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Transport in Transitory Dynamical Systems∗

B. A. Mosovsky† and J. D. Meiss†

Abstract. We introduce the concept of a “transitory” dynamical system—one whose time-dependence is con-
fined to a compact interval—and show how to quantify transport between two-dimensional La-
grangian coherent structures for the Hamiltonian case. This requires knowing only the “action” of
relevant heteroclinic orbits at the intersection of invariant manifolds of “forward” and “backward”
hyperbolic orbits. These manifolds can be easily computed by leveraging the autonomous nature
of the vector fields on either side of the time-dependent transition. As illustrative examples we
consider a two-dimensional fluid flow in a rotating double-gyre configuration and a simple one-and-
a-half degree of freedom model of a resonant particle accelerator. We compare our results to those
obtained using finite-time Lyapunov exponents and to adiabatic theory, discussing the benefits and
limitations of each method.
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1. Transitory systems. Invariant manifolds have long been recognized as important struc-
tures that govern global behavior in dynamical systems. Hyperbolic manifolds in particular,
by their very definition, relate information about the exponential contraction and expansion of
nearby trajectories within the flow and so play crucial roles in the dynamics of such systems,
lending insight into the mechanisms by which chaos, mixing, transport, and other complex
global phenomena occur. Transverse intersections of stable and unstable manifolds give rise
to lobes defining of packets of trajectories that exit or enter coherent structures or resonance
zones bounded by pieces of the manifolds. Thus, tracking these lobes provides a means for
quantifying flux between coherent structures in the flow.

The treatment of mixing and transport for aperiodically time-dependent flows, however,
requires the development of new methods because the concept of invariance may be too strong
and may not even lead to physically relevant structures. One popular method, the finite-
time Lyapunov exponent (FTLE), has been used extensively in recent years to compute local
approximations of invariant manifolds and identify structures that remain coherent in the
Lagrangian sense on some finite time interval [21, 52, 30]. Another idea uses a nonautonomous
analogue of hyperbolic orbits, called a distinguished hyperbolic trajectory [44, 47, 23, 24], and
a third technique identifies approximately invariant regions as eigenfunctions of the Perron–
Frobenius operator [16].
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36 B. A. MOSOVSKY AND J. D. MEISS

While these Lagrangian frameworks for identifying coherent structures in nonstationary
systems have seen broad application, using them to accurately quantify transport and mixing
over finite timescales remains a difficult task. A few recent studies have managed to give
numerical estimates for finite-time transport and mixing within aperiodic time-dependent
flows [47, 11, 8, 43]. In addition, the instantaneous flux across a “gate surface” can also be
estimated using only local Eulerian information [20, 4], and the results have been applied to
geophysical flows defined both analytically and by discrete data sets. One such application is
the investigation of eddy-jet interactions, in which the strength of the interaction is quantified
by the amount of fluid entrained by or ejected from the eddy [46, 19]. However, the accuracy
of these methods is tied to the rate of change of the Eulerian velocity field, and, moreover, the
instantaneous flux through a surface does not provide an estimate for the finite-time transport
between two disjoint coherent structures.

Since the mere identification of Lagrangian coherent structures (LCSs) in fully aperi-
odically time-dependent systems is a challenging problem itself, we study here a simpler
problem—the quantification of finite-time transport between coherent structures in two-dimen-
sional systems undergoing a transition between two steady states. Our methods are La-
grangian, in the sense that they rely on knowing certain key trajectories, and as such they
allow us to compute the transport between two bounded coherent structures within the flow,
as opposed to knowing only the flux across a single gate surface. Even though we restrict the
time-dependence to a compact interval, this problem provides, we believe, some insight into
the more general aperiodic case.

The systems of interest to us here are stationary in the limits t→ ±∞; these were called
asymptotically autonomous systems by Markus [41]. However, we will assume that the system
is nonstationary only on a compact interval and will refer to these systems as transitory.

Definition 1.1 (transitory dynamical system). A transitory dynamical system of transition
time τ is one that is autonomous except on some compact interval of length τ , say, [τp, τf ],
with τf − τp = τ . Thus on a phase space M , a transitory ODE has the form

(1.1) ẋ = V (x, t), V (x, t) =

{
P (x), t < τp,
F (x), t > τf ,

where P : M → TM is the past vector field, F : M → TM is the future vector field, and
V (x, t) is otherwise arbitrary on the transition interval [τp, τf ].

Though P and F are assumed autonomous, they could have arbitrarily complicated dy-
namics. The transition time τ ≡ τf − τp is, relative to the time scales of P and F , an
especially important parameter for (1.1), and, without loss of generality, we may set τp = 0
so that τf = τ .

It is not hard to envision many physical situations to which transitory dynamics would
pertain. For example, any dynamical system that depends upon some parameters, ẋ = V (x; p),
can be made transitory if the parameters become time-dependent, p → p(t), and are allowed
to switch from one state to another over a time interval of length τ . We will consider a simple
model of a particle accelerator in section 3.2 for which this is the case, but more realistic
models could also be used [14]. A similar physical system—also Hamiltonian—corresponds
to a point particle in a billiard whose boundary evolves over time; an example is an ellipse
with eccentricity that changes over a compact interval from one value to another (periodically
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oscillating boundaries have been studied in a number of cases, e.g., [31]). Ecological models
could also be transitory if the environment undergoes a shift (e.g., leading to a change in
carrying capacity); one could study the “transport” between basins of different equilibria
under such a shift. Another class of examples corresponds to the change in flow regimes for a
fluid in which there is an instability that grows and saturates. This could be due to external
forcing (e.g., Rayleigh–Bénard convection or Taylor–Couette flow), to a flow that is driven by
chemical reactions (e.g., Marangoni flow), or to an instability leading to eddy creation (e.g.,
for quasigeostrophic flows [47]). Finally, many models of fluid mixing could be studied in
transitory regimes; for example, laminar flow through a pipe with a finite number of bends
between two straight sections could be considered transitory [27, 3], and a fluid-filled cavity
[10, 32, 2] could be driven with a transitory mixing protocol.

For more general aperiodically time-dependent systems, infinite-time information cannot
be used to identify coherent structures: indeed, in many fluid mechanical and observational
applications, the behavior of the system is known only on a finite interval. This requires
alternate definitions of approximate invariant manifolds. These can be defined by extending
the vector field to an infinite-time domain; however, since the extension is not unique, neither
are the resulting manifolds [20, 51, 12, 54]. Nevertheless, if the time of definition is long
compared to the local expansion rates, this nonuniqueness results only in exponentially small
corrections. By contrast, for transitory systems, stationarity outside the transition interval
[0, τ ] implies the classical notions of stable and unstable invariant manifolds can be used—
see below. Thus, transitory systems provide an aperiodic, time-dependent setting for which
unique invariant manifolds exist. The advantages of using this asymptotic information will
become clear when contrasting our methods with those employing FTLE in sections 3.1 and
3.2. In any case, a more general vector field that is defined only on a finite interval, [0, τ ], say,
could be extended by adding autonomous past and future vector fields to give a transitory
vector field. Thus the relative unimportance of the form of the vector field’s extension, given
a long enough interval of definition, also applies to our case.

While we are not aware of other studies of transport for transitory systems, some aspects
of transport for asymptotically autonomous systems in which the forward and backward limits
are identical,

(1.2) lim
t→±∞V (x, t) = G(x),

have been considered by Wiggins and collaborators [40, 50]. A well-studied case corresponds
to the adiabatic limit, when τ is large compared to the dynamical time scales of P and F [29].
Indeed, when (1.1) is Hamiltonian and adiabatic, then the actions of the frozen system P (or
F ) should be approximately preserved. However, as is well known, adiabatic invariance breaks
down near separatrices of the frozen system [9, 45], and cases in which these separatrices sweep
through a large portion of the phase space during the transition are of most interest to us. As
was first noted by Elskens and Escande [15], when the time-dependence is periodic the entire
region swept by the separatrix becomes a “lobe” in the adiabatic limit. Transport properties
have been studied in this limit [25, 5, 26]; however, these researchers assume that the frozen
system has a parameter-dependent curve of hyperbolic equilibria, and this is typically not
true for (1.1). Moreover, we will not assume that τ is large.
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38 B. A. MOSOVSKY AND J. D. MEISS

In this paper we are interested in quantifying the transport between coherent structures
of the past and future vector fields P and F for two-dimensional systems of the form (1.1).
To define these, it is natural to consider hyperbolic orbits of P and F and their stable and
unstable manifolds since initial segments of these often define invariant or nearly invariant
structures such as resonance zones [39, 13, 34]. However, determining which structures of P
and F are relevant to the dynamics of the full nonautonomous vector field V requires special
attention.

