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NonAutonomous Dynamics

• General time-dependent 
vector field

• Nonautonomous Flow

• Time τ Transition Map:

dx

dt
= V (x, t)

t

V(  ,0) V
t,0

t  =
  0

T

d

dt
ϕt,t0(x) = V (ϕt,t0(x), t)

ϕt0,t0(x) = x

T (x) = ϕt0+τ,t0(x)
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Example: 2D Fluids
• Assume incompressible:

• ⇒ fluid particle motion is Hamiltonian:

• If the velocity is independent of time, ψ is 
conserved “energy” ⇒ motion is 
along streamlines

• However if nonautonomous, then fluid particles advection may be chaotic. 

∇ · v = 0

v = ẑ ×∇ψ =
�
−∂ψ
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ẋ = −∂ψ

∂y

ẏ =
∂ψ

∂x
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Oscillating Double 
Gyre

• Time-Periodic flow with fixed boundaries 

Froyland, G. and K. Padberg (2009). "Almost-invariant sets and invariant manifolds — Connecting 
probabilistic and geometric descriptions of coherent structures in flows." Physica D 238: 1507-1523.

Poincaré Section at 
tn = 2πn/ω

A = ε = 0.25
ω = 2π

Local Expansion Rate (FTLE), T = 10
t = 0 t = 0.5

ψ(x, y, t) = πA sin[πx + �πx(x− 2) sin(ωt)] sin(πy)
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Transport
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Transport

• The turnstile mechanism & lobe dynamics

• Nearly autonomous: Melnikov Theory

• Slow perturbations

• Transient Perturbations

Sandstede, B., S. Balasuriya, C. K. R. T. Jones and P. Miller (2000). “Melnikov theory for finite-time vector 
fields.” Nonlinearity 13(4): 1357-1377.

Kaper, T. J. and S. Wiggins (1991). “Lobe Area in Adiabatic Hamiltonian Systems.” Physica D 51: 205-212.
Haller, G. and A. C. Poje (1998). “Finite Time Transport in Aperiodic Flows.” Physica D 119: 352-380.

Malhotra, N. and S. Wiggins (1998). “Geometric structures, lobe dynamics, and Lagrangian transport in 
flows with aperiodic time-dependence, with applications to Rossby wave flow.” J. Non. Sci. 8: 401–
456.

Mosovsky, B. A. and J. D. Meiss (2011). “Transport in Transitory Dynamical Systems.” Siam J. Dyn. Sys. 
10(1): 35-65.
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MacKay, R. S., J. D. Meiss and I. C. Percival (1984). “Transport in Hamiltonian Systems.” Physica D 13: 55-81.
Rom-Kedar, V. and S. Wiggins (1990). “Transport in Two-Dimensional Maps.” Arc. Rational Mech. Anal. 109(3): 

239-298.

Recall Balasuriya MS 12

Recall Mosovsky MS 12
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Transitory Dynamics

• Past and Future autonomous dynamics:

• for a transition time τ.

• For example:

• Transition function 

!

"!!"

Polynomial s(t)

ẋ = V (x, t) , V (x, t) =
�

P (x) t < 0
F (x) t > τ

V (x, t) = (1− s(t))P (x) + s(t)F (x)

s(t) =
�

0 t < 0
1 t > τ

s(t) = t2(3− 2t)

Recall Mosovsky MS12
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Rotating Double Gyre
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ψF (x, y) = sin(πx) sin(2πy)ψP (x, y) = sin(2πx) sin(πy) ψF (x, y) = sin(πx) sin(2πy)

ẋ = − ∂

∂y
ψ , ẏ =

∂

∂x
ψ ψ = (1− s(t))ψP + s(t)ψF
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Rotating Double Gyre

ψP (x, y) = sin(2πx) sin(πy)
ψF (x, y) = sin(πx) sin(2πy)

ψ(x, y, s) = (1− s)ψP (x, y)
+sψF (x, y)
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Rotating Double Gyre

Particle trajectories do not lie on streamlines!

τ = 1.0
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increases as well. In many applications such as flow control
and for identifying major flow structures, only the most ma-
jor LCS needs to be computed. For these purposes, this al-
gorithm provides a huge time savings over the standard al-
gorithm.

V. CONCLUSIONS

Finding LCS is a computationally intensive process. To
date, they have been used in many applications despite this
cost due to their many useful properties for visualizing and
understanding fluid flows. However, as the problems to
which LCS are applied grow in size, the computational cost
becomes prohibitive. To help solve this issue, fast algorithms
are needed which can take advantage of the nature of LCS as
ridges in the FTLE field and avoid computing the FTLE field
at unnecessary points far from any ridges. Several AMR
strategies have been proposed in the past. In this paper we
fully outline a new ridge tracking algorithm which also takes
advantage of the temporal coherence of LCS to further speed
calculations after the first time step.

For an analytically defined velocity field, our algorithm
gives a speedup of 35.0 times over the standard LCS algo-
rithm. Due to the additional complexities of dealing with a
discrete velocity field and the more complex LCS present in
the example of the swimming jellyfish, we only see a 14.4
times speedup in this case, but we believe that future refine-
ments of the algorithm may increase this speedup. Addition-
ally, all the major LCS were successfully captured in each
example. The speedup is achieved without a loss of detail or
accuracy in finding the most significant LCS in a system.
This ridge tracking algorithm also provides additional sav-
ings in terms of memory usage and size of the output files.

We believe that using the locations of LCS at a given
time to predict the next time step will play a major role in
future algorithms as well. This is a very general idea which

could also be used as part of an AMR routine or other algo-
rithms. For example, an AMR algorithm could use this infor-
mation to immediately create a fine mesh only where the
LCS are predicted to be located and skip all !or most" inter-
mediate refinement steps in these areas.

In the future, we plan to implement AMR algorithms
which also use the temporal coherence of LCS to speed com-
putations. We would also like to continue to develop and
refine the ridge tracking algorithm in two dimensions to im-
prove the stability of the algorithm in areas of very compli-
cated flow. Finally, computing LCS in three dimensions is an
even more computationally demanding task. We would like
to develop a similar algorithm which is able to track 2D LCS
surfaces in a three dimensional domain. While it is more
complicated to grow outward along a surface than a line,
such an algorithm could provide tremendous computational
savings.
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APPENDIX: PROOF THAT !!0 IF " ·u=0

For incompressible flows, the contraction of a fluid in
one direction must be balanced by expansion in another di-
rection. In terms of LCS, this translates to the following
theorem:

Theorem A.1: For incompressible flows, the FTLE field
is non-negative,

! · u = 0 ⇒ "t
T!x" ! 0 ∀ x,t,T .

This may be used as a simple check of the results ob-
tained from FTLE calculations on an incompressible flow.
Additionally, for compressible flows, if the FTLE values in
some region are negative, this implies that the fluid is locally
contracting in every direction over the chosen integration
time.

Proof of Theorem A.1: The gradient of the flow field,
commonly denoted as d# /dx, is the same as the Jacobi ma-
trix J, which appears in many Lagrangian fluid dynamics
texts. It is a well known result that if the flow is incompress-
ible the determinant of the Jacobi matrix is 1: det!J"=1.

Also, for general matrices A and B,

det!AB" = det!A"det!B" ,

det!AT" = det!A" ,

det!A" = #
i=1

d

$i.

Then, using the definition of the FTLE field, we have

FIG. 7. !Color" Backward !a" and forward !b" LCS for Sarsia tubulosa as
computed with the standard LCS algorithm.

017504-8 D. Lipinski and K. Mohseni Chaos 20, 017504 "2010#

Downloaded 19 May 2011 to 198.11.27.86. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

Lagrangian Coherent 
Structures

Lipinski, D. and K. Mosheni (2010). “A ridge tracking algorithm and error estimate for efficient 
computation of Lagrangian coherent structures.” Chaos 20: 017504.

CFD code for Sarsia Tubulosa Jellyfish
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Lagrangian Coherent 
Structures

• Coherent trajectory patterns on a 
finite time interval
• boundary is codimension-one & “simple”

• ≈ invariant under nonautonomous flow

• may live for finite time

• Hyperbolic boundaries: material lines with locally 
the longest or shortest stability or instability time 
(Haller & Yuan 2000)

• Almost Invariant Sets

• In the sense of measure !"#$%& '( )* "*"+",--. /0$,%& /&+ 12 !$"3 +%,4&5+1%"&/ &61-6& "*+1 , 5178-&9 7,+&%",- 8,++&%*
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quasi-geostrophic flow
(Haller & Yuan 2000)

µ(A ∩ ϕt+τ,t(A)) ≈ µ(A)
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Finding LCS

• Finite Time/Size Lyapunov Exponents: 

• Pierrehumbert, R. T. (1991). “Large-Scale Horizontal Mixing in Planetary 
Atmospheres.” Phys. Fluids 3A(5): 1250-1260.

• Liu, M., F. J. Muzzio and R. L. Peskin (1994). “Quantification of Mixing in Aperiodic 
Chaotic Flows.” Chaos, Solitons and Fractals 4(6): 869-893.

• Distinguished Hyperbolicity

• Haller, G. (2001). “Distinguished material surfaces and coherent structures in three-
dimensional fluid flows.” Physica D 149(4): 248-277.

• Jiménez Madrid, J. A. and A. M. Mancho (2009). “Distinguished Trajectories in Time 
Dependent Vector Fields.” Chaos 19: 013111.

• Almost Invariant Sets

• Froyland, G. (2005). “Statistically optimal almost-invariant sets.” Physica D 200(3-4): 
205-219.

