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First used mathematically by Hermann Weyl, the term symplectic arises
from a Greek word that means “twining or plaiting together.” This is apt,
as symplectic systems always involve a pair of n-dimensional variables, the
configuration q, and momentum p, which are intertwined by the symplectic
two form

ω = dp ∧ dq . (1)

This antisymmetric, bilinear form acts on a pair of tangent vectors and com-
putes the sum of the areas of the parallelograms formed by projecting the
vectors onto the planes defined by each canonical pair (qi, pi), i = 1, . . . n,
giving

ω(v, w) =
n∑

i=1

(vpiwqi − vqiwpi) .

A diffeomorphism f : X → X on a 2n-dimensional manifold X with
coordinates z = (q, p) is symplectic if it preserves the symplectic form, i.e.,
if f ∗ω = ω (Arnold, 1989; McDuff and Salamon, 1995). If we write z′ =
(q′, p′) = f(q, p), the symplectic condition becomes

Df tJDf = J, where J =

(
0 I
−I 0

)
. (2)

Here Dfij = ∂fi/∂zj is the Jacobian matrix of f , J is the Poisson matrix,
and I is the n × n identity matrix. Equivalently, Stokes’ theorem can be
used to show that the loop action, A[γ] =

∮
γ pdq, is preserved by f for any

contractible loop γ on X. If f preserves the loop action for all loops, even
those that are not contractible, then it is exact symplectic.

When n = 1, the symplectic condition is equivalent to det(Df) = 1,
so that the map is area– and orientation–preserving. Examples include the
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much studied standard map and the area–preserving Hénon quadratic map
f(q, p) = (p+a−q2,−q) (Meiss, 1992). When n > 1, the symplectic condition
implies volume and orientation preservation, but as we will see, is stronger
than this. A generalization of the standard map to higher dimensions is the
map

q′ = q + p−∇V (q)

p′ = p−∇V (q) , (3)

where q ∈ Tn is an angle, p ∈ Rn is its conjugate momentum, and V (q) is
a periodic potential. This map is exact symplectic for any V . Beginning in
1972, Claude Froeshlé studied case n = 2 and V (q) = a cos q1 + b cos q2 +
c cos(q1 + q2). Similarly, the natural generalization of the Hénon map is the
quadratic symplectic map whose normal form has been given by (Moser,
1994).

Applications. Symplectic maps arise from Hamiltonian dynamics, be-
cause these preserve the loop action. Thus, for example, the time t map of
any Hamiltonian flow is symplectic, as is a Poincaré return map defined on
a cross section. It is often easier to study the Poincaré map instead of the
flow because the dimension is reduced. Even though explicit construction of
the map is typically impossible, approximation methods often suffice.

For example, the time T map of a periodically forced system H(q, p, t) =
H(q, p, t+T ), such as a pendulum with an oscillating support, is symplectic.
An extreme example is H = 1

2p
2 − k cos(q)δ̄(t) where δ̄ is the periodic Dirac

delta function; the corresponding map is the standard map.
As Birkhoff showed, an ideal billiard (a free particle moving inside a

rigid, convex table) is naturally written as a symplectic map. The canonical
coordinates are the position and the tangential momentum at a collision
point. Symplectic maps also arise naturally in systems where the forces are
localized in time or space. For example a circular particle accelerator or
storage ring has a sequence of accelerating and focusing elements that can
be modeled by a composition of symplectic maps, providing the damping
effects of radiation can be neglected (Forest, 1998).

Area-preserving maps also arise in the study of the motion of Lagrangian
tracers in incompressible fluids or of particles tightly gyrating around mag-
netic field lines. In particular, when one component of the field is particularly
strong, such as in the plasma device called a tokamak, the transverse dynam-
ics reduces to an area–preserving map.
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Autonomous canonical transformations are symplectic maps. For exam-
ple, if F (q, q′) is a generating function for a canonical transformation then it
generates a symplectic map. In particular, the Froeshlé map (3) is generated
by F (q, q′) = 1

2(q
′ − q)2 − V (q).