It is natural to think of the dynamics of (1.1) as occurring on the extended phase space
M ×R. We will assume that V has a complete flow, ϕt1,t0 :M →M for any t0, t1 ∈ R, where
ϕt1,t0 maps a point from its position at t = t0 to its position at t = t1. Then every point
(x, t) ∈M × R has an orbit

γ(x, t0) ≡ {(ϕt1,t0(x), t1) : t1 ∈ R} ⊂M × R,

and such sets are invariant in the sense that for any τ ∈ R, γ(x, t) = γ(ϕτ,t(x), τ). Of course,
this notion of invariance is not restrictive: any subset S ⊂ M can be taken to be the time-τ
slice through an invariant set γ(S, τ) = {(x, t) : x ∈ ϕt,τ (S), t ∈ R}. More generally, the time-t
slice of any set N ∈M × R can be defined using the standard projection π :M × R →M by

(1.3) Nt ≡ π(N ∩ {(x, t) : x ∈M}) ⊂M.

Thus γt(S, t) = S.
If Λ is any invariant set of the past vector field P , then the set {(Λ, t) : t ≤ 0} ⊂ M × R

is a backward-invariant set in the extended phase space. For example, equilibria and periodic
orbits of P are slices of backward-invariant sets of V . Similarly, any invariant set of F is a
time-t slice of a forward-invariant set of V for each t > τ . Since the nonautonomous portion
of the dynamics of (1.1) is assumed to occur on a compact interval, it can be effected by a
map, the transition map T :M →M , defined as

(1.4) T (x) = ϕτ,0(x).

Consequently an invariant set Λ of P becomes T (Λ) at time τ and thereafter evolves under
F . If the dynamics of P and F are known, then the only nontrivial work we must do is to
characterize the map T .

In addition to equilibria and periodic orbits, the unstable manifolds of orbits of P and
stable manifolds of orbits of F are also slices of invariant sets for V . For example, letW u(Λ,X)
denote the unstable manifold of an invariant set Λ under a vector field X; this is the set of
points asymptotic to Λ as t → −∞. Consequently, if Λ is an invariant set of P , its unstable
manifold is a slice of the unstable manifold of the invariant set γ(Λ, 0) of V :

W u(Λ, P ) =W u
t (γ(Λ, 0)) ≡W u

t (γ(Λ, 0), V ), t < 0.1

However, a stable manifold W s(Λ, P ) is not a slice of a stable manifold for V since, due to
the transition, it does not in general consist of points asymptotic to the orbit of Λ as t→ ∞.

1As indicated here, we often will omit the V from the notation as it represents the default evolution.
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Figure 1. A backward-hyperbolic orbit γ(p, 0) with homoclinic loop Γp ⊂W u(p, P ) and a forward-hyperbolic
orbit γ(f, τ ) with homoclinic loop Γf ⊂ W s(f, F ). Here the unstable manifold of the orbit of p intersects the
stable manifold of the orbit of f at t = τ at the heteroclinic points h1, h2 ⊂ T (Γp)∩Γf under a transitory flow.

Instead, since the forward dynamics for any t > τ is determined by F (x), the stable manifolds
of invariant sets of F are time-t slices of the stable manifolds for V . The unstable manifolds
of invariant sets of F have little dynamical relevance to V .

An example is sketched in Figure 1. Here p is a hyperbolic saddle for P , but its orbit
under V , γ(p, 0), is not hyperbolic. Indeed, when the point T (p) does not lie on a hyperbolic
orbit of F , γ(p, 0) has no stable manifold. Nevertheless, it does have an unstable manifold
W u(γ(p, 0)), and the temporal slices of this manifold coincide with W u(p, P ) when t < 0.
Furthermore, this manifold is an invariant set of V with W u

τ (γ(p, 0)) = T (W u(p, P )), and its
subsequent structure is obtained by simply evolving this set with F . We will say that such an
orbit is backward-hyperbolic. Similarly, if f is a hyperbolic fixed point for F , it is a forward-
hyperbolic orbit of V but not generally hyperbolic under V . Slices of the stable manifold
W s(γ(f, τ)) agree with W s(f, F ) for each t > τ . We formalize these notions as follows.

Definition 1.2. A time-t0 slice of an invariant set Λ of a transitory dynamical system is
backward-hyperbolic provided ϕt,t0(Λt0) is hyperbolic under P for all t < 0. It is forward-
hyperbolic provided ϕt,t0(Λt0) is hyperbolic under F for all t > τ .

In the simplest case, dim(M) = 2, and Γp ⊂W u(p, P ) and Γf ⊂W s(f, F ) are homoclinic
loops for P and F , respectively, as sketched in Figure 1. The regions bounded by Γp and Γf

can be thought of as Lagrangian coherent structures (LCSs). If the former evolves under the
map (1.4) to intersect the latter, then we can characterize the transport from one coherent
structure to the other by these intersections.

LCSs for nonautonomous systems are usually defined in terms of finite-time stability
exponents. Haller and Yuan define them as regions bounded by “material lines with locally
the longest or shortest stability or instability time” [21], while other researchers refer to
LCSs as curves or surfaces instead of regions and identify these as “ridges” in the finite-time
Lyapunov exponent field [52, 42, 6]. In either case, since these coherent structures are defined
only by finite-time information, they may also persist only for some finite time. For (1.1), we
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will think of LCSs as being objects bounded by separatrices of P for t < 0 or of F for t > τ .
These structures may also be ephemeral under the vector field V ; however, for a transitory
system we think of only one event, encapsulated by the transition map T , as creating or
destroying an LCS.

In Figure 1, the coherent structure bounded by Γp in the past vector field P is destroyed
by the transition map T , giving rise to a new structure bounded by Γf in the future vector
field F . There are two heteroclinic points {h1, h2} = T (Γp) ∩ Γf in the time-τ slice; they
are backward-asymptotic to p, forward-asymptotic to f , and hence fully hyperbolic under V .
Consequently, the set of orbits that begin inside Γp but evolve to escape from Γf is defined
by the lobe R bounded by the segments of Γf and T (Γp) between h1 and h2. More generally,
there may be more than one lobe, and each lobe boundary may consist of more than two
manifold segments or, equivalently, contain more than two heteroclinic points. We discuss the
computation of lobe areas in this general case in section 2.1.

For higher dimensional flows, even though the invariant manifoldsW s(p, P ) andW u(f, F )
are not dynamically relevant for the full vector field V (x, t), they may useful for defining
resonance zones of P and F , where a resonance zone with a “small” escaping flux is a “nearly”
invariant set [39, 13, 34]. Particles initially in a resonance zone of P when t < 0 will be
approximately trapped up to time 0, and those that find themselves in a resonance zone of F
at t = τ will be approximately trapped in the future. This makes low-flux resonance zones
good candidates for coherent structures in the past or future vector fields.

In the remainder of the paper, we consider several simple examples of transitory systems
for which the full vector field is a convex combination of the past and future vector fields:

(1.5) V (x, t) = (1− s(t))P (x) + s(t)F (x).

Here s : R → [0, 1] is a transition function satisfying

(1.6) s(t) =

{
0, t < 0,
1, t > τ,

for transition time τ . While (1.5) is transitory in the sense of Definition 1.1 for any function
s satisfying (1.6), for simplicity we usually take s to be monotone nondecreasing. Examples
of such functions of varying smoothness are given in Appendix A.

As a first example, consider the traveling wave model studied by Knobloch and Weiss
[28, 53]. This model for an incompressible, two-dimensional fluid is given in terms of the
stream function

ψ(x, y, t) = ψ0(x, y) + εb(t)ψ1(x, y),

ψ0(x, y) = −cy +A sin(kx) sin(y),

ψ1(x, y) = y

(1.7)

on the domain M = [0, 2π] × [0, π]. The vector field is given by V = ẑ ×∇ψ, where ẑ is the
unit normal to the xy-plane, so the equations of motion are

(1.8) ẋ = − ∂

∂y
ψ, ẏ =

∂

∂x
ψ.
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Figure 2. Frozen-time stream function at t = 0 (left) and t = τ (right), and coherent structures for (1.7)
with A = k = ε = 1 and c = 0.5. The slices of the unstable manifolds in the right pane are obtained by
numerically computing the transition map for τ = 4 using the bump function (1.9) with s(t) = s1(t/τ ), the
cubic transition function in (A.1).

This system is Hamiltonian with (x, y) representing the coordinate and momentum and
H(x, y, t) = −ψ(x, y, t).