• Froyland, G. and K. Padberg (2009). “Almost-invariant sets and invariant manifolds” 
Physica D 238: 1507-1523.
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to find hypersurfaces that locally maximize the Lyapunov exponent, it is evident that the system is
sensitive to initial conditions in a neighborhood of the LCS. Although there does not exist any
formal theorem to support this assertion, it should be clear from Fig. 5 that a chaotic Cantor set is
expected to be found in the entanglement of the two LCS. Smale and Morse proved the existence
of chaos near the hyperbolic manifolds of two-dimensional periodic systems !Smale "1965#; Guck-
enheimer and Holmes "1986#$. The extension to chaotic forcing and higher dimensional systems is
work in progress, but these computations of LCS reveal that such chaotic motion is the general
behavior in the vicinity of intersecting LCS, even for systems that are of higher dimension or more
complex time dependency than previously studied.

D. Flux across Lagrangian coherent structures

Theorem 3.3 provides a convenient way to find an upper bound on the flux of particles across
the LCS. The instantaneous flux is given by

dL

dt
=

%!!,"n̂/"t − Jn̂&
%n̂,!n̂&

"
'!!'

"n̂,!n̂#
() "n̂

"t
) + 'Jn̂'* .

The last term in the equation above is the hardest to evaluate. Nevertheless, notice that each
component in J is bounded by 4A /k+0.5. We evaluate the other terms for two points P1 and P2
indicated in Fig. 6. P1 is on the main sheet of the LCS "before intersections create lobes# and P2
is located at the tip the first internal lobe.

x y z '!!' %n̂ ,#n̂& '"n̂ /"t' 'Jn̂' ,dL /dt,

Point P1 0.000 −1.5225 2.0 0.005142 11 194.6 "10−4 "0.5 "2.3$10−7

Point P2 0.000 1.0147 0.334 0.012614 5 154.0 "10−2 "0.5 "1.2$10−6

As in Shadden et al. "2005#, it is convenient to compare this flux estimate to the typical
magnitude of the velocity field. For both points P1 and P2, the velocity ranges around 'v'+0.2.
Furthermore, the maximum velocity inside the central cell "i.e., %2+y2&'2# is given by
-2"A2'2 /k2#+A2+0.6. The flux, as computed above, is therefore several orders of magnitude
below the usual velocity. Also notice that the upper bound 'Jn̂'&4A /k is highly conservative.
Computing this explicitly could lower the flux estimate significantly.

The estimate given in Theorem 3.3 is an instantaneous flux. On one hand a negligible instan-

FIG. 6. Points where flux is evaluated. P1 is located on the initial segment of the repelling LCS and P2 on the tip of the
first lobe of the attracting LCS.

065404-16 Lekien, Shadden, and Marsden J. Math. Phys. 48, 065404 #2007$

Downloaded 29 Aug 2008 to 128.138.249.124. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

FTLE
Lekien, F., S. C. Shadden and J. E. Marsden (2007). “Lagrangian coherent 

structures in n-dimensional systems.” J. Math. Phys. 48(6): 065404.

Convection model with random time dependence
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FTLE or FSLE

• Finite Time (Nese 1989):

• Finite Size (Aurell et al 1997):

• FTLE Ridges (Shadden et al 2005): 
• A ridge of the FTLE field may be nearly invariant and have low flux

• Finite Time Manifolds for nearly autonomous case 
(Sandstede et al 2000)

• Integration time O(ln ε) to compute splitting by Melnikov theory.

Aurell, E., G. Boffetta, et al. (1997). “ Predictability in the large: An extension of the concept of Lyapunov exponent.” J. Phys. A: Math. Gen. 30: 1–26.
Keane, R. J., P. L. Read and G. P. King (2010). “Effectiveness of stirring measures in an axisymmetric rotating annulus flow.” Physica D: 239(10): 675-683.

Nese, J. M. (1989). “Quantifying local predictability in phase space.” Physica D: Nonlinear Phenomena 35(1-2): 237-250.
Haller, G. (2001). “Distinguished material surfaces and coherent structures in three-dimensional fluid flows.” Physica D 149(4): 248-277.

Shadden, S. C., F. Lekien and J. E. Marsden (2005). “Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in 
two-dimensional aperiodic flows.” Phys. D 212(3-4): 271-304.

V (x, t) = V0(x) + εV1(x, t)

Sandstede, B., S. Balasuriya, C. K. R. T. Jones and P. Miller (2000). “Melnikov theory for finite-time vector fields.” Nonlinearity 13(4): 1357-1377.
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Finite Time Lyapunov Exponents

FTLE at time t, 
integrate forward to time t+T

Ridges ≈ Stable 
Manifolds Oscillating Double Gyre      ε = 0.25, T = 1.3

Grid of 1001x500 points

“FTLE”

Similarly: backward time integration shows unstable manifolds

∆z(t)

λ(z, t) =
1
T

ln
�

|∆z(t + T )|
|∆z(t)|

�

∆z(t + T )
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Finite Time Lyapunov Exponents

• Singular values of the linearized flow (eigenvalues of the 
Cauchy-Green matrix)

• For T→ ∞: Invariant surfaces normal to ∇λ

• Ridges: curves of flow of ∇λ transverse to direction of 
minimum curvature

• Low flux if T “large enough”

λ(x, t) =
1

2T
log [EigmaxC(x, t + T, t)]

C(x, s, t) = Dϕs,t(x)T Dϕs,t(x)

Thursday, June 9, 2011



Limitations of FTLE

Backwards FTLE at t = τ = 0.8 T = -1.2

•Shear causes ridges
•Ridges break-up
•Strength ≠ Low Flux?

•Excess computation*
•Time-scale dependent

* Ridge tracking may help: see e.g. Lipinski, D. and K. Mosheni (2010). “A ridge tracking algorithm and error estimate 
for efficient computation of Lagrangian coherent structures.” Chaos 20: 017504.
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Fig. 10. Geometry of the linearized flow map along the material surface M(t).

We also have

νt

t0
(x0,n0) = min

|e0 |=1
e0∈Tx0M(t0)

�nt , ∇Ft
t0
(x0)n0�

|∇Ftt0(x0)e0|

= min
|e0 |=1

e0∈Tx0M(t0)

ρt

t0
(x0)�

�e0, Ct

t0(x0)e0�
,

completing the proof of statement (i) of the Proposition. The
estimates in statement (ii) follow directly from the definition of
ρt

t0
(x0,n0) and νt

t0
(x0,n0). �

3.2. Finite-time hyperbolic material surfaces and their alignment

property

We are now in a position to define normal attraction and
repulsion for a material surface over a finite time-interval.

Definition 3 (Finite-Time Hyperbolic Material Surface). A material
surface M(t) ⊂ U is normally repelling over [t0, t0 + T ] ⊂ I, if
there exist constants a, b > 0 such that for all points x0 ∈ M(t0)
and unit normals n0 ∈ Nx0M(t0), we have

ρ
t0+T

t0 (x0,n0) ≥ e
aT , (21)

ν
t0+T

t0 (x0,n0) ≥ e
bT .

Similarly, we call M(t) normally attracting over [t0, t0 + T ] ⊂ I if
it is normally repelling over [t0, t0 + T ] in backward time. Finally,
we call M(t) hyperbolic over [t0, t0 + T ] if it is normally repelling
or normally attracting over [t0, t0 + T ].

The first condition in (21) requires all small normal perturba-
tions toM(t0) to have strictly grown by time t = t0+T ; the second
condition requires that by time t = t0 + T , any growth along M(t)
is strictly smaller than growth normal to M(t). Since Definition 3
is only concernedwith growth between the times t0 and t0+T , the
exponential lower bounds in (21) will always exist as long as ρ

t0+T

t0

and ν
t0+T

t0 are uniformly bounded from below by a constant larger
than one.

We now derive a local geometric relationship between a
normally repelling LCS and the largest eigenvector of the Cauchy–
Green strain tensor. To state our result, for two codimension-one
planes E, F ⊂ Rn with respective unit normals nE and nF , we
introduce the distance

dist [E, F ] =
�
1 − �nE,nF �2,

which is equal to | sinα(nE,nF )|, withα(nE,nF )denoting the angle
between nE and nF .

Theorem 4 (Alignment Property of Hyperbolic Material Surfaces).
Assume that for all T ∈ [T−, T+], we have a normally repelling

material surface M(t) over [t0, t0 + T ] ⊂ I in the sense

of Definition 3, with the constants a, b > 0 selected uniformly in T .

Then the eigenspace spanned by the first n − 1 eigenvalues of the

Cauchy–Green strain tensor Ct0+T

t0 (x0) converges exponentially fast in
T to the tangent space of M(t0) at the point x0. Specifically, we have

dist [Tx0M(t0), span{ξ1(x0, t0, T ), . . . , ξ
n−1(x0, t0, T )}]

≤
√
n − 1e−bT ,

| sinα(n0(x0, t0, T ), ξ
n
(x0, t0, T ))| ≤

√
n − 1e−bT ,

for all T ∈ [T−, T+]. A similar statement holds for normally attracting

material surfaces in backward time.

Proof. Consider a point x0 ∈ M(t0) and let e1(x0, t0, T ), . . . , en−1
(x0, t0, T ) be an orthonormal basis in the tangent space Tx0M(t0).
For any basis vector ei(x0, t0, T ) and for the unit normal vector
n0 ∈ Nx0M(t0), we have the representation

ei(x0, t0, T ) =
n�

j=1

aij(x0, t0, T )ξ
j
(x0, t0, T ),

n0 =
n�

j=1

bj(x0, t0, T )ξ
j
(x0, t0, T ).

