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NL3238 The Standard Map

Derivation

The standard or Taylor-Chirikov map is a family of area-preserving maps, z′ = f(z)

with z = (x, y), given by

x′ = x + y − k

2π
sin(2πx)

y′ = y − k

2π
sin(2πx) . (1)

Here x is a periodic configuration variable, and is usually computed “mod 1,” and y ∈ R
is the momentum variable. The map has a single parameter k which represents the

strength of the nonlinear kick. This map was first proposed by Bryan Taylor and then

independently obtained by Boris Chirikov to describe the dynamics of magnetic field

lines. The standard map and Hénon’s area-preserving quadratic map provide extensively

studied paradigms for chaotic Hamiltonian dynamics.

The standard map is an exact symplectic map of the cylinder. Since x′(x, y) is

a monotone function of y for each x, it is also an example of a monotone twist map

(see Aubry–Mather theory). Every twist map has a Lagrangian generating function; the

standard map is generated by F (x, x′) = 1
2
(x′−x)2 + k

4π2 cos(2πx), so that y = −∂F/∂x

and y′ = ∂F/∂x′. The map can also be obtained from a discrete Lagrangian variational

principle: define the discrete action for any configuration sequence . . . , xt−1, xt, xt+1, . . .

as the formal sum

A[. . . , xt−1, xt, xt+1, . . .] =
∑

t

F (xt, xt+1) . (2)

Then an orbit is a sequence which is a critical point of A; this gives the discrete Euler-

Lagrange equation

xt+1 − 2xt + xt−1 = − k

2π
sin(2πxt) . (3)

This second difference equation is equivalent to (1) upon defining yt = xt − xt−1.

The standard map is an exact or approximate description of many physical systems.

One example is the “kicked rotor:” consider a rigid body with moment of inertia I that is

free to rotate in a horizontal plane about its center of mass. Suppose that an impulsive

torque Γ(θ) = −A sin(θ) is applied to the rotor at times nT, n ∈ Z. Let (θj, Lj) be

angular position and angular momentum at time jT−ε for ε → 0+. At time T later these

become (θj+1, Lj+1) = (θj + T
I
Lj+1, Lj + Γ(θj)). Scaling these variables appropriately

gives (1).

The standard map also describes the relativistic cyclotron, and is the equilibrium

condition for a chain of masses connected by harmonic springs in a periodic potential—

the Frenkel-Kontorova model. Similar maps include Chirikov’s separatrix map (valid

near the separatrix of a resonance) the Kepler map (describing the motion of comets

under the influence of Jupiter as well as a classical hydrogen atom in a microwave field),
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and the Fermi map (for a ball bouncing between oscillating walls) Lichtenberg and

Lieberman (1992). The higher dimensional version is the Froeshlé map (see Symplectic

maps).

Symmetries

The standard map f has a number of symmetries which lead to special dynamical

behavior. To see these, it is convenient to lift the map from the cylinder to the plane

by extending the angle variable x to R (see Circle maps.

Let Tm,n(x, y) = (x + m, y + n) be the translation by an integer vector (m,n).

Since f is periodic, its lift has a discrete translation symmetry f ◦ Tm,0 = Tm,0 ◦ f .

More unusually, the standard map also has a discrete vertical translation symmetry

f ◦ T0,n = Tn,n ◦ f(x, y). Identifying orbits equivalent under these symmetries implies

that standard map can be thought of as acting on the torus T = {−1
2
≤ x, y < 1

2
}.

The standard map also commutes with the reflection S(x, y) = (−x,−y). This can

be used to identify the lower half plane with the upper one, and to restrict the map to

the space S = {(x, y) : −1
2
≤ x < 1

2
, 0 ≤ y ≤ 1

2
} identifying (−1

2
, y) ≡ (1

2
, y) and each

half of the upper and lower boundaries: (x, 0) ≡ (−x, 0), (x, 1
2
) ≡ (−x, 1

2
). The map on

the two sphere S is singular at the corners (±1
2
, 0) and (±1

2
, 1

2
).

The standard map is also reversible: it is conjugate to its inverse RfR−1 = f−1

(Lamb and Roberts, 1998). One reversor is R1(x, y) = (−x, y − k
2π

sin(2πx)); this

generates a family of reversors R = fn ◦ R1. These reversors are involutions, R2 = id,

thus f can be written as the composition of two involutions f = (f ◦ R) ◦ R. Finally,

the composition of a symmetry and a reversor is also a reversor, so that, for example

R2 = SR is also a reversor.

Symmetric orbits are invariant under a symmetry or a reversor. This is particularly

interesting since symmetric orbits must have points on the fixed sets of the reversor,

Fix(R) = {z : z = R(z)} or on Fix(fR). Since these fixed sets are curves, symmetric

orbits particularly easy to find. Rimmer showed that the bifurcations of symmetric

orbits are special; for example, they undergo pitchfork bifurcations (see Bifurcations.

