 3 5 Y

e For nearly autonomous case: “essentially unique” manifold extensions to o(e) for V

defined only on finite time intervals of order In(e)/A.
Sandstede, B., S. Balasuriya, C. K. R. T. Jones and P. Miller (2000). “Melnikov theory

. for finite-time vector fields.” Nonlinearity 13(4): 1357-1377.
Wi(A) ={z e M: lim |p-(z) — A = 0}, Foo
e Unstable manifolds naturally determined by t— —co

e Backward Hyperbolic if hyperbolic under past (asymptotically autonomous) flow

Stable Manifolds naturally determined by t — oo

e Forward Hyperbolic if hyperbolic under future (asymptotically autonomous) flow
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QUESTIONS

e Are “normally hyperbolic” surfaces always appropriate
LCS boundaries?

e Are there nonautonomous = versions of invariant circles/ tori/ cantori?

e s there an effective way to compute transport?

e Action Flux formulas for lobe volumes (from heteroclinic orbits) for transient case

Mosovsky, B. A. and J. D. Meiss (2011). “Transport in Transitory
Dynamical Systems.” Siam J. Dyn. Sys. 10(1): 35-65.

e Can normal hyperbolicity be computed for vector fields
given by data instead of models?
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Second Perron-Frobenius Eigenfunction for the ABC flow

ALMOST INVARIANT
SETS

Froyland, G. and K. Padberg (2009). “Almost-invariant sets and invariant manifolds — Connecting probabilistic
and geometric descriptions of coherent structures in flows.” Physica D 238: 1507-1523.
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ALMOST INVARIANCE 1 K
COHERENCE

(R i

e Sets A & B are coherent if

B - p(AN oyt (B)) —

ju(A)

e If Ais coherent with itself, it is almost invariant.

Froyland, G., N. Santitissadeekorn and A. Monahan (2010 “Transport in time-dependent

e Minimize escaping flux dynamical systems: Finite-time coherent sets.” Chaos 20(4): 043116.

* Minimizing escaping flux: Resonance Zones: =,

* Enclosed by segments of nearly
coincident stable & unstable manifolds

e Flux is independent of switching
point from W* to Ws
e For twist maps, minimal flux surfaces are cantori

MacKay, R. S., J. D. Meiss and I. C. Percival (1984). “Transport in
Hamiltonian Systems.” Physica D 13: 55-81.
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ALMOST INVARIANCE

e Figenfunctions of the Perron-Frobenius Operator
Plf] = |det(Depe)| f o p—

e Cubical discretization, boxes B; with equal measure W(B;)

By Rl o CE
1(Bj)

Pij =

e Figenvalue A=1

® Measure preserving— uniform density

e Second isolated eigenvalue A <1
e eigenfunction v partition into almost invariant sets A*, v; >c and v; < c.

e Choose c to maximize almost invariance, oi(A*)

Dellnitz, M. and O. Junge (1999). “On the approximation of complicated dynamical behaviour.” SIAM J. Numer. Anal. 36(2): 491-451.
Froyland, G. and K. Padberg (2009). “Almost-invariant sets and invariant manifolds — Connecting probabilistic and geometric descriptions
of coherent structures in flows.” Physica D 238: 1507-1523.
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DOUBLE GYRE EXAMPLE

a i x10°

e 217=1.3(10)°> Boxes, 400 points/box -

06

>

e Integration time = one period

0.2

0
0 02 0.4 08 08 1 12 14 16 18 2
X

Time one map ¢ = 0 partition
e Escaping flux for eigenfunction partition (F = 0.0097), is
smaller than that through manifolds (F = 0.0010)

Froyland, G. and K. Padberg (2009). Physica D 238: 1507-1523.
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QUESTIONS

e Why are the eigenfunctions of the transition operator
“better” than simply flowing a set forward?
e Presumably the pair of coherent sets is more “regular” this way?
e Does this regularity depend upon discretization?

e Could some topological techniques like the entangled loop methods of J-L Thiffeault

app1y7 Thiffeault, J.-L. (2010). “Braids of entangled particle trajectories.” Chaos 20: 017516.

e s the escaping flux from approximate invariant sets
really lower than that for invariant manifolds (or
cantori)?

e How are these related to the time average partitions of
Mezic et al?
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DISTINGUISHED

TRAJECTORIES
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DISTINGUISHED TRAJECTORIES

Jiménez Madrid & Mancho (2010): Local minima of a
Lagrangian descriptor, e.g., “trajectory arc length”

Distinguished
Hyperbolic Trajectory

t+1
W) — /t V(ps,t(x),s)|ds

—T

b)

Kuroshio Current measurements 5/2003
~0.15 Mendoza & Mancho (2010)

-0.2

SRR (NG OF -0.05 )(2 0.05 0.1 0 15 0.2
M(x,0,10) for the Forced Duffing
oscillator

& o G len
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LAGRANGIAN DESCRIPTORS

7l T
Wil it 1) = /t V(ps,t(x),s)|ds

—r

e Sharp changes in M detect both stable and unstable

b 155E 156E 157E 158E 159E 160E
lon

Kuroshio Current Data
May 2, 2003

Mendoza, C. and A. M. Mancho (2010). “Hidden Geometry of
Ocean Flows.” Phys. Rev. Lett. 105: 038501.

d
c) 155.6E 156.0E ) 156.4E 156.8E
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QUESTIONS

e How to pick time-scale? (Just as for FTLE)

e [sthere a coordinate free Lagrangian descriptor

* M depends upon reference frame?

e Does M detect hyperbolic periodic orbits or just fixed
points?

e What about forward /backward descriptors?
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THE LAGRANGIAN DESCRIPTION OF
OF TIME-DEPENDENT TRANSPORT

APERIODIC FLOWS
SET-ORIENTED NUMERICAL ANALYSIS

LAGRANGIAN TRANSPORT PHENOMENA IN
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