(22)

Note that ξ
j
, ei and n0 are all unit vectors, therefore we have

�����

n�

j=1

a
2
ij

����� = 1,

�����

n�

j=1

b
2
j

����� = 1. (23)

The repelling property of M(t) over [t0, t0 + T ] (as assumed in
the statement of the Theorem uniformly for T ∈ [T−, T+]) implies

1

[ρt0+T

t0 (x0)]2
=

�
n0,

�
Ct0+T

t0 (x0)
�−1

n0

�
≤ e

−2aT ,

1
�
ν
t0+T

t0 (x0)
�2 =

�
n0, [Ct0+T

t0 (x0)]−1n0

�

× max
|e0|=1

e0∈Tx0M(t0)

�
e0, C

t0+T

t0 (x0)e0
�
≤ e

−2bT . (24)

Note that
�
n0,

�
Ct0+T

t0 (x0)
�−1

n0

�
=

n�

j=1

b
2
j

λj

,

�
ei, C

t0+T

t0 (x0)ei
�
=

n�

j=1

λja
2
ij
,

(25)

Local Hyperbolicity
Haller, G. and T. Sapsis (2010). “Localized Instability and Attraction along Invariant 

Manifolds.” SIAM J. App. Math. 9(2): 611-633.
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Local Hyperbolicity

• The boundary of a hyperbolic LCS over a finite time 
interval I is a locally strongest repelling or attracting 
material surface over I.

• codimension-one surface S: Rn-1 → M

• Transition map 

• projected normal vector flow:

• Normally repelling:

Haller, G. (2000). “Finding finite-time invariant manifolds in two-dimensional velocity fields ” Chaos 10: 99-108
Haller, G. and T. Sapsis (2010). “Localized Instability and Attraction along Invariant Manifolds.” SIAM J. App. 

Math. 9(2): 611-633.
Haller, G. (2011). “A variational theory of hyperbolic Lagrangian Coherent Structures.” Phys. D 240: 573-598.
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Fig. 10. Geometry of the linearized flow map along the material surface M(t).

We also have

νt

t0
(x0,n0) = min

|e0 |=1
e0∈Tx0M(t0)

�nt , ∇Ft
t0
(x0)n0�

|∇Ftt0(x0)e0|

= min
|e0 |=1

e0∈Tx0M(t0)

ρt

t0
(x0)�

�e0, Ct

t0(x0)e0�
,

completing the proof of statement (i) of the Proposition. The
estimates in statement (ii) follow directly from the definition of
ρt

t0
(x0,n0) and νt

t0
(x0,n0). �

3.2. Finite-time hyperbolic material surfaces and their alignment

property

We are now in a position to define normal attraction and
repulsion for a material surface over a finite time-interval.

Definition 3 (Finite-Time Hyperbolic Material Surface). A material
surface M(t) ⊂ U is normally repelling over [t0, t0 + T ] ⊂ I, if
there exist constants a, b > 0 such that for all points x0 ∈ M(t0)
and unit normals n0 ∈ Nx0M(t0), we have

ρ
t0+T

t0 (x0,n0) ≥ e
aT , (21)

ν
t0+T

t0 (x0,n0) ≥ e
bT .

Similarly, we call M(t) normally attracting over [t0, t0 + T ] ⊂ I if
it is normally repelling over [t0, t0 + T ] in backward time. Finally,
we call M(t) hyperbolic over [t0, t0 + T ] if it is normally repelling
or normally attracting over [t0, t0 + T ].

The first condition in (21) requires all small normal perturba-
tions toM(t0) to have strictly grown by time t = t0+T ; the second
condition requires that by time t = t0 + T , any growth along M(t)
is strictly smaller than growth normal to M(t). Since Definition 3
is only concernedwith growth between the times t0 and t0+T , the
exponential lower bounds in (21) will always exist as long as ρ

t0+T

t0

and ν
t0+T

t0 are uniformly bounded from below by a constant larger
than one.

We now derive a local geometric relationship between a
normally repelling LCS and the largest eigenvector of the Cauchy–
Green strain tensor. To state our result, for two codimension-one
planes E, F ⊂ Rn with respective unit normals nE and nF , we
introduce the distance

dist [E, F ] =
�
1 − �nE,nF �2,

which is equal to | sinα(nE,nF )|, withα(nE,nF )denoting the angle
between nE and nF .

Theorem 4 (Alignment Property of Hyperbolic Material Surfaces).
Assume that for all T ∈ [T−, T+], we have a normally repelling

material surface M(t) over [t0, t0 + T ] ⊂ I in the sense

of Definition 3, with the constants a, b > 0 selected uniformly in T .

Then the eigenspace spanned by the first n − 1 eigenvalues of the

Cauchy–Green strain tensor Ct0+T

t0 (x0) converges exponentially fast in
T to the tangent space of M(t0) at the point x0. Specifically, we have

dist [Tx0M(t0), span{ξ1(x0, t0, T ), . . . , ξ
n−1(x0, t0, T )}]

≤
√
n − 1e−bT ,

| sinα(n0(x0, t0, T ), ξ
n
(x0, t0, T ))| ≤

√
n − 1e−bT ,

for all T ∈ [T−, T+]. A similar statement holds for normally attracting

material surfaces in backward time.

Proof. Consider a point x0 ∈ M(t0) and let e1(x0, t0, T ), . . . , en−1
(x0, t0, T ) be an orthonormal basis in the tangent space Tx0M(t0).
For any basis vector ei(x0, t0, T ) and for the unit normal vector
n0 ∈ Nx0M(t0), we have the representation

ei(x0, t0, T ) =
n�

j=1

aij(x0, t0, T )ξ
j
(x0, t0, T ),

n0 =
n�

j=1

bj(x0, t0, T )ξ
j
(x0, t0, T ).

(22)

Note that ξ
j
, ei and n0 are all unit vectors, therefore we have

�����

n�

j=1

a
2
ij

����� = 1,

�����

n�

j=1

b
2
j

����� = 1. (23)

The repelling property of M(t) over [t0, t0 + T ] (as assumed in
the statement of the Theorem uniformly for T ∈ [T−, T+]) implies

1

[ρt0+T

t0 (x0)]2
=

�
n0,

�
Ct0+T

t0 (x0)
�−1

n0

�
≤ e

−2aT ,

1
�
ν
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t0 (x0)
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�
n0, [Ct0+T

t0 (x0)]−1n0

�
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|e0|=1

e0∈Tx0M(t0)

�
e0, C

t0+T

t0 (x0)e0
�
≤ e

−2bT . (24)

Note that
�
n0,

�
Ct0+T

t0 (x0)
�−1

n0

�
=

n�

j=1

b
2
j

λj

,

�
ei, C

t0+T

t0 (x0)ei
�
=

n�

j=1

λja
2
ij
,

(25)

T = ϕt+τ,t

dτ = �n̂t+τ , T∗n̂t�

dτ > eaτ

�T∗t̂� < dτe−bτ
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Partial Hyperbolicity: Transient Case

• No reason LCS boundaries need be fully hyperbolic
• Λ ∈M×R invariant if 

• Transient extension: extend vector 
field outside finite interval by 
autonomous V(x) 

• For nearly autonomous case: “essentially unique” manifold extensions to o(ε) for V 
defined only on finite time intervals of order ln(ε)/λ.

• Unstable manifolds naturally determined by t→ –∞

• Backward Hyperbolic if hyperbolic under past (asymptotically autonomous) flow

•  Stable Manifolds naturally determined by t → ∞

• Forward Hyperbolic if hyperbolic under future (asymptotically autonomous) flow

!

"

#!""

$
"

#

$
%#

%$

&'('! &'('

#! ""

Λt = ϕt,t0(Λt0)

Sandstede, B., S. Balasuriya, C. K. R. T. Jones and P. Miller (2000). “Melnikov theory 
for finite-time vector fields.” Nonlinearity 13(4): 1357-1377.

Wu
τ (Λ) = {x ∈ M : lim

t→−∞
|ϕt,τ (x)− Λt| = 0},
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Questions

• Are “normally hyperbolic” surfaces always appropriate 
LCS boundaries?

• Are there nonautonomous ≈ versions of invariant circles/tori/cantori?

• Is there an effective way to compute transport?
• Action Flux formulas for lobe volumes (from heteroclinic orbits) for transient case

• Can normal hyperbolicity be computed for vector fields 
given by data instead of models?

Mosovsky, B. A. and J. D. Meiss (2011). “Transport in Transitory 
Dynamical Systems.” Siam J. Dyn. Sys. 10(1): 35-65.
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Fig. 4. (a) Almost-invariant set A in a locally 2D attractor Λ with boundary near
C = W ∩Λwhere W ⊂ Ws(x0) is a locally 1D segment of a stable manifoldWs(x0)
of a hyperbolic fixed point x0. In reverse time, points in A near C are attracted out of
A toward C . (b) Almost-invariant set A crossing C = W ∩ Λ. In forward time, those
points in A on the right of C are repelled out of A. Both of these effects areminimised
when the boundary of A matches C .

invariant manifolds. It is far from clear which stable manifold
segments one should piece together to form a globally maximal
almost-invariant set. In Sections 6 and 7 we find that these
boundaries are formed from stable manifolds of fixed points or
low period orbits. We also find that these stable manifolds are
associated with the strongest ‘‘ridges’’ in an FTLE field. One may be
tempted to conjecture that globally maximal almost-invariant sets
have boundaries formed from stablemanifolds associatedwith the
strongest ‘‘ridges’’ in an FTLE field. However, while local deviation
of boundaries from such stable manifolds would lead to rapid flux
across the new boundary, as argued in Fig. 4, the global structure
of the manifolds and the size and position of the exit boundary also
play a role.