While Knobloch and Weiss studied the dynamics of ψ0 with time-periodic perturbations,
an asymptotically autonomous case of (1.7) was studied in [40, 50]. The latter assumed that
limt→±∞ b(t) → b∞ ∈ R so that the past and future vector fields are equal. For this case b(t)
is a “bump function” that plays the role of the transition function s in (1.5). If instead we
assume that b(t) has support only on the compact interval [0, τ ], then (1.8) is transitory in
the sense of Definition 1.1. One such function is

(1.9) b(t) = s(t) (1− s(t)),

where s(t) is any transition function (1.6).
For (1.7) with (1.9), P is identical to F , and when |c| < |A| there are two hyperbolic

equilibria on each of the lines y = 0 and y = π (see Figure 2). The four saddles of the past
and future vector fields are denoted by pi and fi, respectively. Note that as subsets of M ,
pi = fi; however, as subsets of the extended phase space, they are points on different temporal
slices, and so their evolution under V is distinct. For the simple perturbation ψ1, the orbits of
these points under V remain on their respective horizontal lines. Moreover, if b(t) ≥ 0, then
ϕt,0(p1,2) → f1 and ϕt,0(p3,4) → f3 as t→ ∞.

The vector fields P and F each have two resonance zones in M , and these form the
coherent structures of interest for the system (1.7). For P , the two resonance zones should
be thought of as being bounded by unstable manifolds since these will be slices of unstable
manifolds of V ; one is bounded by branches of W u(p1, P ) ∪ W u(p2, P ) and the other by
W u(p3, P ) ∪W u(p4, P ), as shown in Figure 2. For F the resonance zones are bounded by
stable manifolds: W s(f1, F )∪W s(f2, F ) and W

s(f3, F )∪W s(f4, F ). The unstable manifolds
at t = 0 evolve according to (1.8), and for the case shown in Figure 2 numerical integration
indicates that these intersect the stable manifolds at two heteroclinic orbits,

h1(t) =W u
t (p1) ∩W s

t (f2),

h2(t) =W u
t (p3) ∩W s

t (f4).
(1.10)

The lobes formed by these intersections, labeled R1 and R2, correspond to the trajectories
that begin inside the resonance zones of P and end outside the resonance zones of F . By
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calculating the areas of these lobes we can quantify transport into and out of the coherent
structures in the phase space, giving insight into the global dynamics of the system.

2. Transitory flux: Hamiltonian case. Coherent structures, by their very definition, de-
note regions of the phase space in which nearby trajectories behave similarly; examples in-
clude vortices or recirculation regions in fluid flows and resonance zones in the phase space
of Hamiltonian systems. Since these coherent structures are typically composed of a large
number of trajectories and since their boundaries separate dynamically distinct regions in the
phase space, they can provide quite a bit of information about the global behavior of the
system. In particular, knowing the incoming and exiting flux helps paint a global picture of
the Lagrangian effects of time-dependence within the vector field. For example, for a particle
accelerator we may wish to quantify the phase space volume corresponding to stable accelera-
tion of particles (see section 3.2). In this case, computing the flux between coherent structures
of the pre- and post-acceleration vector fields gives the desired quantity.

We proceed in this section to derive formulas for the flux between regions of phase space
bounded by invariant manifolds of nonautonomous, one degree-of-freedom Hamiltonian sys-
tems (i.e., systems with 11

2 degrees of freedom). The formulas obtained are the generalizations
to the nonautonomous case of the action-flux formulas of [38]. For autonomous flows, these
formulas were first obtained in [36, 37, 35], and the nonautonomous case was studied in [25]
in the adiabatic limit.

We note that [50, 40] do compute lobe areas for asymptotically autonomous vector fields,
in the sense of (1.2). However, their theory relies on P = F and that these vector fields have a
saddle equilibrium with a homoclinic trajectory. In the theory we present here, the saddles of
P and F need not be the same, and there need not be a homoclinic orbit of either autonomous
vector field. Instead we focus our attention on heteroclinic orbits of the time-dependent vector
field V .

2.1. Flux by the Lagrangian action. Here we will compute the flux for a 11
2 degree-

of-freedom Hamiltonian vector field V = (∂yH,−∂xH) for a nonautonomous Hamiltonian
H(x, y, t). More formally, if ω is a symplectic form,2 e.g., ω = dx ∧ dy, then the Hamiltonian
vector field is determined by ıV ω = dH. In this section we do not need to assume that the
system is transitory, but we do assume that the phase space M is two-dimensional and that
the symplectic form is exact.

As discussed in section 1, computing the flux corresponds to finding the area of some
closed and bounded region R ⊂ M . Using Stokes’s theorem, the resulting two-dimensional
integral can be immediately reduced to an integral over the boundary:

(2.1) Area(R) =

∫
R
ω = −

∫
∂R
ν,

where ν is the Liouville one-form defined by ω = −dν; for example, ν = ydx. When R
is bounded by segments of stable and unstable manifolds, the flux formulas of [38] reduce
integrals of the form (2.1) to action differences between orbits lying at the endpoints of the

2Our notation is given in Appendix B.
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Figure 3. Sketches of time-τ slices of lobes formed by stable and unstable manifold segments S and U. In
the left pane the lobe is bounded by a pair of segments, and in the right pane it is bounded by two pairs. Each
segment is bounded by a pair of biasymptotic heteroclinic points hi and hi+1.

manifold segments. The action is given by an integral of the phase space Lagrangian, L :
M × R → R,

(2.2) L(x, y, t) = ıV ν −H(x, y, t),

or L = yẋ−H with ẋ(x, y, t) = ∂yH(x, y, t).
The simplest case is sketched in the left pane of Figure 3. Suppose that γf is a forward-

hyperbolic orbit, γp is a backward-hyperbolic orbit, and R is a region in the time-τ slice that is
bounded by a stable-unstable pair of segments of time-τ slices, S ⊂W s

τ (γf ) and U ⊂W u
τ (γp),

that intersect only on their boundaries, h0 and h1. Choosing the orientation of U and S
consistent with a counterclockwise traversal of the boundary of R gives ∂R = U + S and
∂S = −∂U = h0 − h1. Then (2.1) yields

(2.3) Area(R) = −
(∫

S
ν +

∫
U
ν

)
.

Therefore, to find the area we may compute the integral of the Liouville form along segments of
stable and unstable manifolds. The following two lemmas give formulas for computing these
integrals in terms of the phase space Lagrangian (2.2) and the heteroclinic orbits hi(t) ≡
ϕt,τ (hi).

Lemma 2.1. Suppose that the orbits of h0 and h1 are backward-hyperbolic and backward-
asymptotic and that U ⊂W u

τ (γ(hi, τ)) is the time-τ slice of the unstable manifold that connects
these points, with ∂U = h1 − h0. Then

(2.4)

∫
U
ν = ΔA−

τ (h0, h1) ≡
∫ τ

−∞

[
L(h1(s), s)− L(h0(s), s)

]
ds.

Proof. If we differentiate ν along V , Cartan’s homotopy formula (B.7) and (2.2) give

d

dt
ν = LV ν = −ıV ω + d(ıV ν) = dL,

where LV is the Lie derivative (B.5). Integrating this from t to τ , using (B.8), gives, for any
t,

ν − ϕ∗
t,τν =

∫ τ

t

d

ds
ϕ∗
s,τνds =

∫ τ

t
d(ϕ∗

s,τL)ds.
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Consequently ∫
U
ν =

∫ τ

t

(∫
U
d(ϕ∗

s,τL)

)
ds+

∫
U
ϕ∗
t,τν

=

∫ τ

t

(∫
ϕs,τ (U)

dL

)
ds+

∫
ϕt,τ (U)

ν

=

∫ τ

t

[
L(h1(s), s)− L(h0(s), s)

]
ds +

∫
ϕt,τ (U)

ν.

(2.5)

Since h0(t) → h1(t), the length |ϕt,τ (U)| → 0 as t → −∞. Taking this limit yields the result
(2.4).

We note that ΔA−
τ (h0, h1) in (2.4) is the difference between the “past actions” of the

orbits of h0 and h1. A similar result, with an important sign change, holds for stable segments
S ⊂W s

τ (γ(f, τ)) connecting h1 to h0. In this case we replace U by S and let t→ +∞ in (2.5)
to obtain the following lemma.

Lemma 2.2. Suppose that the orbits of h0 and h1 are forward-hyperbolic and forward-
asymptotic and that S ⊂ W s

τ (γ(hi, τ)) is the time-τ slice of the stable manifold that connects
these points, with ∂S = h0 − h1. Then

(2.6)

∫
S
ν = −ΔA+

τ (h1, h0) ≡ −
∫ ∞

τ

[
L(h0(s), s)− L(h1(s), s)

]
ds.

Here ΔA+
τ (h1, h0) is the difference between the “future actions” of the orbits of h0 and

h1. The algebraic area of the lobe R in the left pane of Figure 3 can be obtained by plugging
the results (2.4) and (2.6) into (2.3), yielding the action difference,

(2.7) Area(R) = ΔA(h1, h0) ≡
∫ ∞

−∞

[
L(h0(s), s)− L(h1(s), s)

]
ds.