Dynamics

When k = 0, the dynamics of the standard map is integrable: the momentum y is an

invariant. On each invariant circle C0
ω = {(x, y) : y = ω}, the angle after t iterates

is given by xt = x0 + ωt mod 1, thus the dynamics is that of the constant rotation,

Rω(θ) = θ +ω, on the circle with rotation number ω. When ω is rational every orbit on

C0
ω is periodic; otherwise they are quasiperiodic and densely cover the circle.

When |k| << 1, Moser’s version of the KAM theorem implies that most of these

invariant circles persist; that is, there is a rotational invariant circle Cω on which the

dynamics is conjugate to the rotation Rω (see Hamiltonian dynamics). KAM theory

applies to circles with Diophantine rotation number, i.e., ω ∈ {Ω : |nΩ−m| > c
nτ ∀m,n ∈

Z , n 6= 0} for some τ ≥ 1 and c > 0. This excludes, of course, all of the rational rotation
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numbers as well as intervals about each rational, but still leaves a positive measure set.

While it is difficult to obtain reasonable estimates for the interval of k for which all

Diophantine circles (with given c and τ) persist, in 1985 Herman showed analytically

that there is at least one invariant circle when |k| ≤ 0.029, and de la Llave and Rana

(1990) used a computer assisted proof to extend this result up to 0.91.

Figure 1. Dynamics of the standard map for k = 0.6 on the torus T . Each of the
blue curves is formed from many iterates on a rotational invariant circle like those
predicted by the KAM theorem. The green orbits are secondary and tertiary circles
arising from resonances. The gold orbits are chaotic trajectories near the stable and
unstable manifolds of the resonances.

Some of the periodic orbits on the rational circles C0
m/n also persist for nonzero

k. Indeed the Poincaré-Birkhoff theorem implies that there are at least two period n

orbits (with positive and negative Poincaré indices, respectively). Aubry–Mather theory

implies that orbits with rotation number m/n can be found variationally; one is a global

minimum of the action (2), and the other is a minimax point (a saddle of A with one

downward direction). For example when k > 0, (1
2
, 0) is a minimizing fixed point, and

(0, 0) is a minimax fixed point. The reversibility of the standard map implies that there

must be symmetric periodic orbits for each ω = m/n as well. Indeed it is observed that

the minimax periodic orbits always have a point on the line Fix(R) = {y = 0}, the

“dominant” symmetry line.

The minimax orbits are elliptic when k is small enough. A convenient measure of
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stability of a period-n orbit is Greene’s residue

R =
1

4
(2− Tr(M)) , M =

n−1∏
t=0

Df(zt) .

An orbit is elliptic when 0 < R < 1. For example, the fixed point (0, 0) has residue k/4.

Perturbation theory shows that the residues of the minimizing and minimax orbits are

O(kn).

Each nondegenerate minimum of the action (2) is a hyperbolic orbit and has

unstable and stable manifolds. For each minimizing m/n orbit, these intersect and

enclose the minimax orbit, forming an island chain or resonance. A number of these

chains are visible in Fig. [1]. The intersection of the manifolds is transverse, though the

angle between them is exponentially small in k (Gelfreich and Lazutkin, 2001).

When stable and unstable manifolds intersect transversely, some iterate of the map

has a Smale horseshoe. This implies that there is, at least, a cantor set of chaotic

orbits. Umberger and Farmer (1985) showed numerically that there is a fat fractal set

on which the dynamics has a positive Lyapunov exponent. The proof of this statement

is still illusive. The regions occupied by chaotic orbits appear to grow in measure as

k increases. Numerically it appears that a single initial condition densely covers each

“zone of instability” a chaotic zone bounded by invariant circles, see Fig. [2]. There are

also many elliptic periodic orbits that are created for nonzero k. For example, the (0, 0)

fixed point undergoes a period doubling bifurcation at k = 4 creating a period two orbit.

More generally when the eigenvalues of any elliptic period-n orbit are λ± = e±2πiω then

new orbits are born that encircle the original orbit and have relative rotation number

ω. When ω = m′/n′, these correspond to a chain of nn′ islands. As Birkhoff realized,

the newly created elliptic orbit also will undergo similar bifurcations, so that the phase

space shows a structure of islands-around-islands, ad infinitum. This structure can even

exhibit self-similarity (Meiss, 1992) just like the Feigenbaum period doubling sequence

for dissipative systems.