In Section 8 we show that the global maximum of ρµ,τ does not
correspond to a set bounded by stable or unstablemanifolds. In this
case, we have a boundary with a rather large ‘‘exit boundary’’, but
an exit boundary that is well placed with respect to the dynamics
so that mass transfer through the exit boundary is very small.

5. Case Study I — Autonomous fluid-like 3D flow (ABC flow)

To illustrate our methodology we begin with the following 3D
system of ordinary differential equations:

ẋ = A sin z + C cos y
ẏ = B sin x + A cos z (29)
ż = C sin y + B cos x.

This class of flows is known as ABC (Arnold–Beltrami–Childress)
flows and the system (29) is notable for being an exact steady
solution of Euler’s equation, exhibiting a nontrivial streamline
geometry.We refer the reader toHaller [8] for a numerical analysis,
and to Dombre et al. [53] for an analytical investigation. As in [53]
we consider the ABC flow on the torus T3, i.e. 0 ≤ x, y, z < 2π in
(29). The domain is invariant and preserves Lebesguemeasure. For
our choice of parameters A =

√
3, B =

√
2, C = 1 (cf. [8]) theflow

is non-integrable and the system exhibits non-trivial invariant sets
which are enclosed by 2D invariant manifolds.

The results for the application of the set-oriented expansion
rate approach [51] as described in Section 4.1 are shown in Fig. 5(a).
Here we used flow time τ = 5 and coloured the boxes Bi from a
very fine box discretisation according to max{δτ (Bi), δ̄τ (Bi)}. High
values in the scalar field highlight stable and unstable invariant
manifolds of hyperbolic periodic orbits and confirmHaller’s results
[8]. Moreover the picture gives an indication of the dynamically
distinct regions in the ABC flow.

For the numerical approximation of the transfer operator we
partition M = [0, 2π ]3 into n = 262144 = 218 boxes and
estimatePτ from (10)with τ = 0.2. Each box is sampleduniformly
with 1000 points and the 262144 × 262144 sparse matrix Pn is
constructed. We form P̂n and Rn via (13) and (12), and compute
the outer spectrum of Rn. The largest six eigenvalues λ1 = 1,
λ2 = 0.9986, λ3 = 0.9979, λ4 = 0.9978, λ5 = 0.9971,
and λ6 = 0.9968 are very close to 1. The eigenvector for the
eigenvalue λ1 = 1 gives the uniform invariant density, while
the eigenvectors vi

n, i ≥ 2, characterise almost-invariant sets, see
Fig. 5(b). In fact these sets are truly invariant, the leakage is only
due to the numerical discretisation described above; see Remark 4.
For a finer discretisation the leading eigenvalues will converge to
one and, consequently, the corresponding eigenvectors will relate
to invariant sets.Wenote that the numerical results are very robust
in that sense that the leading eigenvectorswith respect to a coarser
partition ofM highlight the same regions.

In order to extract approximations of someof the large invariant
sets enclosed by invariant manifolds, we apply the heuristic
approach described in Algorithm 1 to the eigenvector v2

n .
The resulting partition into three sets is shown in Fig. 6(a).

In Fig. 6(a) we also overlay the invariant manifolds obtained via
taking regions with high values in the combined forward and
backward time FTLE field as described above. These structures
align exactly with the set boundaries that result from the
thresholding approach. This confirms that truly invariant sets of
the flow have been approximated.

Fig. 5. (a) Application of the set-oriented FTLE approach using flow times τ = ±5 on the ABC flow model with dark values highlighting invariant manifolds. The scalar
field gives an indication of dynamically distinct regions. (b) Extremal values in the eigenvector v2

n of Rn , n = 262144, in the ABC flow indicate the existence of (numerically
almost-)invariant sets.

Almost Invariant 
Sets
Froyland, G. and K. Padberg (2009). “Almost-invariant sets and invariant manifolds — Connecting probabilistic 

and geometric descriptions of coherent structures in flows.” Physica D 238: 1507-1523.

Second Perron-Frobenius Eigenfunction for the ABC flow
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Almost Invariance & 
Coherence

• Sets A & B are coherent if

• If A is coherent with itself, it is almost invariant. 

• Minimize escaping flux

• Minimizing escaping flux: Resonance Zones: 
• Enclosed by segments of nearly 

coincident stable & unstable manifolds

• Flux is independent of switching 
point from Wu to Ws

• For twist maps, minimal flux surfaces are cantori

A

I
f(E)

f-1(I)

T4

E

zh

zm

zs

ρτ (A, B) =
µ(A ∩ ϕt,t+τ (B))

µ(A)
> ρ0

B

ϕt,t+τ

MacKay, R. S., J. D. Meiss and I. C. Percival (1984). “Transport in 
Hamiltonian Systems.” Physica D 13: 55-81.

Froyland, G., N. Santitissadeekorn and A. Monahan (2010). “Transport in time-dependent 
dynamical systems: Finite-time coherent sets.” Chaos 20(4): 043116.
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Almost Invariance

• Eigenfunctions of the Perron-Frοbenius Operator

• Cubical discretization, boxes Bi with equal measure μ(Bi)

• Eigenvalue λ = 1
• Measure preserving— uniform density

• Second isolated eigenvalue λ < 1 
• eigenfunction v partition into almost invariant sets A±, vi > c and vi < c.

• Choose c to maximize almost invariance, ρt(Α±)

P[f ] = |det(Dϕt)| f ◦ ϕ−t

Dellnitz, M. and O. Junge (1999). “On the approximation of complicated dynamical behaviour.” SIAM J. Numer. Anal. 36(2): 491-451.
Froyland, G. and K. Padberg (2009). “Almost-invariant sets and invariant manifolds — Connecting probabilistic and geometric descriptions 

of coherent structures in flows.” Physica D 238: 1507-1523.

Pij =
µ(Bi ∩ ϕ−t(Bj))

µ(Bj)
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Double Gyre Example

• 217 = 1.3(10)5 Boxes, 400 points/box

• Integration time = one period

• Escaping flux for eigenfunction partition (F = 0.0097), is 
smaller than that through manifolds (F = 0.0010)

G. Froyland, K. Padberg / Physica D 238 (2009) 1507–1523 1521

Fig. 16. Almost-invariant sets and parts of the LCS overlaid (here boxes Bi with max{δτ (Bi, 0), δ̄τ (Bi, 0)} ≥ 0.85), corresponding to segments of invariant manifolds.
(a) Optimal partition into two almost-invariant sets at c = 0 using the second eigenvector of R̃n for the reduced covering (n = 84204). (b) Partition into two almost-
invariant sets using the threshold c = 0 in v2

n,1(0) of Rn,1(0) for the full covering (n = 131072).

global maximum in the thresholding approach (i.e. the egg-shaped
regions in Fig. 13(a)). We repeat this step and remove the eight
regular islands circling the central regular regions (see Fig. 13(c)).
As a result we arrive at a reduced covering consisting of n = 84204
boxes. Fixing t = 0 for the remainder of this section, we obtain the
matrix R̃n for this reduced covering by restricting the full matrix
Rn,1(0) to the relevant entries.

Using the second eigenvector of R̃n, n = 84204, we obtain
two almost-invariant sets corresponding to the global maximum
in the respective thresholding curve at c = 0 (see Fig. 15 (b)).
The resulting partition into two almost-invariant sets is shown in
Fig. 16(a).

Extending this partition to the full box covering we arrive at the
same partition as if we considered a partition based on the c = 0
threshold in the second eigenvector of Rn for the full problem (n =
131072). That partition is shown in Fig. 16(b). It is characterised by
ρ(A−,+) = 0.9903,µ(A−,+) = 0.5,which is a clear localmaximum
in the original thresholding curve (see Fig. 15(a)). In the following
we return to the full domain.

We can now look at the properties of the partition for c = 0.
Its boundaries do not exactly match the invariant manifolds for
x1(0) and x2(0) but appear to cut just through the centres of the
primary lobes. We also performed identical calculations at times
t = 0.2, 0.5, and 0.8 and find that for these t , the partition
boundaries also cut through the centres of the lobe positions at
these times.

To further illuminate this result, let us consider the dynamics
of (32) as an autonomous flow on the time-expanded space
(x, y, t) ∈ [0, 2] × [0, 1] × S1. In the time-expanded space, the
surfaces W (1,s)

exp := {(Ws(x1(t)), t), 0 ≤ t < 1} and W (2,u)
exp :=

{(Wu(x2(t)), t), 0 ≤ t < 1} are invariant manifolds and thus
represent impenetrable barriers to the autonomous flow on
[0, 2] × [0, 1] × S1. As the Poincaré map for t = 0 shows a chaotic
regime, it is clearly impossible to form a non-invariant set with
boundary comprised solely of portions of the surfaces W (1,s)

exp and
W (2,u)

exp . Such a set would necessarily be invariant, contradicting
the chaotic regime and the observed transport between the left
and right of the rectangle. Our transfer operator approach instead
identifies a pair of almost-invariant sets whose common boundary
is not comprised of invariant manifolds. The common boundary is
thus a large ‘‘exit boundary’’ that is aligned to the dynamics in such
a way that the transfer of mass through the exit boundary is very
small.

Let us observe how the two sets in Fig. 16 interact over the
boundary: first we consider the images of the boundary box centre
points (black) under one iteration of the Poincaré map confirming
that the boundary curve is nearly invariant (Fig. 17(a)–(b)). As a
second method of visualisation we use our transition matrices Pn

and P̂n. We define row vectors u, w ∈ Rn (n = 131072) and set
u0
i := 1, w0

i := 1 if Bi ⊂ A+ (i.e. initialise a uniform density in
the light set) and compute uk := u0Pk

n and wk := w0P̂k
n .