Note that τ appears nowhere in this result; indeed, the lobe area is independent of the time
at which it is measured since the Hamiltonian flow is area-preserving.

It is important to note that (2.4) can be used to compute the area under any segment of
an unstable manifold between two backward-asymptotic points h0 and h1. That is, the points
need not be biasymptotic as in Figure 3. For example, if h0 is replaced with p(τ), (2.4) can
be directly used to integrate the Liouville form ν along the initial segment of W u

τ (γp) from
p(τ) to h1. Similar generality holds for (2.6). Moreover, the derivations of (2.4) and (2.6) do
not require that the system be transitory; they are valid for any nonautonomous Hamiltonian
vector field.

Lobes can have a more complicated structure, even in the autonomous case [48]; in general,
a lobe at time τ is a region R bounded by an alternating sequence of stable segments of γf
and unstable segments of γp whose intersections are topologically transverse.3 An example
with two pairs of segments is shown in the right pane of Figure 3. The general formula for the

3If a heteroclinic point h arises at an intersection that is not topologically transverse, the two boundary
segments adjacent to h can be combined (they necessarily have the same stability type), and h can thus be
ignored when calculating the lobe area.
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area of such a lobe follows easily from (2.4) and (2.6). Suppose that R is bounded by 2N such
segments, and label the heteroclinic points hi, i = 0, . . . , 2N−1, in a counterclockwise ordering
on ∂R setting h2N ≡ h0. Without loss of generality, suppose the segment joining h0 and h1 is
a portion of an unstable manifold; call it U0. Again, using a counterclockwise ordering, label
the next segment S0, followed by U1, etc., so that ∂R consists of the alternating sum of N
unstable and stable segments Ui and Si, i = 0, . . . , N − 1. The orientation of these segments
is chosen to be consistent with the counterclockwise boundary so that ∂Ui = h2i+1 − h2i and
∂Si = h2i+2 − h2i+1. Note that these orderings, as sketched in Figure 3, are not necessarily
the same as the ordering along the manifolds W u or W s. Using (2.4) and (2.6) for each of the
integrals along ∂R gives the lobe area

(2.8) Area(R) =

N∑
i=1

ΔA(h2i−1, h2i) = −
N−1∑
i=0

ΔA(h2i, h2i+1),

where ΔA is defined by (2.7). While the two sums in (2.8) are trivially identical, the first can
be thought of as the sum of the action differences between orbits bounding segments of stable
manifolds along ∂R and the second as the negative sum of action differences between orbits
bounding segments of unstable manifolds.

Lemmas 2.1 and 2.2 apply to arbitrary nonautonomous systems provided only that the
points bounding the segments U and S are past- or future-asymptotic, respectively. For the
special case of transitory systems, the integrals in (2.4) and (2.6) can be further simplified
since the phase space Lagrangian is autonomous outside (0, τ):

L(x, y, t) =

{
LP (x, y), t ≤ 0,
LF (x, y), t ≥ τ.

For example, consider the lobe depicted in the left pane of Figure 3 so that h0(0) and h1(0)
both lie on W u(p, P ), the unstable manifold of a hyperbolic fixed point p = p(0) of P . Since
this manifold is stationary for all t ≤ 0, these points are merely time-shifts of one another
under the flow of P . If we suppose that h1(0) is further along W

u(p, P ) from p than h0(0) (as
in Figure 3), then there exists a tP < 0 such that h1(tP ) = h0(0) and thus

h1(tP + α) = h0(α) ∀α ∈ (−∞, 0 ].

Consequently, the integral in (2.4) reduces to two integrals over compact intervals:

(2.9)

∫
U
ν = ΔA−

τ (h0, h1) =

∫ 0

tP

[LP (h1(s))− LP (p)]ds+

∫ τ

0

[
L(h1(s), s)− L(h0(s), s)

]
ds.

Similarly, assuming that points h0 and h1 are oriented along the stable manifold as in Figure 3,
there is a tF > τ such that h0(tF ) = h1(τ). Then (2.6) reduces to

(2.10)

∫
S
ν = −ΔA+

τ (h1, h0) = −
∫ tF

τ
[LF (h0(s))− LF (f)]ds.

Combining these yields the simplified form of the area (2.7) for the case of transitory systems:
(2.11)

Area(R) =

∫ 0

tP

[LP (p)−LP (h1(s))]ds+

∫ τ

0
[L(h0(s), s)−L(h1(s), s)]ds+

∫ tF

τ
[LF (h0(s))−LF (f)]ds.
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The formulas (2.9) and (2.10) prove useful in numerical computations, and they can be applied
to each action difference of (2.8) in the case of a more complicated lobe bounded by 2N
manifold segments. We will use them in the examples of section 3.

2.2. Flux in the adiabatic limit. As in Definition 1.1, a Hamiltonian H(x, y, t) is transi-
tory if

H(x, y, t) =

{
HP (x, y), t < 0,
HF (x, y), t > τ.

If the transition time τ goes to infinity, adiabatic theory [29] may apply to such a system.
To consider this limit, it is helpful to reformulate the equations by introducing a “slow time”
variable

λ = εt,

where ε ≡ τ−1 is to be thought of as small. Instead of thinking of H as a function of time,
through the transition function s, it is convenient to explicitly write it as a function of s,

H̃(x, y, s(λ)) = H(x, y, t),

where s is a transition function with transition time 1. Now the past and future vector fields
are generated by HP = H̃(x, y, 0) and HF = H̃(x, y, 1), respectively, and the vector field for
(x, y, λ) ∈M × R becomes

ẋ =
∂

∂y
H̃(x, y, s(λ)),

ẏ = − ∂

∂x
H̃(x, y, s(λ)),

λ̇ = ε.

(2.12)

The incompressible fluid flow (1.8) is a transitory Hamiltonian system in this sense with
H̃(x, y, s) = −ψ(x, y, t).

For any finite ε, the transition map (1.4) is now to be thought of as the time-1ε map

T (x, y) = ϕ 1
ε
,0(x, y).

The frozen-time case corresponds to (2.12) with ε = 0; alternatively it can be viewed as a
family of autonomous systems on the phase space M with Hamiltonians H̃(x, y, s), s ∈ [0, 1].

Adiabatic theory shows that, in certain cases, orbits of (2.12) with ε � 1 evolve so as to
remain on orbits of the frozen-time system with fixed loop action, where the loop action for a
closed curve C is

(2.13) J(C) =

∮
C
y dx,

i.e., the area enclosed. Suppose there is a region R ⊂ M in which every orbit of the frozen
system is periodic and that there is a smooth family γs ⊂ R, s ∈ [0, 1], of periodic orbits of
the frozen-time systems with fixed action

J(γs) = J0.
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Thus γ0 is a periodic orbit of P , and γ1 of F and J(γ0) = J(γ1). According to adiabatic
theory, if (x, y) ∈ γ0 and each of the γs has a bounded period, then

(2.14) d(T (x, y), γ1) → 0 as ε→ 0,

where d(z,Ω) = infζ∈Ω ‖z− ζ‖ is the standard distance from a point z to a set Ω. The point is
that T approximately maps periodic orbits of P to periodic orbits of F with the same action,
T (γ0) ≈ γ1, when ε� 1.

Adiabatic invariance breaks down if the frequencies of the periodic orbits in the family γs
are not bounded away from zero. This occurs, for example, when γs approaches or crosses
a separatrix of the frozen-time system for some s. The resulting jumps in the action due to
separatrix crossing were computed by [9, 45].

The flux in the adiabatic limit was studied by Kaper and Wiggins [25] under the assump-
tion that the frozen systems H̃(x, y, s) have a smooth, compact family of saddle equilibria,
p(s), with homoclinic loops Γp(s) ⊂ W u(p(s)) ∩W s(p(s)). These authors state that the nor-
mally hyperbolic invariant manifold in the extended phase space,

Λ0 = {(p(s(λ)), λ) : λ ∈ R},

continues to a nearby normally hyperbolic invariant manifold, Λε, when ε is sufficiently small.
If the Melnikov function for (2.12) has a nondegenerate zero, then the stable and unstable
manifolds of Λε intersect transversely for small ε defining a lobe R(ε). Kaper and Wiggins
show that the lobe area in the adiabatic limit becomes

(2.15) lim
ε→0

Area(R(ε)) = Jmax − Jmin,

where

Jmax = max
s∈[0,1]

J(Γp(s)), Jmin = min
s∈[0,1]

J(Γp(s))

are the maximum and minimum of the areas contained in the frozen-time homoclinic loops.
The implication is that the region that is “swept” by the separatrix is filled by the lobe, as
was argued in [15].