An algorithm that respects the symplectic nature of Hamiltonian dy-
namics is called a symplectic integrator. A first order symplectic algorithm
with time step ∆t for the Hamiltonian H(q, p) is generated by F (q, p′) =
qp′ + ∆tH(q, p′) where dF = q′dp′ + pdq, giving the map

q′ = q + ∆t
∂H

∂p′
(q, p′) , p′ = p−∆t

∂H

∂q
(q, p′) . (4)

Note that the map is implicit since H is evaluated at p′. However, for the case
that H = K(p) + V (q) this becomes a leap-frog Euler scheme, an example
of a “splitting” method. Symplectic versions of many standard algorithms—
such as Runge-Kutta—can be obtained (Marsden et al., 1996). While there
is still some controversy on the utility of symplectic methods versus methods
that, for example, conserve energy and other invariants or have variable
time-stepping, they are superior for stability properties since they respect
the spectral properties of the symplectic group.

The symplectic group. The stability of an orbit {...zt, zt+1, ...} where
zt+1 = f(zt) is governed by the Jacobian matrix of f evaluated along the
orbit, M =

∏
t Df(zt). When f is symplectic, M obeys (2), M tJM = J .

The set of all such 2n× 2n matrices form the symplectic group Sp(2n). This
group is an n(2n + 1)-dimensional Lie group, whose Lie Algebra is the set
of Hamiltonian matrices—matrices of the form JS where S is symmetric.
Thus every near-identity symplectic matrix can be obtained as the exponen-
tial of a Hamiltonian matrix and corresponds to the time t-map of a linear
Hamiltonian flow. There are symplectic matrices, however, that are not the
exponentials of Hamiltonian matrices, for example

(
−1 1
0 −1

)
.

As a manifold, the symplectic group has a single nontrivial loop (its funda-
mental group is the integers). The winding number of a loop in the symplectic
group is called the Maslov index (McDuff and Salamon, 1995); it is especially
important for semi-classical quantization.
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If M is a symplectic matrix and λ is an eigenvalue of M with multiplicity
k, then so is λ−1. Moreover det(M) = 1, so M is volume and orientation
preserving. A consequence of this spectral theorem is that orbits of a sym-
plectic map cannot be asymptotically stable. There are four basic stability
types for symplectic maps: an eigenvalue pair (λ, λ−1) is

• hyperbolic, if λ is real and larger than one;

• hyperbolic with reflection, if λ is real and less than minus one;

• elliptic, if λ = e2πiω has magnitude one.

• part of a Krein quartet if λ is complex and has magnitude different from
one, for then there is a quartet of related eigenvalues (λ, λ−1, λ̄, λ̄−1).

Thus a periodic orbit can be linearly stable only when all of its eigenvalue
pairs are elliptic. For this case the linearized motion corresponds to rotation
with n rotation numbers ωi.

Symplectic geometry. Every symplectic map is volume and orienta-
tion preserving, but the group Symp(X) of symplectic diffeomorphisms on
X is significantly smaller than that of the volume-preserving ones. This was
first shown in 1985 by Gromov in his celebrated “nonsqueezing” (or sym-
plectic camel) theorem. Let B(r) be the closed ball of radius r in R2n and
C1(R) = {(q, p) : q2

1 +p2
1 ≤ R2} be a cylinder of radius R whose circular cross

section is a symplectic plane. Since the volume of C1 is infinite, it is easy to
construct a volume-preserving map that takes B(r) into C1(R) regardless of
their radii. What Gromov showed is that it is impossible to do this symplec-
tically whenever r > R. This is one example of a symplectic capacity, and is
leading to a theory of symplectic topology (McDuff and Salamon, 1995).