12 The
non-zero entries of uk correspond to boxes that contain terminal
points from a k-fold propagation of the set A−

c by theMarkov chain
governed by Pn, likewise for wk and P̂n. u1 and w1 are shown in
Fig. 17(c)–(d) (colouring from0 (dark) to 1 (light)),where for clarity
we also overlaid the boundary between the two almost-invariant
sets. Obviously there is – as expected and observed – hardly any
transport between the two sets.

Under further iteration we observe that uk converges towards
the unstable manifold of x2(0) and wk towards the stable manifold
of x1(0), see Fig. 18.

The existence of a heteroclinic tangle formed by the intersec-
tions of the stable and unstable manifolds (see Fig. 13(b)) suggests
that transport between these particular almost-invariant sets can
be explained in terms of lobe dynamics: computing uk

lobe based
on this new constructed partition we can clearly follow the lobe
mechanism (see Fig. 19, colouring from 0 (dark) to 1 (light)). Ex-
actly one lobe volume is exchanged between the two sets for each
iterate of the Poincaré returnmap, see also [13] for a related study.

While one can easily construct amanifold based partition in the
spirit of lobe dynamics as shown in Fig. 19(a) (see also [13]), it is not
possible to consistently extend this partition to the time-expanded
domain in away that the commonboundary (i) varies continuously
in space from time slice to time slice, and (ii) is comprised wholly
of unstable/stable manifolds in each time slice. If such a partition
existed, it would contradict the observed transport between the
left and right halves of the 2Ddomain. Any separating surface in the
time-expanded domainmust therefore contain an ‘‘exit boundary’’
that allows the transport of exactly one lobe volume over one
period. Any suchpart-manifold based partition with leakage of
one lobe volume yields ρ(A−) = 0.9899, µ(A−) = 0.5024 and
ρ(A+) = 0.9898,µ(A+) = 0.4976. The invariance ratios are not as
high as for the original partition based on the second eigenvector
v2
n of Rn. Thus such an ‘‘exit boundary’’, while possibly relatively

small in area, is less well adapted to the dynamics and incurs more
mass transport in one period than the transport across the larger
exit boundary identified by our transfer operator approach.

In summary, our heuristic ansatz using the second eigenvector
v2
n of Rn appears to find a partition that is close to the one based

on a primarymanifold intersection. However, the partition defined
by v2

n experiences less leakage. It achieves this by running the
boundary directly through the middle of the lobes, reducing the
exchange of particles by around 5% compared to the geometrically
based partition.

12 Note that this quantity is obtained iteratively by matrix multiplications.

c = 0 partition
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Fig. 13. (a) Partition into three (approximate) invariant sets. (b) Schematic illustration of the dynamics of the flow map g0 with hyperbolic fixed points (black dots) on the

rectangle boundaries and their stable and unstable manifolds. (c) The dynamically distinct regions in phase space obtained by plotting typical trajectories and the partition

into invariant sets show good correspondence. The regular regions in phase space appear to be composed of families of invariant tori. (d) Boundaries of the invariant sets

are determined by invariant manifolds of the hyperbolic periodic orbits. However it is neither the primary segments of the manifolds nor parts with particularly high values

in the FTLE that play the most important role (see Fig. 14).

Fig. 14. Expansion rates for the periodically driven double-gyre system: approximation of the stable and unstable manifolds of periodic orbits using the set-oriented

expansion approach (t = 0, τ = 10). Boxes Bi are coloured according to max{δτ (Bi, t), δ̄τ (Bi, t)}.

Fig. 15. (a) Zoomonmaxima of the thresholding curve v2

n,1(0) of Rn,1(0), n = 131072. (a) Thresholding curve for reduced covering, n = 84204. c = 0 is the globalmaximum.

Time one map
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Fig. 12. Second eigenvector v2
n,1(t) of Rn,1(t), n = 131072, for different choices of t in the double-gyre flow.

separation point is in the same position as in the autonomous case
(5) whereas for t = π

2ω the separation point is at its far right posi-
tion. Note that the boundary of the rectangleM is invariant. As has
been demonstrated in [11], the periodically forced system exhibits
a complicated tangle of Lagrangian coherent structures in the inte-
rior of the rectangle (in fact, these structures are associatedwith in-
variant manifolds). In addition, the authors numerically show that
the forward-time FTLE field computed with respect to a certain
time span possesses a particular ridge in the vicinity of the stable
manifold of a hyperbolic periodic orbit, and demonstrate that there
is low flux across the ridge. We will come back to this later.

We fix parameter values A = 0.25, � = 0.25 and ω = 2π
and obtain a flow of period T = 1. We partition the domain M =
[0, 2] × [0, 1] in n = 131072 = 217 boxes and form the matrices
Pn(t) by integrating from different initial times t ∈ [0, 1) over one
period, i.e. τ = 1, using 400 uniformly distributed test points per
box. This means we consider flow maps gt := φ1(·, t) : M �
which define autonomous, discrete-time dynamical systems with
xn+1 = gt(xn) = gn

t (x0) for xi ∈ M . Note that the family of time-1
flowmaps gt correspond to Poincaré returnmaps with respect to a
family of Poincaré surfaces parametrised by t ∈ [0, 1). We form11

Rn,1(t) and obtain leading eigenvalues λ1 = 1, λ2 = 0.9999, λ3 =
0.9999, λ4 = 0.9997, λ5 = 0.9996, λ6 = 0.9994, λ7 = 0.9992,
λ8 = 0.9990, λ9 = 0.9988, λ10 = 0.9983. These eigenvalues
are largely independent of t — only small deviations in the fourth
digit have been observed.Also the invariant measure µn, Lebesgue
measure, is independent of t . The second eigenvectors v2

n,1(t) of
Rn,1(t) for different t are shown in Fig. 12.

8.1. An initial decomposition: Regular and chaotic regions

Thresholding with v2
n := v2

n,1(0) while varying c , we find
min{ρn(A−

c ), ρn(A+
c )} has two global maxima at c = ±0.0013;

see Fig. 15(a). For c = −0.0013 we obtain ρ(A−
c ) = 0.9960 and

ρ(A+
c ) = 0.9992 with µ(A−

c ) = 0.1611 and µ(A+
c ) = 0.8389,

for c = 0.0013 it is ρ(A−
c ) = 0.9992 and ρ(A+

c ) = 0.9960
with µ(A−

c ) = 0.8389 and µ(A+
c ) = 0.1611. The resulting two

sets for some c = ±0.0013 are one of the egg-shaped regions in
Fig. 13(a) and its complement, respectively. A three-set partition
as shown in Fig. 13(a) is obtained choosing A1 = ∪i:v2n,i<−c Bi,
A2 = ∪i:−c≤v2n,i<c Bi, A3 = ∪i:v2n,i≥c Bi, where c = 0.0013. Here
A1 (dark) and A3 (light) correspond to the two eggs with ρ(A1) =
ρ(A3) = 0.9960, µ(A1) = µ(A3) = 0.1611 and ρ(A2) = 0.9981,
µ(A2) = 0.6778.

We now begin to analyse the system using standard geometri-
cal constructions.We will see that the sets A1, A2, and A3 are in fact

11 We compute P̂n,1(t) directly as Pn,−1(t) so that our numerics retain as much
symmetry as possible.

invariant sets. Firstly, we note that for all t there are hyperbolic
fixed points of the Poincaré maps gt in the corners of the rectangle
M with invariant manifolds located within the rectangle bound-
aries. These fixed points and their manifolds are independent of t .
In the vicinity of the instantaneous separation point, each Poincaré
map gt exhibits two hyperbolic fixed points, which give rise to the
complicated manifold structure in the rectangle interior. Their lo-
cation depends on t . For t = 0 the fixed points of themap g0 are lo-
cated at x1(0) ≈ (1.08079, 0) and x2(0) ≈ (0.91921, 1); for t = 0.5 at
x1(0.5) ≈ (0.91921, 0) and x2(0.5) ≈ (1.08079, 1). Fig. 13(b) schemat-
ically illustrates the situation for t = 0. The unstable manifold of
x1(t) is locatedwithin the x-axis and forms a heteroclinic connection
with the corner fixed points. One branch of the stable manifold is
part of the heteroclinic tangle in the rectangle interior. For x2(t) the
stable manifold is contained in the upper rectangle boundary and
one branch of its unstable manifold transversely intersects the sta-
ble manifold of x1(t). These non-trivial hyperbolic fixed points of gt
(i.e. periodic orbits for the full system) and the resulting hetero-
clinic tangle form the basis of complicated dynamics: one obtains
a mixed phase space structure exhibiting a chaotic sea and fami-
lies of tori as shown in Fig. 13(c), a familiar picture of periodically
driven Hamiltonian systems.

We now extend the geometric analysis by attempting to
find LCS via the expansion rate approach. We find that long
integration time intervals (here τ = 10) are necessary to discern
structures of interest. In Fig. 14 boxes Bi are coloured according
to max{δτ (Bi, t), δ̄τ (Bi, t)} with extremal values in the scalar field
highlighting LCS corresponding to stable and unstable invariant
manifolds of hyperbolic periodic orbits of the flow and thus
hyperbolic fixed points of the Poincaré maps gt . Here we have
chosen t = 0 and t = 0.5 to illustrate the time dependence.