We will use (2.15) when possible in our examples below to discuss the limit τ → ∞;
however, the assumption that the frozen-time systems have a normally hyperbolic manifold
of equilibria can be easily violated for a transitory system.

3. Examples. We will now consider several examples of transitory systems and use the
results of section 2 to quantify transport between coherent structures. For all examples we
use the cubic transition function s(t) = s1(t/τ) from (A.1), scaled so that τ is the transition
time. Points along invariant manifolds are advected using a Runge–Kutta (5, 4) Dormand–
Prince pair. We represent the initial manifolds by a collection of equally spaced points and add
points using an adaptive interpolation method similar to that of Hobson [22] when neighboring
trajectories separate beyond a prescribed threshold. Similarly, trajectories are removed if the
spacing decreases below a smaller threshold. We find the heteroclinic orbits from the advected
manifolds using bisection to locate intersections of the stable and unstable invariant manifolds.
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Figure 4. Orbits of the stream functions ψP (left) and ψF (right) for (3.1). The unstable manifolds for the
saddles of ψP are shown in red, and the stable manifolds of the saddles of ψF are shown in blue.

3.1. Rotating double gyre. The motion of a passive scalar in a two-dimensional incom-
pressible fluid with the oft-studied double-gyre configuration is depicted in the left pane of
Figure 4. This configuration has been observed in both geophysical flows [46, 11] and experi-
mental investigations of laminar mixing in cavity flows [10, 32]. Here we consider a transitory
flow that corresponds to a rotation of the two gyres by π

2 about (12 ,
1
2 ). It is defined by the

stream function

ψ(x, y, t) = (1− s(t))ψP + s(t)ψF ,

ψP (x, y) = sin(2πx) sin(πy),

ψF (x, y) = sin(πx) sin(2πy)

(3.1)

and is Hamiltonian, with H = −ψ and equations of motion (1.8). Such a rotating regime
could arise in a geophysical setting if the prevailing direction of the jet separating the two
gyres changed over a finite time interval. In terms of a cavity flow, (3.1) would model a regime
in which a flow driven by upward movement of the left and right walls transitions smoothly
to a flow driven by rightward movement of the top and bottom walls (cf. Figure 4). Taking
a slightly different perspective, the transition in (3.1) could also be effected by modulating
the flow boundary over the transition interval. Such a changing boundary is used as a mixing
mechanism in closed pipe flows, as investigated in [27, 3] and is the driving force behind
in-pipe mixing devices such as the Kenics static mixer.

The dynamics of (3.1) preserves the boundaries of the square M = [0, 1]× [0, 1], and each
of the corners of M is an equilibrium of V . The corners (0, 0) and (1, 1) are hyperbolic saddles
for the full vector field V ; however, though the corners (1, 0) and (0, 1) are saddles for both
P and F , they are not hyperbolic under the full field V . For example, the unstable manifold
of (0, 1) is a subset of its stable manifold; the slices of these manifolds at t = 0 are

W u
0 (0, 1) = {(x, 1) : 0 < x < 1

2} ⊂W s
0(0, 1) = {(x, 1) : 0 < x < 1}.
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Similarly, the stable manifold of (1, 0) is a subset of its unstable manifold; the slices at t = τ
are

W s
τ (1, 0) = {(1, y) : 0 < y < 1

2} ⊂W u
τ (1, 0) = {(1, y) : 0 < y < 1}.

Thus, though (0, 1) and (1, 0) are both forward and backward hyperbolic, in the sense of
Definition 1.2, neither is a hyperbolic orbit of V .

The past vector field also has two saddle equilibria at p0 = (12 , 0) and p1 = (12 , 1), and
the future vector field has saddles at f0 = (0, 12 ) and f1 = (1, 12). Under (3.1) the orbits
of these points remain on the invariant boundaries of M , and, as we shall see, these orbits
play crucial roles in the delineation of Lagrangian coherent structures for this system and the
quantification of the flux between them.

The natural coherent structures for the past vector field of (3.1) are the left and right
gyres separated by the unstable manifold

(3.2) U = {(12 , y) : 0 < y < 1}
of p1; see Figure 4. Note that for any t < 0, W u

t (γ(p1, 0)) = U . Moreover, for any t, the
stable manifold of this orbit is W s

t (γ(p1, 0)) = {(x, 1) : 0 ≤ x < 1}, and consequently γ(p1, 0)
is a hyperbolic orbit of V . For the future vector field the top and bottom gyres are coherent
structures with a separatrix given by the stable manifold

(3.3) S = {(x, 12 ) : 0 < x < 1}
of the future hyperbolic point f1. Note that W s

t (γ(f1, τ)) = S for t > τ , and W u
t (γ(f1, τ)) =

{(1, y) : 0 ≤ y < 1}.
Transport between the two pairs of gyres is completely determined by the image of the

past separatrix, T (U), or, equivalently, the preimage of the future separatrix, T−1(S). The
accompanying movie file (79411 02.avi [1.57MB]) shows the evolution of the manifolds starting
with U and T−1(S) at t = 0 and ending with T (U) and S at t = τ = 0.7. However, to use
the formulas of section 2, we need only know the orbits heteroclinic from γ(p1, 0) to γ(f1, τ),
and at t = τ these consist of points on T (U) ∩ S. At least one such heteroclinic orbit is
guaranteed since ∂M is invariant under (3.1); that is, the segment T (U) still connects the top
to the bottom and thus must cross S an odd number of times. When τ = 0 the transition
map is the identity, and the only intersection is T (U)∩ S = h1 = (12 ,

1
2 ) (see the top left pane

of Figure 5). This intersection persists as τ increases, simply moving to the right along S
and finally limiting on f1 as τ → ∞. For the cubic transition function, we observe that h1 is
the only intersection providing τ � 0.5314, at which point a new pair of heteroclinic points,
h2, h3, are created in a tangency bifurcation, as shown in the bottom left pane of Figure 5.
The next heteroclinic bifurcation occurs at τ ≈ 3.6908, and the creation of heteroclinic orbits
accelerates as τ increases; indeed, for τ = 5.0 there are 19 such heteroclinic orbits, and the
number appears to grow without bound as τ → ∞.

For the model (3.1) it is easy to obtain the manifold structure at t = 0 from that at
t = τ , as shown in Figure 5, because the system has a time-reversal symmetry whenever the
transition function obeys the relation

(3.4) s(τ − t) = 1− s(t).

http://link.aip.org/mm/SJADAY/100794110/79411_02.avi
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Figure 5. T (U) for transition times τ = 0.0 (a), 0.4 (b), 0.5314 (c), and 0.8 (d) for the model (3.1).
Trajectories that begin in the left gyre are colored red, those that begin in the right gyre are colored blue, and
the dividing curve between these is T (U). The dark blue region, labeled Art, is the portion of the right gyre that
ends in the top gyre at time τ , and the dark red region, labeled Alb, is the portion of the left gyre that ends
in the bottom gyre. The heteroclinic points are labeled {h1, h2, h3} = T (U) ∩ S. The accompanying movie file
( 79411 01.avi [9.0MB]) shows the variation of T (U) as τ varies from 0 to 3.0.

Note that the cubic function we use and all of the polynomial transition functions given in
Appendix A have this property. In this case, the dynamics is reversed by the involution
R :M × R →M × R defined by

(3.5) R(x, y, t) = (y, x, τ − t).

It is easy to see that ψ is invariant under this transformation and that the vector field is

http://link.aip.org/mm/SJADAY/100794110/79411_01.avi
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reversed by R∗, the push-forward (B.3) of R:

DRV (y, x, τ − t) = −V (x, y, t).

Consequently, R inverts the transition map, T−1 = R ◦ T ◦R, and since R(S) = U ,

T−1(S) = R(T (U)).

Consequently, the phase portraits of U and T−1(S) at t = 0 can be obtained from those in
Figure 5 at t = τ by reflection about y = x and exchanging U and S.

Denoting the left and right gyres of the past vector field by l and r and the top and bottom
gyres of the future vector field by t and b, respectively, there are four fluxes of interest, Aij ,
corresponding to the trajectories starting in gyre i ∈ {l, r} at time 0 and ending in gyre
j ∈ {t, b} at time τ (see Figure 5). For example, Art is the area of the region that is to the
right of U for t ≤ 0 and above S for t ≥ τ . Thus, at t = τ these regions are bounded by
segments of T (U) and S. They can consist of multiple disjoint lobes when there are additional
heteroclinic points, as in pane (d) of Figure 5, in which there are two lobes for Art.

Since (3.1) is incompressible and ∂M is invariant,

Alt +Alb = Art +Arb =
1
2 ,

the total area of a single gyre in the past and future vector fields. Moreover, since the top
and bottom gyres are filled completely by the images of the left and right gyres,

Alt +Art = Alb +Arb =
1
2 .