The last invariant circle

In 1968 John Greene began studying the destruction of invariant circles in the standard

map. He showed that sequences of periodic orbits, namely the minimizing and minimax

m/n orbits, whose rotation numbers converge on a given irrational, can be used to

determine the existence of a circle with that frequency. Suppose that ω has a continued

fraction expansion [a0, a1, . . .] , aj ∈ Z+, and let
mj

nj
= [a0, a1, . . . , aj] be the jth

convergent of ω. Greene conjectured that when the residues of these orbits Rj → 0, as

n → ∞ then the invariant circle Cω exists— MacKay (1992) gave a proof of much of

this.

For the standard map it appears that each rotational invariant circle exists only up

to a critical value, k = kcr(ω); this graph was called the “fractal diagram” by Schmidt

and Bialek in 1982. The critical k vanishes at every rational and appears to have local

maxima for each noble irrational ω. Percival called a number noble if its continued



NL3238 The Standard Map 5

Figure 2. Phase space of the standard map for k = 2.0. At this value of k there
are no rotational invariant circles. The gold region is filled by a single trajectory with
1.5(10)6 iterates. It appears to densely cover most of phase space, though there are
still a number of secondary and tertiary islands visible. The red and blue island chains
encircle the fixed point with rotation number 1/5; that there are two such chains is
due to the reflection symmetry S.

fraction expansion has a tail that is eventually all ones. By this criterion the “most

irrational” number is the golden mean γ = 1+
√

5
2

= [1, 1, 1, . . .]. Indeed for the standard

map, Greene discovered that the invariant circles with rotation numbers γ ±m , m ∈ Z
appear to be the last circles destroyed (all such circles are destroyed simultaneously

due the symmetries). Numerically it is known that the golden circle is destroyed at

kcr(γ) ≈ 0.971635406.

This value is most efficiently computed by renormalization theory (MacKay, 1993).

At the critical parameter for the destruction of a noble invariant circle the phase space

exhibits a self-similar structure, see Fig. [3]. The geometric scaling of this self-similarity

can be used to compute kcr from the residues of the mj/nj orbits. This is more

accurate than iteration methods–pioneered by Chirikov–which rely on finding an orbit

that crosses the region containing the circle, and frequency methods—developed by

Laskar—which rely on the irregularity of the numerically computed rotation number.

While none of these methods prove that kcr corresponds to the last invariant circle,

“converse KAM theory ” leads to a computer proof that there are no rotational circles

for k > 63/64 (MacKay and Percival, 1985). This is based on Birkhoff’s theorem that

every rotational invariant circle is a Lipschitz graph (Meiss, 1992).
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Figure 3. Dynamics of the standard map on the sphere S for k = 0.971635406, where
the golden circle (purple) is critical. Also shown are 1.5(10)6 iterates of two chaotic
trajectories (light blue and light green), the stable (blue) and unstable (red) manifolds
of the (m,n) = (0, 1) , (1, 2), and (1.3) orbits, and a number of orbits trapped in these
island chains as well as the (2, 5) and (3, 8) chains. Finally there are two noble cantori
shown (brown), with rotation numbers (1 + γ)/(3 + 4γ) and (1 + 2γ)/(2 + 5γ)

Transport

Transport theory studies the motion of ensembles of trajectories from one region of

phase space to another. When there are invariant circles separating the regions, then

there is no transport. A Birkhoff “zone of instability” is an annular region bounded

by, but otherwise not containing any, rotational invariant circles. Birkhoff showed there

are orbits that traverse each zone of instability, and Mather (1991) extended this to

show that there are orbits future and past asymptotic to the upper and lower bounding

rotational invariant circles, respectively.

Aubry–Mather theory implies that for each irrational rotation number there is a

minimizing trajectory that is dense on a circle or a cantor set. Percival proposed calling

the latter sets “cantori.” Thus for k > 63/64, every rotational invariant circle has

become a cantorus, and vertical transport between any two momentum levels occurs.

The rate of transport is locally governed by the flux, the area that crosses a closed loop

upon iteration. The flux across a cantorus or a separatrix is given by Mather’s ∆W , the

difference in action between the corresponding minimax and minimizing orbits (MacKay

et al., 1984). Renormalization theory shows that the flux through a noble cantorus goes
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to zero as (k − kcr)
3.01; this can be very small well beyond kcr. For example in Fig. [3],

the blue chaotic trajectory is bounded below by a low flux cantorus even for tens of

millions of iterates. Geometrically the flux is the area contained in a “lobe” bounded

by pieces of stable and unstable manifolds; all transport occurs through lobes in two

dimensional maps (Wiggins, 1992); unfortunately the higher-dimensional generalization

is not clear.

James D. Meiss

See also Aubry–Mather theory; Cat maps; Chaotic Dynamics; Circle maps; Ergodic

theory; Fermi Map; Hénon map; Hamiltonian dynamics; Horseshoes and hyperbolicity;

Lyapunov exponents; Maps; Measures; Melnikov method; Phase space; Symplectic

maps.
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