If one compares the manifolds, see Fig. 14(a), with the partition
in Fig. 13(a) one sees that the boundaries between the invariant
sets perfectly match the innermost highlighted structures in
Fig. 14(a) on the left and right halves of M , see also Fig. 13(d).
However, these ridges in Fig. 14 (t = 0) corresponding to the
boundaries of A1 and A3 are not characterised by particularly high
values in the expansion rates fields in Fig. 14(a). Thus the highest
expansion rates do not necessarily determine boundaries of sets that
are maximally invariant or almost-invariant. This again shows the
difficulty to define and rank sets solely on the basis of geometric
information.

8.2. Almost-invariant sets in the chaotic region and comparison with
lobe dynamics

As described above and demonstrated in Fig. 13(c), the initial
partition into invariant sets appears to be a natural decomposition
of phase space into regular and chaotic regions. To be able to find
less obvious almost-invariant sets we restrict our box covering to
the chaotic region. For this we first remove the sets identified as a

Froyland, G. and K. Padberg (2009). Physica D 238: 1507-1523.
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Questions

• Why are the eigenfunctions of the transition operator 
“better” than simply flowing a set forward?

• Presumably the pair of coherent sets is more “regular” this way? 

• Does this regularity depend upon discretization?

• Could some topological techniques like the entangled loop methods of J-L Thiffeault 
apply?

• Is the escaping flux from approximate invariant sets 
really lower than that for invariant manifolds (or 
cantori)?

• How are these related to the time average partitions of 
Mezic et al?

Thiffeault, J.-L. (2010). “Braids of entangled particle trajectories.” Chaos 20: 017516.
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Distinguished Trajectories

• Jiménez Madrid & Mancho (2010): Local minima of a 
Lagrangian descriptor, e.g., “trajectory arc length”

M(x, t, τ) =
� t+τ

t−τ
|V (ϕs,t(x), s)| ds

a)

b)

Figure 2: Evaluation of the function M over the Kuroshio current between
longitudes 148oE-168oE and latitudes 30oN-41.5oN; a) on May 2, 2003; b) on
June 3, 2003. Panels take τ = 15 days.

7

Kuroshio Current measurements 5/2003
Mendoza & Mancho (2010)

Distinguished 
Hyperbolic Trajectory

several minima for !=10. The global minimum in this pic-
ture corresponds to x= !0,−5.004256"10−2". Figure 6!a"
compares the x-coordinate of xDHT as a function of time with
trajectories having initial conditions at the global minima of
Mt=0,!=2 and Mt=0,!=10. Taking as the initial condition the glo-
bal minimum of Mt=0,! for !=10 provides a trajectory that
stays close to xDHT for a longer time interval than for !=2,
which confirms that larger ! values more closely approach
the coordinates of the DHT. Figure 5!c" displays the contour
plot of Mt=0,!=50!x". Its global minimum is at x
= !0,−5.003760"10−2". The associated trajectory depicted
in Fig. 6!b" shows that this initial condition tracks the DHT
for a longer time interval than those obtained for !=2 and
10, however the figure shows that the integration of the DHT
in !−50,50" is not possible. In fact the associated trajectory
stays close to the DHT only in the time interval !−20,20".
This confirms that results obtained for !=50 are the same as
those obtained for !=20. In practice for a finite precision
numerical scheme, such as, a fifth order Runge–Kutta used
here, the approach to the DHT has an upper bound depend-
ing on !. This occurs because the stable and unstable mani-
folds of the hyperbolic trajectory magnify any initial error in

either negative or positive time and beyond this !-limit nu-
merical errors dominate. The convergence towards the DHT
is confirmed in Fig. 7 which displays the evolution of the
coordinates x and y of the global minimum of M as a func-
tion of the parameter !.

New minima appearing in Figs. 5!b" and 5!c" relate to
the existence of different !-distinguished trajectories. As il-
lustrated in Fig. 6!b", they correspond to trajectories which
stay close to xDHT in a small time range contained in the
interval −!# t#!, but which later fly apart from the DHT.

We now describe a numerical scheme to compute a path
of limit coordinates. The algorithm has the following steps:

Step 1. Discretize the domain D at the initial time t= t0 at
which one wishes to compute a DT. For instance, the grid
size of this domain in Fig. 4 is 101"101. The function M is
evaluated at each grid point for a given !0.

Step 2. Search for the local minima of Mt0,!0
in the inte-

rior of the grid. These minima approach the coordinates of
!0-distinguished trajectories within the accuracy of the grid.
In what follows we restrict our description to the case of a
unique minimum, as this simplifies the description; the pro-
cedure is easily generalized to the case of multiple minima.

Step 3. Improve the approach of the coordinates of the
!0-distinguished trajectory up to precision $. For this purpose
build up a 3n grid centered on the candidate point provided
by step 2 !for the 2D case this is a 3"3 grid as Fig. 8
illustrates", setting the distance between nodes equal to $.
Then evaluate Mt0,!0

at the points of the $-grid. If the mini-
mum of Mt0,!0

is in the interior of the grid, then the coordi-
nates of the !0-distinguished trajectory are known to within $
accuracy. Otherwise the $-grid must be rebuilt centered on
the boundary point where the minimum has been located,
and Mt0,!0

must be re-evaluated in the new $-grid. This pro-
cedure stops when the minimum of Mt0,!0

is in the interior of
the grid.

Step 4. Computing the limit coordinates at time t0. De-
fine a sequence of increasing !-values as follows: !1=!0
+%! and !2=!0+2%!. Then evaluate Mt0,!0

, Mt0,!1
and Mt0,!2

on the $-grid. If the minimum is at an interior position for the
three cases, then we consider that limit coordinates have
been found within $ accuracy. We note that this is a neces-
sary but not sufficient condition as one does not know a
priori the convergence rate to the distinguished trajectory.
Although this criterion could be strengthened, it has been
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FIG. 5. Contour plot of the function M in the open set x! !−0.2,0.2"" !−0.2,0.2". !a" Mt=0,!=5!x"; !b" Mt=0,!=10!x"; !c" Mt=0,!=50!x".
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FIG. 6. !a" x-coordinate vs time for the DHT !thick solid line" and those
trajectories integrated with initial conditions at the global minima of Fig.
5!a" !solid line" and Fig. 5!b" !dashed line"; !b" x-coordinate vs time for the
DHT !thick solid line", a trajectory integrated with initial condition at the
global minimum of Fig. 5!c" !solid line" and a trajectory integrated at a
nonglobal but relative minimum of the same figure !dashed line".
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M(x,0,10) for the Forced Duffing 
oscillator

ẍ = x− x3 + 0.1 sin(t)
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Lagrangian Descriptors

• Sharp changes in M detect both stable and unstable 
manifolds

M(x, t, τ) =
� t+τ

t−τ
|V (ϕs,t(x), s)| ds

refined for larger ! values as confirmed by panels 1(b) and
1(d), obtained for ! ¼ 30. This is justified because M
reflects the history of initial conditions on open sets, and
in highly chaotic systems this history is expected to be
more complex for longer time intervals. The evaluation of
M in large oceanic areas as shown in Fig. 1 reveals recog-
nizable phase portraits similar to those of the cat’s eyes of
the forced pendulum [in panel 1(a)] upper left), or the
forced Duffing equation [see panel 1(c) at the lower right].
The ocean surface resembles a patchwork of intercon-
nected dynamical systems from which the complexity of
possible particle routes is visible.

In Figs. 1 and 2, apart from the minima of the functionM
at the intersections of singular lines, related to the hyper-
bolic DT, there are apparent minima at the eddy centers. In
the work by Madrid and Mancho [2] these have been
related to ‘‘nonhyperbolic DT’’ (DET), which are eddylike
structures, of great interest to oceanographers. The
Lagrangian description of eddies, such as that shown in
Fig. 2 reveals the existence of an inner core, which is robust
and rather impermeable to stirring and an outer ring, where
the interchange with the media is understood in terms of
lobe dynamics (see [9]). We analyze how the function M
reflects to what extent the inner core of Fig. 2 is imperme-
able to mixing. Figure 3 displays contour plots ofM on t ¼
May 2, 2003 for several !. In Fig. 3(a) it is observed that for
! ¼ 15 days the interior of the eddy has a minimum which
is locally smooth. This means that in the range (t" !, tþ
!) trajectories in this neighborhood outline similar paths,
and for this reason the functionM does not change sharply
(i.e., does not have singular features). Smoothness of M
implies that for these initial conditions it does not perceive
nearby hyperbolic regions for (t" !, tþ !). Hyperbolic
trajectories are the ones responsible for dispersion and it is
just these trajectories that may induce sharp changes inM.

In Figs. 3(b) and 3(c) for larger ! values (i.e., ! ¼ 30 and
72, respectively) the interior of the eddy becomes less and
less smooth, for in the range (t" !, tþ !) trajectories
placed at the interior core either were dispersed in the
past or will disperse in the future. In fact, in Fig. 3(c),
the interior of the core is completely foliated by singular
features associated either to stable or unstable manifolds of
nearby hyperbolic trajectories. So, the value at which M
starts losing smoothness, e.g., 2! ¼ 60, is a good indicator
of the maximum time for confinement of particles in the
inner core. The minimum of M on the elliptic region does
not converge with !, and this is the condition required for
finding DT. Similarly to what is described in [2], DET have
not been found in highly aperiodic flows. Figure 3(c) dis-
plays in black line a piece of an unstable manifold which
overlaps on the contour plot of M. Again there is observed
a coincidence of the singular features of M with the mani-
fold. However, the foliated structure of M is much richer
than that provided by the manifold. The reason is that the
manifold has been computed from the one DHT recogniz-
able in Figs. 2(b) and 2(c), while M displays all stable and
unstable manifolds from all possible DHTs in the neigh-
borhood of the eddy, without need for identifying DHTs
a priori, as required by the manifold algorithm (see [3]).
ThusM provides a complete partition of the phase portrait,
while the direct computation of a manifold of a DHT does
not.
The Lagrangian method usingM has several advantages

over other methods based on finite time versions of
Lyapunov exponents (LE) such as FTLE or FSLE
[10,11]. LE techniques provide information on the linear-
ized flow along trajectories and their focus is on hyperbolic
regions. Ridges of FTLE and FSLE fields represent mani-
folds as reported for instance in [10,11]. Figure 4 confirms
this point. In it there is displayed the same eddy of Fig. 3,

FIG. 3. The function M evaluated over the inner core of an eddy on May 2, 2003. (a) ! ¼ 15; (b) ! ¼ 30; (c) ! ¼ 72.