Consequently, knowledge of one of these four areas uniquely determines the remaining three.
To calculate Art for a given transition time τ we must integrate the form ω over the dark

blue region in Figure 5 or, equivalently, integrate the form −ν over its boundary. We first
consider the case of only one heteroclinic point h1 = T (U) ∩ S. In this case, Art is comprised
of a single lobe and, given the points T (p1) = (xp, 1) and h1 = (xh,

1
2), the integrals along the

top, right, and bottom edges of this lobe are trivial. Then,

(3.6) Art =
1

2
(1 + xh)− xp −

∫
T (Uh1

p1
)
ν,

where T (Uh1
p1 ) is the oriented segment of T (U) from γτ (p1, 0) = T (p1) to γτ (h1, τ) = h1. Ac-

cording to (2.4), the last term in (3.6) is simply the backward action difference ΔA−
τ (T (p1), h1)

between the orbits of h1 and T (p1). Thus, to evaluate (3.6) we must compute T (p1) and h1
and finally integrate the Lagrangian along the backward asymptotic orbits of h1 and T (p1)
from −∞ to τ to compute this action difference.

Computation of T (p1) is straightforward and is accomplished by numerically integrating
the vector field V over the transition interval [0, τ ] with initial condition p1. Computing h1 is
slightly more involved and requires a root-finding algorithm to determine the intersection of
T (U) with S at t = τ . We begin with points equally spaced along U at t = 0 and numerically
integrate V over [0, τ ] to compute the image under the transition map T of each point. As the
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manifold stretches during advection, we adaptively refine it to maintain the initial resolution.
That is, at the first time step in which two neighboring trajectories diverge beyond a prescribed
separation tolerance, we initialize a new trajectory at their midpoint and continue to track
it over the remainder of the interval. We also remove points in much the same manner in
areas where the manifold is contracting, helping to speed up computation. Upon obtaining
T (U), we bracket the intersection with S and use a bisection routine to determine h1 to the
desired accuracy, initializing new trajectories where necessary. It should be noted that since
unstable manifolds attract orbits in forward time, this adaptive refinement is a stable process,
and we incur minimal numerical error in the resulting manifolds T (U) [22]. In fact, results for
T (U) obtained by refining the initial point spacing at t = 0 and by adaptively refining during
integration were virtually indistinguishable, with the adaptive computation being an order of
magnitude faster in some cases. Finally, the Lagrangian (2.2), which for this system is

L(x, y, t) = yẋ+ ψ(x, y, t) = (1− s(t))LP (x, y) + s(t)LF (x, y)

LP (x, y) = sin(2πx)
[
sin(πy)− πy cos(πy)

]
,

LF (x, y) = sin(πx)
[
sin(2πy) − 2πy cos(2πy)

]
,

(3.7)

is integrated along the computed orbits γ(p1, 0) and γ(h1, τ) using Simpson’s rule.
When there are additional heteroclinic points (e.g., h2 and h3 in Figure 5(d)), they can be

computed in precisely the same way as h1 described above. For the case of three heteroclinics
the total flux is Art = A1

rt + A23
rt , where the two terms on the right-hand side represent the

areas of the two disjoint lobes. The area of the larger lobe A1
rt is calculated using (3.6), while

the smaller lobe is similar to that shown in Figure 3, and hence we calculate its area according
to (2.7):

A23
rt = ΔA(h3, h2) =

∫ ∞

−∞

[
L(h2(t), t)− L(h3(t), t)

]
dt,

which is positive by the counterclockwise orientation of the segments Uh3
h2

and Sh2
h3
.

Computation of the last term in (3.6) is greatly simplified using (2.9), since the system is
transitory, and by noting that for (3.7) LP (

1
2 , y) ≡ 0 for any y. Similarly, (2.11) can be used

to simplify the computation of A23
rt .

Results for the computation of Art for transition times ranging from 0 to 3.69 are summa-
rized in Figure 6. Note the increase in the rate of change of flux at τ ≈ 0.531 corresponding to
the emergence of the second lobe of area A23

rt . At τ ≈ 3.69, a new pair of heteroclinic points
h4 and h5 is created, and their corresponding manifolds delineate a new lobe of trajectories
initially to the left of U for t < 0. Indeed, each new heteroclinic bifurcation as τ increases
creates a new lobe that alternately adds area to Art or to Alt.

As τ → ∞ some of the orbits of (3.1) can be described by the adiabatic theory outlined in
section 2.2. For example, each periodic orbit in the neighborhood of the elliptic equilibrium of
the left gyre of P continues to a periodic orbit of the frozen-time system—setting ψ̃(x, y, s(t)) =
ψ(x, y, t)—with fixed loop action. As s grows from 0 to 1 in (3.1), the left gyre rotates by π

2 ,
so these orbits evolve continuously to periodic orbits of F enclosing the elliptic equilibrium
of the bottom gyre. If a family of periodic orbits of the frozen-time system with fixed loop
action remains a bounded distance away from the family of separatrices of ψ̃(x, y, s), then the
period of each orbit in this family is bounded, and as τ → ∞ the adiabatic theory implies
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Figure 6. Plot of the right-to-top flux, Art, as a function of transition time. Note that a second lobe of
area A23

rt emerges at τcrit ≈ 0.531. Its effect is manifested by the departure of the solid line from the dashed
line for A1

rt.

that the actual evolution will follow that of the frozen-time system. The implication is that
when τ � 1, T will approximately map periodic orbits of P in the left gyre to periodic orbits
of F in the bottom gyre with the same action (and similarly for the right and top gyres).

An indication of the approach to adiabaticity is displayed in Figure 7, which shows four
elliptic orbits γi0, i = 1, . . . , 4 of P (left pane), and their images under the transition map
T for two values of τ (middle and right panes). The dashed curves represent orbits γi1 of F
having the same loop actions as the initial orbits. When τ is small, as in the middle pane,
each of the images T (γi0) differs visibly from γi1. Conversely, when τ is moderately large, as
in the rightmost pane, T maps the innermost three γi0 virtually on top of the corresponding
γi1. The outermost orbit, γ40 (red curve), maps to a loop with tendrils far from γ41 as its
period is not sufficiently small for adiabaticity to pertain at this value of τ . Violation of
adiabaticity could also be seen in its most extravagant form by T (U) itself, which, as noted
above, necessarily crosses the square from top to bottom and intersects the line S infinitely
many times as τ → ∞. Nevertheless, since increasingly many orbits of the left gyre map to
their counterparts in the lower gyre as τ increases, adiabatic theory implies that

Alb = Art → 0.5 as τ → ∞,

as Figure 6 seems to suggest.
While this result is clearly demonstrated by the numerical evidence shown in Figure 7 and

the corresponding movie linked in its caption, the theory of Kaper and Wiggins [25] for the
flux in the adiabatic limit, outlined in section 2.2, does not apply directly to the double-gyre
model (3.1). There is no family of homoclinic loops for ψ̃(x, y, s(λ)), though, as Kaper and
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Figure 7. Illustration of the approach to adiabatic invariance of periodic orbits for (3.7). The solid curves
depict the images of four orbits of P under the transition map T for τ = 0 (left pane), τ = 0.3 (middle pane),
and τ = 2.5 (right pane). The dashed curves represent orbits of the future vector field with the same loop
actions as the initial orbits. The solid black curve depicts the orbit of the left elliptic equilibrium of P over
0 ≤ t ≤ τ . The accompanying movie file ( 79411 03.avi [17.7MB]) shows the emergence of adiabatic behavior as
τ increases.

Wiggins themselves point out, the theory could be straightforwardly extended for a family
of heteroclinic cycles, as would be appropriate for the double-gyre. When s < 1

2 , the “left”

gyre of ψ̃(x, y, s(λ)) is bounded by separatrices connecting four hyperbolic equilibria: (0, 0),
(0, 1), and a saddle on each of the upper and lower boundaries. This family of separatrices
loses hyperbolicity at s = 1

2 , when the point (0, 1) is no longer a hyperbolic equilibrium of
the frozen-time system and the separatrix becomes a triangle. Though the point (0, 1) again
becomes hyperbolic when s > 1

2 , it does not appear that the result (2.15) can be rigorously
applied.

Finally, we compare our mode of analysis with a technique commonly used for analyzing
time-dependent flows: the finite-time Lyapunov exponent (FTLE). We will comment only
briefly here on the similarities and differences between these two methods in the context of
identifying heteroclinic trajectories and computing lobe areas for (3.1). A more thorough
explanation of the use of FTLE for approximating invariant manifolds is given in [52, 18].