Another focus of this theory is to characterize the number of fixed points
of a symplectic map, i.e., to generalize the classical Poincaré-Birkhoff theorem
for area–preserving maps on an annulus. Arnold conjectured in the 1960s
that any Hamiltonian diffeomorphism on a compact manifold X must have
at least as many fixed points as a function on X must have critical points. A
Hamiltonian map is a symplectic map that can be written as a composition
of maps of the form (4). Conley and Zender proved this in 1985 for the case
that X is the 2n-torus: f must have at least 2n + 1 fixed points (at least 22n

if they are all nondegenerate) (Golé, 2001).
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Dynamics. In general the dynamics of a symplectic map consists of a
complicated mixture of regular and chaotic motion (Meiss, 1992). Numerical
studies indicate that the chaotic orbits have positive Lyapunov exponents
and fill sets of positive measure that are fractal in nature. Regular orbits
include periodic and quasiperiodic orbits. The latter densely cover invariant
tori whose dimensions range from 1 to n. Near elliptic periodic orbits the
phase space is foliated by a positive-measure cantor set of n-dimensional
invariant tori. There are chaotic regions in the resonant gaps between the
tori, but the chaos becomes exponentially slow and exponentially small close
to the periodic orbit. Some of these observations, but not all, can be proved.

The simplest case is that of an integrable symplectic map, which can be
written in Birkhoff normal form: f(θ, J) = (θ +∇S(J), J). Here (θ, J) are
angle-action coordinates (each n dimensional) and Ω = ∇S is the rotation
vector. Orbits for this system lie on invariant tori; thus the structure is
identical to that for integrable Hamiltonian systems.

The Birkhoff normal form is also an asymptotically valid description of
the dynamics in the neighborhood of a nonresonant elliptic fixed point, one
for which m · Ω(0) (= 0 for any integer vector m. However, the series for
the normal form is not generally convergent. Nevertheless, KAM theory
implies that tori with Diophantine rotation vectors do exist near enough to
the elliptic point providing the map is more than C3 and that the twist,
det DΩ(0), is nonzero. Each of these tori is also a Lagrangian submanifold
(an n-dimensional surface on which the restriction of the symplectic form
(1) vanishes). The relative measure of these tori approaches one at the fixed
point.

Nevertheless, the stability of a generic, elliptic fixed point is an open
question. Arnold showed by example in 1963 that lower-dimensional tori can
have unstable manifolds that intersect the stable manifolds of nearby tori
and thereby allow nearby trajectories to drift “around” the n-dimensional
tori; this phenomenon is called Arnold diffusion (Lochak, 1993). When the
map is analytic, the intersection angles become exponentially small in the
neighborhood of the fixed point, and the existence of connections becomes a
problem in perturbation theory beyond all orders.

Aubry–Mather theory gives a nonperturbative generalization of KAM
theory for the case of monotone twist maps when n = 1. These are sym-
plectic diffeomorphisms on the cylinder S×R (or on the annulus) such that
∂q′/∂p ≥ c > 0. For this case Aubry–Mather theory implies that there exist
orbits for all rotation numbers ω. When ω is irrational these orbits lie on a
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Lipschitz graph, p = P (q), and their iterates are ordered on the graph just
as the iterates of the uniform rotation by ω. They are either dense on an
invariant circle or an invariant cantor set (called a cantorus when discovered
by Percival). These orbits are found using a Lagrangian variational principle,
and turn out be global minima of the action.

Aubry–Mather theory can be partially generalized to higher dimensions,
for example to the case of rational rotation vectors, where the orbit is periodic
(Golé, 2001). Moreover, Mather (1991) has shown that action-minimizing
invariant measures exist for each rotation vector, though they are not neces-
sarily dynamically minimal. The existence of invariant cantor sets with any
incommensurate rotation vector can also be proven for symplectic maps near
an anti-integrable limit (MacKay and Meiss, 1992). Finally, converse KAM
theory, which gives parameter domains where there are no invariant circles
for the standard map, implies that, for example, the Froeshlé map has no
Lagrangian invariant tori outside a closed ball in the space of its parameters
(a, b, c) (MacKay et al., 1989).

See also Aubry–Mather theory; Cat maps; Chaotic Dynamics; Conserva-
tion laws and constants of motion; Ergodic theory; Fermi Map; Hamiltonian
dynamics; Hénon map; Horseshoes and hyperbolicity; Lyapunov exponents;
Maps; Measures; Melnikov method; Phase space; Standard Map.
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