FIG. 2. The function M on May 2,
2003. (a) ! ¼ 2; (b) ! ¼ 15; (c) the
same as (b) with a piece of stable mani-
fold (black) and a piece of unstable
manifold (gray) of the DHT overlapping.
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d!

dt
¼ uð!;"; tÞ

R cos ð#ð"ÞÞ ;
d"

dt
¼ vð!;"; tÞ

R cos ð#ð"ÞÞ ; (3)

where u and v represent the eastward and northward
components of the altimetry surface velocity field respec-
tively, and R is the radius of Earth. The factor 1= cos ð#ð"ÞÞ
in the " equation is an artifact of the coordinate trans-
formation. The function M in Eq. (2) is computed over the
dynamical system (3). Thus the length of the trajectory is
measured on the (!, ") plane. The system expressed in
Eq. (3) is not exact, as it is subject to errors coming from
the measured velocity fields, the sort of interpolation used,
etc. However, Eq. (3) is used for evaluating M, a function
that contains Lagrangian information. In the literature [8],
has been studied the robustness of the Lagrangian struc-
tures under errors induced in the vector field satisfying
certain conditions. We have assessed the reliability of M
by computing it with several interpolation schemes.

Results.—We demonstrate that the function defined in
Eq. (2) gives a global dynamic picture of oceanic flows
since it detects simultaneously invariant manifolds, hyper-
bolic, and nonhyperbolic flow regions. It synthesizes in-
formation more efficiently than, for instance, spaghetti
diagrams. These represent paths over time of messy tra-
jectories but they do not communicate information about
regions in which particle evolutions are qualitatively dif-
ferent, and one cannot get much intuition from them.
Figure 1 displays the function M for medium and large $
on selected days of May and June 2003 along the meander-
ing Kuroshio current. Maximum values of M are in red,

while dark blue indicates minima. The dependence ofM on
time is obvious for this highly aperiodic flow, since repre-
sentations for different days have different structures. In
the figure the organizing centers are visible at a glance.
These key points are the minima of M, and as discussed in
[2] they are related either to hyperbolic or nonhyperbolic
distinguished trajectories. Singular features of M forming
lines are easily discerned, both in Figs. 1 and 2. Figure 2(b)
shows their intersection at a hyperbolic minimum at lon-
gitude $157:1% and latitude $35:63%. The time evolution
of this point has been characterized in [5] as a DHT.
Singular lines are identified as manifolds since they are
advected by the flow and are asymptotically obtained from
small segments aligned with the stable and unstable sub-
spaces of the DHT. Figure 2(c) shows the overlapping ofM
with the stable and unstable manifolds computed with the
technique used in [3]. This confirms the coincidence of the
lines with the manifolds. Why should stable and unstable
manifolds be traced out by singular features of M? M
measures the lengths of curves traced by trajectories on
the phase space, so it is expected it will change abruptly at
the boundaries of regions comprising trajectories with
qualitatively different evolutions, since this is exactly
what the stable and unstable manifolds separate.
Convergence of the structure of M towards these singular
lines requires a large enough $ value. For instance, for $ ¼
2 the appearance of M in Fig. 2(a) is rather simple, almost
without structure and resembling that of Eulerian currents,
while sharp lines in Figs. 2(b) and 2(c) require the use of
$ ¼ 15. The structure of M becomes more and more

FIG. 1 (color). Evaluation of the function M over the Kuroshio current between longitudes 148%E–168%E and latitudes
30%N–41:5%N; (a) and (b) on May 2, 2003; (c) and (d) on June 3, 2003. Panels (a) and (c) take $ ¼ 15; panels (b) and (d) take $ ¼ 30.
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refined for larger ! values as confirmed by panels 1(b) and
1(d), obtained for ! ¼ 30. This is justified because M
reflects the history of initial conditions on open sets, and
in highly chaotic systems this history is expected to be
more complex for longer time intervals. The evaluation of
M in large oceanic areas as shown in Fig. 1 reveals recog-
nizable phase portraits similar to those of the cat’s eyes of
the forced pendulum [in panel 1(a)] upper left), or the
forced Duffing equation [see panel 1(c) at the lower right].
The ocean surface resembles a patchwork of intercon-
nected dynamical systems from which the complexity of
possible particle routes is visible.

In Figs. 1 and 2, apart from the minima of the functionM
at the intersections of singular lines, related to the hyper-
bolic DT, there are apparent minima at the eddy centers. In
the work by Madrid and Mancho [2] these have been
related to ‘‘nonhyperbolic DT’’ (DET), which are eddylike
structures, of great interest to oceanographers. The
Lagrangian description of eddies, such as that shown in
Fig. 2 reveals the existence of an inner core, which is robust
and rather impermeable to stirring and an outer ring, where
the interchange with the media is understood in terms of
lobe dynamics (see [9]). We analyze how the function M
reflects to what extent the inner core of Fig. 2 is imperme-
able to mixing. Figure 3 displays contour plots ofM on t ¼
May 2, 2003 for several !. In Fig. 3(a) it is observed that for
! ¼ 15 days the interior of the eddy has a minimum which
is locally smooth. This means that in the range (t" !, tþ
!) trajectories in this neighborhood outline similar paths,
and for this reason the functionM does not change sharply
(i.e., does not have singular features). Smoothness of M
implies that for these initial conditions it does not perceive
nearby hyperbolic regions for (t" !, tþ !). Hyperbolic
trajectories are the ones responsible for dispersion and it is
just these trajectories that may induce sharp changes inM.

In Figs. 3(b) and 3(c) for larger ! values (i.e., ! ¼ 30 and
72, respectively) the interior of the eddy becomes less and
less smooth, for in the range (t" !, tþ !) trajectories
placed at the interior core either were dispersed in the
past or will disperse in the future. In fact, in Fig. 3(c),
the interior of the core is completely foliated by singular
features associated either to stable or unstable manifolds of
nearby hyperbolic trajectories. So, the value at which M
starts losing smoothness, e.g., 2! ¼ 60, is a good indicator
of the maximum time for confinement of particles in the
inner core. The minimum of M on the elliptic region does
not converge with !, and this is the condition required for
finding DT. Similarly to what is described in [2], DET have
not been found in highly aperiodic flows. Figure 3(c) dis-
plays in black line a piece of an unstable manifold which
overlaps on the contour plot of M. Again there is observed
a coincidence of the singular features of M with the mani-
fold. However, the foliated structure of M is much richer
than that provided by the manifold. The reason is that the
manifold has been computed from the one DHT recogniz-
able in Figs. 2(b) and 2(c), while M displays all stable and
unstable manifolds from all possible DHTs in the neigh-
borhood of the eddy, without need for identifying DHTs
a priori, as required by the manifold algorithm (see [3]).
ThusM provides a complete partition of the phase portrait,
while the direct computation of a manifold of a DHT does
not.
The Lagrangian method usingM has several advantages

over other methods based on finite time versions of
Lyapunov exponents (LE) such as FTLE or FSLE
[10,11]. LE techniques provide information on the linear-
ized flow along trajectories and their focus is on hyperbolic
regions. Ridges of FTLE and FSLE fields represent mani-
folds as reported for instance in [10,11]. Figure 4 confirms
this point. In it there is displayed the same eddy of Fig. 3,

FIG. 3. The function M evaluated over the inner core of an eddy on May 2, 2003. (a) ! ¼ 15; (b) ! ¼ 30; (c) ! ¼ 72.

FIG. 2. The function M on May 2,
2003. (a) ! ¼ 2; (b) ! ¼ 15; (c) the
same as (b) with a piece of stable mani-
fold (black) and a piece of unstable
manifold (gray) of the DHT overlapping.
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Mendoza, C. and A. M. Mancho (2010). “Hidden Geometry of 
Ocean Flows.” Phys. Rev. Lett. 105: 038501.
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Questions

• How to pick time-scale? (Just as for FTLE)

• Is there a coordinate free Lagrangian descriptor
•  M depends upon reference frame? 

• Does M detect hyperbolic periodic orbits or just fixed 
points?

• What about forward/backward descriptors?
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Fig. 1. Velocity field of the Kuroshio current on 4 April 2003. A line marks a piece of current across which transport is studied. Maximum
values of the velocity field are about 3.65m/s.

in spherical coordinates, and the grid is not uniformly spaced
in the latitude coordinate. In order to interpolate in a uni-
formly spaced grid, we transform our coordinate system (λ,
φ) to a new one (µ, φ). The latitude λ is related to the new
coordinate µ by

µ = ln |secλ+ tanλ| (5)

Our velocity field is now on a uniform grid in the (µ, φ)
coordinates. The equations of motion in the new variables are

dφ

dt
= u(φ,µ,t)

R cos(λ(µ))
(6)

dµ

dt
= v(φ,µ,t)

R cos(λ(µ))
(7)

where λ(µ) is obtained by inverting Eq. (5), i.e.

λ = π

2
−2arctan

�
e−µ

�
. (8)

Once trajectories are integrated using Eqs (6)–(7), for presen-
tation purposes one can convert µ values back to latitudes λ

by using (8).