The backward-time FTLE field for (3.1) with transition time τ = 0.8, is shown in the left
pane of Figure 8. The “ridges” of the FTLE field approximate the unstable boundaries of
LCSs; the red regions in the figure. Comparing Figure 8 with pane (d) of Figure 5, one can see
that the most prominent ridge of the FTLE field corresponds to the curve T (U). However, the
global picture given by the FTLE field is complicated by secondary ridges near the main ridge.
These secondary ridges are common (see, for example, [52, 18, 7]), and, while it is unclear
whether they are numerical anomalies or they offer physical insight into the stretching of
nearby trajectories over the time-scale used for computation, they complicate the numerical
extraction of the most prominent ridge and the identification of any heteroclinic orbits.

As noted in [52], the ridges of the FTLE field become “more Lagrangian” as the integration
time grows. Since the transitory system (3.1) has a trajectory ϕt,0(p1) that is truly backward-
hyperbolic (i.e., it does not lose its backward hyperbolicity for any time t ∈ R), as the
integration time increases we should expect the most prominent ridge of the backward-time
FTLE to become increasingly aligned with the unstable manifold T (U) of T (p1) at time τ . We
do indeed observe this; however, the secondary ridges also become more pronounced, making
extraction of the main ridge increasingly difficult. This places a practical upper limit on the

http://link.aip.org/mm/SJADAY/100794110/79411_03.avi
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Figure 8. Backward time FTLE field for (3.1) at the transition time τ = 0.8 using a backward integration
time of 1.2 and a 1500×1500 grid. The left pane shows contours of the FTLE value from blue (smallest) to red
(largest), and the right pane shows the ridge extracted by keeping only those values within 30% of the maximum.
This ridge gives an approximation to T (U).

length of the approximate invariant manifold that can be computed using FTLE calculations,
as the numerical extraction of the “main” ridge becomes infeasible for large integration times.

Several numerical methods for efficiently extracting the appropriate ridges from the FTLE
field have been proposed [49, 17, 33]; however, in practice, the most prominent ridges are
typically extracted by simply filtering out all values below a prescribed threshold. Such a
filter with the threshold set at 70% of the maximum FTLE value is shown in the right pane
of Figure 8. For the chosen integration time, the secondary ridges are so close in height to the
main ridge that they cannot be removed by this simple height filter. That is, as the filtering
threshold is increased, gaps appear in the main ridge before all the secondary ridges have
disappeared. Thus, while the main FTLE ridge qualitatively agrees with the true unstable
manifold T (U), an accurate computation of flux between coherent structures is difficult to
obtain with this method.

3.2. Resonant accelerator. As a second example, we consider a system that serves as
a highly simplified model of a particle accelerator [14]. Here the coherent structures are
“resonances” that result in the trapping of particles in an accelerating potential well, and the
goal is to determine the phase space region that represents stable acceleration. In our model,
this corresponds to orbits that begin within a stationary, past resonance and ultimately end
in a moving, future resonance at t = τ .

The basic model is given by a Hamiltonian of the form

H(q, p, t) =
1

2
p2 + V (q − θ(t)).

We assume that the potential well is initially stationary, then accelerates, and eventually
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reaches a constant velocity so that the phase θ(t) obeys

(3.8) θ(t) =

{
0, t < 0,

ωt+ φ, t > τ.

While this system is not transitory in the sense of Definition 1.1 (note the time-dependence of
the potential function V ), we can convert it to one that is with the canonical transformation

(q, p,H) �→ (Q,P,H) = (q − θ(t), p,H − pθ̇(t)).

Note from (3.8) that the time derivative of the phase is proportional to a transition func-
tion (1.6), namely, θ̇(t) = ωs(t). Reverting to the original variable names gives the new
Hamiltonian

(3.9) H(q, p, t) =
1

2
p2 − ωs(t)p+ V (q),

and so the past and future systems are autonomous:

(3.10) H(q, p, t) =

{
HP (q, p) =

1
2p

2 + V (q), t < 0,
HF (q, p) =

1
2(p − ω)2 + V (q)− 1

2ω
2, t > τ.

Specifically, for our model we take

V (q) = −k cos(2πq),

so both autonomous limits are equivalent to the pendulum, with the resonance centered around
p = 0 for t ≤ 0 and p = ω for t ≥ τ . Without loss of generality we can scale variables to set
ω = 1, leaving two parameters: the transition time τ and the potential energy amplitude k.
All examples and parameter values below correspond to this scaled system.

Contours of HP and HF are shown in Figure 9, and since ω = 1, the transition HP → HF

corresponds to a unit vertical translation of the past vector field. For each s, the frozen-time
Hamiltonian has saddles at (q, p) = (±1

2 , s) with stable and unstable manifolds

(3.11) p±(q, s) = ±
√

2k(1 + cos(2πq)) + s

that define separatrices bounding a resonance. Of course, by periodicity the two saddles can
be identified so that the manifolds actually correspond to homoclinic loops on the cylinder
M = S×R. The past resonance corresponds to s = 0, and its separatrices are denoted by U±,
as these are slices of the unstable manifolds of the saddle for the full vector field when t ≤ 0.
The future resonance corresponds to s = 1, and its separatrices are denoted by S±, as these
are slices of stable manifolds of the saddle for the full vector field when t ≥ τ . The width of
each resonance of the frozen-time system is

(3.12) w = p+(0, s)− p−(0, s) = 4
√
k,

which for this simple model is independent of s. Note that the past and future resonance
zones “overlap” when w > 1, implying that k > 1

16 .
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Figure 9. Contours of the past (left) and future (right) Hamiltonians (3.10) for k = 0.4. The unstable
manifolds for the saddles of the past vector field are shown in red, and the stable manifolds for the saddles of
the future vector field are shown in blue.
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Figure 10. Image of the unstable manifolds of the past resonance for (3.9) at time τ for k = 0.4 with
transition times τ = 1.0 (left) and τ = 3.0 (right). The blue regions correspond to trajectories that begin inside
the past resonance and the red regions to those that begin outside. The dark blue region labeled Aii corresponds
to those particles that remain trapped in the accelerated potential well and the light blue region Aio to those that
are left behind.

Let Aio be the area of the region that begins inside the past resonance at time t = 0
and ends outside the future resonance at time t = τ , with corresponding notation Aii, Aoi,
and Aoo for the other beginning and ending configurations. We are principally interested in
calculating the fraction of accelerated phase space area,

Racc =
Aii

Aii +Aio
.

The images of the manifolds U± under the transition map for two values of τ are shown in
Figure 10. Here Aio is the area of the region that is inside T (U±) and outside S±. This region,
light blue in the figure, appears disconnected; however, on the cylinder it is formed from a
single connected set. The region Aii is dark blue in the figure and corresponds to particles
that remain trapped within the resonance for t ≥ τ .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

58 B. A. MOSOVSKY AND J. D. MEISS

-1

-0.5

0

0.5

1

1.5

2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0.065

0.06

0.055

0.05

0.045

0.04

0 0.5 1 1.5 2 2.5 3
0.035

q

p

Figure 11. Curve of heteroclinic bifurcations for (3.9) (left pane) and the bifurcation point for t = τ = 1.0
with k = kcrit ≈ 0.057 (right pane).

In Figure 10 there are two heteroclinic points, {h1, h2} ∈ T (U+) ∩ S−; however, such
heteroclinic orbits do not always exist. In particular, for τ = 0 the transition map is the
identity, and so there are heteroclinic points only when the past and future resonances overlap,
that is, when k ≥ kcrit(0) = 1

16 . More generally, the critical k for a heteroclinic bifurcation
can be computed as for the double-gyre model (3.1). The resulting curve of bifurcations,
kcrit(τ), is shown in Figure 11, and a phase portrait at the bifurcation point for t = τ = 1 is
shown in the right pane of this figure. When k > kcrit(τ), there is a pair of heteroclinic orbits,
and—unlike the double-gyre—there appear to be no additional heteroclinic bifurcations as τ
grows. Given the orbits of h1 and h2, the area Aii can be computed according to the simplified
lobe area formula (2.11), since the system is indeed transitory. The resulting ratio Racc as a
function of both k and τ is shown in Figure 12.

It is interesting that we never observe intersections between T (U±) and S+. Indeed, it is
easy to see that there is no outward flux through the top of the instantaneous separatrix. To
see this, let

Esep(s) = k − 1
2s

2

be the energy of the frozen separatrix and define

(3.13) F (q, p, s) = H(q, p, s)−Esep(s).

Note that F < 0 inside the separatrix and F > 0 outside it. Differentiation along the
Hamiltonian vector field gives

Ḟ = −ṡ(p− s).

Since p ≥ s for any point on the separatrix p+(q, s) and since we assume ṡ(t) ≥ 0, then
Ḟ ≤ 0 on the upper separatrix. Thus the vector field never permits a trajectory to cross this
separatrix from below, and a transverse intersection of T (U±) with S+ is forbidden.