4 Distinguished hyperbolic trajectories and manifolds

Distinguished hyperbolic trajectories and their unstable and
stable manifolds are the dynamical systems objects used to
describe and quantify transport.
Figure 1 marks with a line the eulerian feature across

which we study transport. The current, similarly to that stu-
died in (Mancho et al., 2008; Coulliette and Wiggins, 2001),
flows eastward. We identify a DHT in the western part
of the flow, for which we compute the unstable manifold,

and a DHT in the eastern part, for which we compute the
stable manifold.
Computation of distinguished hyperbolic trajectories for

aperiodic flows has been discussed in Ide et al. (2002); Ju et
al. (2003); Mancho et al. (2004); Madrid andMancho (2009).
The approach taken in this article is that of (Madrid andMan-
cho, 2009), which is based on the functionM defined as fol-
lows. Let (φ(t),µ(t)) denote a trajectory of the system (6)–
(7). For all initial conditions (φ∗,µ∗) in an open domain B
of the ocean surface, at a given time t∗, consider the function
M(φ∗,µ∗,t∗)τ :B · t → R defined by,

M =
� t∗+τ

t∗−τ

��
dφ(t)

dt

�2
+

�
dµ(t)

dt

�2
dt, (9)

For an initial condition (φ∗,µ∗) at t∗, the function M mea-
sures the length of the curve outlined on the plane (φ,µ) by
a trajectory from t∗ −τ to t∗ +τ .
We discuss in more detail the numerical evaluation of M

as defined in Eq. (9). Trajectories (φ(t),µ(t)) of the system
(6)–(7) are obtained numerically, and thus represented by
a finite number of points, L. A discrete version of Eq. (9) is:

M =
L−1�

j=1




� pf

pi

��
dφj (p)

dp

�2
+

�
dµj (p)

dp

�2
dp



, (10)

where the functions φj (p) and µj (p) represent a curve in-
terpolation parametrized by p, and the integral
� pf

pi

��
dφj (p)

dp

�2
+

�
dµj (p)

dp

�2
dp (11)

is computed numerically. Following the methodology de-
scribed in (Madrid and Mancho, 2009) we have used the in-
terpolation method used by Dritschel (1989) in the context

www.nonlin-processes-geophys.net/17/103/2010/ Nonlin. Processes Geophys., 17, 103–111, 2010
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Fig. 16. Almost-invariant sets and parts of the LCS overlaid (here boxes Bi with max{δτ (Bi, 0), δ̄τ (Bi, 0)} ≥ 0.85), corresponding to segments of invariant manifolds.
(a) Optimal partition into two almost-invariant sets at c = 0 using the second eigenvector of R̃n for the reduced covering (n = 84204). (b) Partition into two almost-
invariant sets using the threshold c = 0 in v2

n,1(0) of Rn,1(0) for the full covering (n = 131072).

global maximum in the thresholding approach (i.e. the egg-shaped
regions in Fig. 13(a)). We repeat this step and remove the eight
regular islands circling the central regular regions (see Fig. 13(c)).
As a result we arrive at a reduced covering consisting of n = 84204
boxes. Fixing t = 0 for the remainder of this section, we obtain the
matrix R̃n for this reduced covering by restricting the full matrix
Rn,1(0) to the relevant entries.

Using the second eigenvector of R̃n, n = 84204, we obtain
two almost-invariant sets corresponding to the global maximum
in the respective thresholding curve at c = 0 (see Fig. 15 (b)).
The resulting partition into two almost-invariant sets is shown in
Fig. 16(a).

Extending this partition to the full box covering we arrive at the
same partition as if we considered a partition based on the c = 0
threshold in the second eigenvector of Rn for the full problem (n =
131072). That partition is shown in Fig. 16(b). It is characterised by
ρ(A−,+) = 0.9903,µ(A−,+) = 0.5,which is a clear localmaximum
in the original thresholding curve (see Fig. 15(a)). In the following
we return to the full domain.

We can now look at the properties of the partition for c = 0.
Its boundaries do not exactly match the invariant manifolds for
x1(0) and x2(0) but appear to cut just through the centres of the
primary lobes. We also performed identical calculations at times
t = 0.2, 0.5, and 0.8 and find that for these t , the partition
boundaries also cut through the centres of the lobe positions at
these times.

To further illuminate this result, let us consider the dynamics
of (32) as an autonomous flow on the time-expanded space
(x, y, t) ∈ [0, 2] × [0, 1] × S1. In the time-expanded space, the
surfaces W (1,s)

exp := {(Ws(x1(t)), t), 0 ≤ t < 1} and W (2,u)
exp :=

{(Wu(x2(t)), t), 0 ≤ t < 1} are invariant manifolds and thus
represent impenetrable barriers to the autonomous flow on
[0, 2] × [0, 1] × S1. As the Poincaré map for t = 0 shows a chaotic
regime, it is clearly impossible to form a non-invariant set with
boundary comprised solely of portions of the surfaces W (1,s)

exp and
W (2,u)

exp . Such a set would necessarily be invariant, contradicting
the chaotic regime and the observed transport between the left
and right of the rectangle. Our transfer operator approach instead
identifies a pair of almost-invariant sets whose common boundary
is not comprised of invariant manifolds. The common boundary is
thus a large ‘‘exit boundary’’ that is aligned to the dynamics in such
a way that the transfer of mass through the exit boundary is very
small.

Let us observe how the two sets in Fig. 16 interact over the
boundary: first we consider the images of the boundary box centre
points (black) under one iteration of the Poincaré map confirming
that the boundary curve is nearly invariant (Fig. 17(a)–(b)). As a
second method of visualisation we use our transition matrices Pn

and P̂n. We define row vectors u, w ∈ Rn (n = 131072) and set
u0
i := 1, w0

i := 1 if Bi ⊂ A+ (i.e. initialise a uniform density in
the light set) and compute uk := u0Pk

n and wk := w0P̂k
n .

12 The
non-zero entries of uk correspond to boxes that contain terminal
points from a k-fold propagation of the set A−

c by theMarkov chain
governed by Pn, likewise for wk and P̂n. u1 and w1 are shown in
Fig. 17(c)–(d) (colouring from0 (dark) to 1 (light)),where for clarity
we also overlaid the boundary between the two almost-invariant
sets. Obviously there is – as expected and observed – hardly any
transport between the two sets.

Under further iteration we observe that uk converges towards
the unstable manifold of x2(0) and wk towards the stable manifold
of x1(0), see Fig. 18.

The existence of a heteroclinic tangle formed by the intersec-
tions of the stable and unstable manifolds (see Fig. 13(b)) suggests
that transport between these particular almost-invariant sets can
be explained in terms of lobe dynamics: computing uk

lobe based
on this new constructed partition we can clearly follow the lobe
mechanism (see Fig. 19, colouring from 0 (dark) to 1 (light)). Ex-
actly one lobe volume is exchanged between the two sets for each
iterate of the Poincaré returnmap, see also [13] for a related study.

While one can easily construct amanifold based partition in the
spirit of lobe dynamics as shown in Fig. 19(a) (see also [13]), it is not
possible to consistently extend this partition to the time-expanded
domain in away that the commonboundary (i) varies continuously
in space from time slice to time slice, and (ii) is comprised wholly
of unstable/stable manifolds in each time slice. If such a partition
existed, it would contradict the observed transport between the
left and right halves of the 2Ddomain. Any separating surface in the
time-expanded domainmust therefore contain an ‘‘exit boundary’’
that allows the transport of exactly one lobe volume over one
period. Any suchpart-manifold based partition with leakage of
one lobe volume yields ρ(A−) = 0.9899, µ(A−) = 0.5024 and
ρ(A+) = 0.9898,µ(A+) = 0.4976. The invariance ratios are not as
high as for the original partition based on the second eigenvector
v2
n of Rn. Thus such an ‘‘exit boundary’’, while possibly relatively

small in area, is less well adapted to the dynamics and incurs more
mass transport in one period than the transport across the larger
exit boundary identified by our transfer operator approach.

In summary, our heuristic ansatz using the second eigenvector
v2
n of Rn appears to find a partition that is close to the one based

on a primarymanifold intersection. However, the partition defined
by v2

n experiences less leakage. It achieves this by running the
boundary directly through the middle of the lobes, reducing the
exchange of particles by around 5% compared to the geometrically
based partition.

12 Note that this quantity is obtained iteratively by matrix multiplications.
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Figure 14: Flow topology due to combined ACEO and axial forcing (β = 0.1): (a) 3D

streamlines delineating multiple families of tori (red/magenta) and disintegrating tori

(black/blue/cyan); (b) Poincaré sections at x = 0.25 (left) and x = 0.75 (right); (c)

Poincaré section (x = 0.25) including additional 3D streamlines.

present numerical approach regarding resolution of fundamental topological properties.

The Hamiltonian structure of the equations of motion leans solely on the continuity

constraint ∇ · u = 0 (Bajer 1994). Hence, its accurate approximation is of fundamental

importance in that this largely determines the extent to which the Hamiltonian dynamics

– and the associated Lagrangian flow structure – can be reliably predicted by numerical

simulations. Errors may emanate from the spatial discretisation of the conservation

laws (here FVM), the spatial interpolation of the flow field onto arbitrary positions

and the time-marching scheme for the kinematic equation (6). Performance studies

of standard FVM solvers against highly-accurate dedicated spectral solvers exposed

limited approximation of continuity by the FVM solver as primary cause for non-

Hamiltonian (and thus non-physical) dynamics (Speetjens & Clercx 2005). Departures
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