The unstable manifold in the right pane of Figure 10 can be compared with the ridges of
the backward-time FTLE field in Figure 13. As in the double-gyre example, the qualitative
agreement is quite good, even though secondary ridges do exist. A simple threshold filtering
of the FTLE field, shown in the right pane of the figure, extracts the most prominent ridge;
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Figure 12. Fraction of the past resonance that is trapped in the future resonance for (3.9) as a function of
parameters k and τ .

Figure 13. (Left) Backward-time FTLE field for (3.9) with k = 0.4, τ = 3.0 and integration time t = −6.
The black line denotes the resonance of the future vector field F . (Right) The main ridge extracted from FTLE
field by keeping only those values within 45% of the maximum.

however, this set is not a curve on the scale of the computational grid, especially in the interior
and near the boundary of the future resonance. Once again, the secondary ridges are so similar
in height to the main ridge that they cannot be removed by a height filter. This ambiguity as
to the true location of the unstable manifold makes it hard to identify the heteroclinic points
and accurately compute the desired flux from the manifolds obtained from the FTLE field.

Adiabatic theory applies to the resonant accelerator system once it is written in the form of
(2.12). There are two topologically distinct loops in the frozen-time phase space corresponding
to trapped (oscillatory) and to untrapped (rotational) trajectories. For the trapped case the
loop action is the area enclosed, but for the untrapped orbits the loop action is the area
contained between the graph of the trajectory and the q-axis. Since k is constant in our
model, the area of the trapped region of the frozen-time system is independent of s, and thus
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Figure 14. Illustration of adiabatic invariance of the loop actions of periodic orbits for (3.9). The left
pane shows eight orbits γi

0 of the past vector field, and the middle and right panes depict T (γi
0) for τ = 1.5

and 10. The blue curve is the boundary S± of the future resonance, and the dotted curves indicate orbits of F
with the same actions as the orbits γi

0. The black curve shows the orbit of the elliptic equilibrium of P . The
accompanying movie file ( 79411 04.avi [19.2MB]) shows the variation of these images with τ .

for each trapped orbit of P , there is a family, γs, of periodic orbits of the frozen systems with
the same action. Each trapped orbit that is a bounded distance inside the separatrices (3.11)
has a period that is bounded; consequently, these orbits will be adiabatic in the limit τ → ∞.
For the untrapped orbits, this is no longer always true. As s varies, the upper separatrix of the
frozen-time system “sweeps through” the region bounded by the separatrix U+, with action
J(U+) = 2

π

√
2k, and the separatrix S+, with action J(S+) = J(U+) + 1. Every rotational

family of orbits of the frozen-time system within this separatrix-swept region, namely, those
with actions

J ∈ [J(U+), J(S+)],

necessarily crosses the separatrix p+(q, s) for some s ∈ [0, 1]. Since this implies that the period
is unbounded, adiabatic theory does not apply to these orbits.

By contrast, the rotational orbits with J < J(U−) or J > J(S+) remain bounded away
from the frozen separatrices for all s and thus are adiabatic in the limit τ → ∞. This
is supported by the computations in Figure 14 and the corresponding movie linked in its
caption. The left pane of the figure shows eight orbits of P , and the middle and right panes
show the images of these under T for two values of τ . When τ = 10, each of the orbits—except
for the green orbit in the separatrix-swept region—has an image under T that is very close to
an orbit of F with the same loop action.

The frozen-time accelerator model has a family of hyperbolic saddles, and each saddle has
a pair of homoclinic loops. Thus, the theory of [25] described in section 2.2 applies. Since
Jmax = Jmin for this model, the area of the lobe, Aio, limits to zero, and so this theory predicts
that

lim
τ→∞Racc = 1.

That is to say, the region of area Aii limits to the future resonance, as Figure 10 and the
accompanying movie seem to suggest. In terms of the physical model this implies that,
provided the acceleration is “slow enough,” almost all particles beginning in the resonance at
t = 0 will be stably accelerated.

http://link.aip.org/mm/SJADAY/100794110/79411_04.avi
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4. Conclusions. While techniques involving finite-time Lyapunov exponents and distin-
guished hyperbolic trajectories have recently been developed for the identification and extrac-
tion of coherent structures in time-dependent systems, they have been used only selectively
to give quantitative descriptions of the finite-time flux between such structures. One reason
for this is that the “ridges” of the FTLE field that represent approximate invariant manifolds
are often difficult to extract, making precise measurements of flux challenging.

Here we have considered a special class of two-dimensional nonautonomous systems that
exhibit time-dependent behavior only on a compact interval and have extensively used the
concepts of backward- and forward-hyperbolicity for these transitory systems. The special
structure of these systems leads to a simple method for the numerical computation of flux
between LCSs in the Hamiltonian case. Our method relies primarily on knowledge of hete-
roclinic orbits and their associated invariant manifolds that bound lobes within the extended
phase space. Thus, our computations of flux require very little Lagrangian information rela-
tive to computations involving FTLE or distinguished hyperbolic trajectories. In particular,
our adaptive computation of T (U) allowed for an order of magnitude reduction in the number
of particle advections required for a computation of the FTLE field at similar resolution.

An important extension to the theory presented here arises in light of recent advances in
the theory of finite-time manifolds [20, 51, 12, 54]. These studies have shown that, given a
system whose behavior is unknown outside an interval I = [t−, t+], the manifold structure of a
“sufficiently slowly” moving orbit at some time t ∈ int(I) is “unique” up to an exponentially
small correction term, provided t is “sufficiently far” from the endpoints of I. Since the
formulas (2.4) and (2.6) depend only on heteroclinic orbits lying on the boundary of a lobe,
they could be used directly to provide exponentially accurate approximations of lobe areas in
such systems.

It is not obvious if our technique can be applied more generally to nonautonomous systems
or to systems defined by a discrete set of data; however, there are several logical extensions
that we plan to address in future work. The first is the case of transitory, symplectic maps,
where the action formulas that we have developed should also apply. Similarly, since action
formulas for flux have been recently developed in the n-dimensional volume-preserving case
[34], transitory volume-preserving systems could also be treated. Finally, it is reasonable that
if the time-dependence is “episodic” in nature, each transition could at least approximately
be treated by the same methods that we have used.

Appendix A. Transition functions.

We can obtain a Ck transition function that is polynomial on t ∈ [0, 1] by requiring
s(0) = 0, s(1) = 1, and Djs(0) = Djs(1) = 0 for j = 1, . . . , k. On the interval [0, 1] these
functions are

s0(t) = t,

s1(t) = t2(3− 2t),

s2(t) = t3(10 − 15t+ 6t2),

s3(t) = t4(35 − 84t+ 70t2 − 20t3),

s4(t) = t5(126 − 420t+ 540t2 − 315t3 + 70t4).

(A.1)
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Figure 15. The transition functions sk(t) for odd k up to 9.

Figure 15 shows several of these functions for various values of k. It is not hard to see that in
general these polynomials are given by

sk(t) =
Γ(2k)

(Γ(k))2

∫ t

0
sk(1− s)k ds

for t ∈ [0, 1], which is monotone.

Appendix B. Forms and Lie derivatives.
Here we set out our notation, which follows [1]. We denote the set of k-forms on a manifold

M by Λk(M) and the set of vector fields by V(M). If α ∈ Λk(M) and V1, V2, . . . , Vk ∈ V(M),
then the pullback, f∗, of a form α by a diffeomorphism f is defined by

(B.1) (f∗α)x(V1, V2, . . . , Vk) = αf(x)(Df(x)V1(x), . . . ,Df(x)Vk(x)).

The pullback can be applied to a vector field V as well:

(B.2) (f∗V )(x) = (Df(x))−1V (f(x)).

The push-forward operator is defined as

(B.3) f∗ = (f−1)∗.

The interior product of α with V is defined as the (k − 1)-form

(B.4) ıV α ≡ α(V, ·, . . . , ·).
Suppose that ϕt,t0 is the (C1) flow of a vector field V (x, t), so that ϕt0,t0(x) = x, and
d
dtϕt,t0(x) = V (ϕt,t0(x), t). Then the Lie derivative with respect to V is the linear opera-
tor defined by

(B.5) LV · ≡ d

ds

∣∣∣∣
s=t

ϕ∗
s,t·,
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where · is any tensor. In particular, for a vector field X,

(B.6) LVX = [V,X] = (V · ∇)X − (X · ∇)V,

where [ , ] is the Lie bracket. The Lie derivative acting on differential forms obeys Cartan’s
homotopy formula

(B.7) LV α ≡ ıV (dα) + d(ıV α).

Note that L behaves “naturally” with respect to the pullback:

(B.8) f∗LV α = Lf∗V f
∗α.
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