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Abstract

We develop a Melnikov method for volume-preserving maps with codimension
one invariant manifolds. The Melnikov function is shown to be related to the flux
of the perturbation through the unperturbed invariant surface. As an example, we
compute the Melnikov function for a perturbation of a three-dimensional map that
has a heteroclinic connection between a pair of invariant circles. The intersection
curves of the manifolds are shown to undergo bifurcations in homology.

1 Introduction

Volume-preserving maps on R3 provide an interesting and nontrivial class of dynamical
systems and give perhaps the simplest, natural generalization to higher dimensions of the
much-studied class of area-preserving maps. They also arise in a number of applications
such as the study of the motion of Lagrangian tracers in incompressible fluids or of the
structure of magnetic field lines [1, 2]. Experimental methods have only recently been
developed that allow the visualization of particle trajectories in three-dimensional fluids
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[3, 4]. The infinite dimensional group of volume-preserving diffeomorphisms is also at the
core of the ambitious program to reformulate hydrodynamics [5].

While some of the results for area-preserving maps generalize to the volume-preserving
case, the study of transport in such systems is still in its infancy [6, 7, 8]. The theory
of transport is based on dividing phase space into regions separated by partial barriers
through which flux can be measured. For the area-preserving case, the natural partial
barriers are formed from the stable and unstable manifolds of periodic orbits or cantori
[9, 10]. Primary intersections can be used to form resonance zones [11, 12]—regions
of phase space that are bounded by alternating stable and unstable segments joined at
primary intersection points. Because the intersection points are primary, a resonance zone
is bounded by a Jordan curve and has an exit and an entry set [13]. The area of each of
these sets is the geometric flux, the area leaving the resonance zone each iteration of the
map. The images of the exit and entry sets and their intersections completely define the
transport properties of the resonance zone [14].

Thus the beginning of a generalization of this theory to higher dimensions is the study
the intersections of codimension-one stable and unstable manifolds for volume-preserving
maps.

As is well-known, a transversal intersection of stable and unstable manifolds is associ-
ated with the onset of chaos, giving rise to the construction of Smale horseshoes. A widely
used technique for detecting such intersections is the Melnikov method. Given a system
with a pair of saddles, and a heteroclinic or saddle connection between them, the Melnikov
function computes rate at which of change the distance between the manifolds changes
with a perturbation. The integral of the Melnikov function between two neighboring
primary intersection points is the first order term in the geometric flux [15, 16].

Most applications of the method are for two-dimensional maps and flows [17, 18, 19,
20], though a Melnikov method for a three-dimensional incompressible flow was developed
in [21]. In this latter case the perturbation may be periodically time dependent, and the
Poincaré map of the system is assumed to have a hyperbolic invariant curve, with two-
dimensional manifolds.

For the case of maps, the analogue of Melnikov integral is an infinite sum whose domain
is the unperturbed connection. As usual, a simple zero of this function corresponds to a
transverse intersection of the manifolds for the perturbed map. We developed a Melnikov
method for three-dimensional maps in [22] to study and classify intersections of stable
and unstable manifolds for fixed points.

In this paper we generalize this method to the problem of detecting heteroclinic orbits
between a pair of normally hyperbolic invariant sets in volume-preserving maps on Rn.
Our application is to the case of invariant circles for a three-dimensional map.

To obtain a Melnikov function, we must define an appropriate measure of the distance
between a manifold and its perturbation. In [22] we used the cross product of pair of
tangent vectors fields to obtain this distance. Different versions of Melnikov’s method
have used other ways of measuring the splitting between the unperturbed separatrix
and the perturbed one, though naturally only the normal distance is well-defined in the
codimension-one case. This is appropriately measured using anadapted normal vector field
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or differential form. An adapted normal is a normal field to the saddle connection that is
invariant under the dynamics. If the map is integrable, then the gradient of an integral
can be used to construct the adapted normal, but the concept applies more generally to
nonintegrable systems.

We use the Melnikov function to construct a flux-form, an (n − 1)-form whose inte-
gral over a fundamental domain on the connection measures the first order flux through
the connection. The fundamental domain is an annulus that generates the entire mani-
fold upon iteration. Since the map is volume-preserving, the net (algebraic) flux always
vanishes, but the one-way (geometric) flux gives a measure of the transport.

In [22] we introduced a family of volume-preserving maps that have a saddle connection
between a pair of fixed points. This family is obtained from a family of planar twist maps
with a saddle connection [23]. This family can be modified so that it has a pair of
invariant circles with a corresponding of saddle connection. We perturb this family by
composing it with a near-identity, volume-preserving map, thus producing examples of
volume-preserving maps with transverse heteroclinic orbits.

We study the curves of zeros of the Melnikov function on a fundamental domain of the
unperturbed manifold. Using the map to identify the two boundaries, the fundamental
domain becomes a torus. Thus the zeros of the Melnikov function can be characterized
by their homology on this torus. We show that as the parameters of the map are varied,
the homology of these curves undergoes bifurcations, and that these bifurcations strongly
influence the geometric flux.

2 Basic definitions and properties

Suppose f0 : Rn → Rn is a diffeomorphism on n-dimensional Euclidean space. A smooth
perturbation of f0 is a family of functions fε ≡ f(·, ε) such that f(·, 0) = f0 and f(x, ε) is
smooth in both variables. We now define a vector field on Rn that will be used to measure
the motion of an invariant manifold.

Definition (Perturbation vector field). Given a perturbation fε of f0, define the
vector field Xε for any point x ∈ Rn by

Xε(x) ≡
[
∂

∂ε
fε(y)

]
y=f−1

ε (x)

. (1)

Perturbation vector fields have some special properties. First, it is easy to see that Xε

is independent of f0. Second, if one regards Xε as a time dependent vector field (where
time is ε), then y(ε) = fε(x) is the solution of the initial value problem

dy

dε
≡ Xε(y) , y(0) = f0(x) .

Thus if we let Ft,s = ft ◦ f−1
s , then F represents the flow of the nonautonomous vector

field Xε [24, Thm. 2.2.23]. Since F is volume-preserving, the vector field Xε has zero
divergence with respect to Ω [24, Thm. 2.2.24].
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It is often convenient to define a perturbed family by composing f0 with an ε dependent
perturbation:

fε = (id+ εPε) ◦ f0 = f0 + εPε ◦ f0 . (2)

In this case, the vector field is the first order approximation to the perturbation, X0(x) =
P0(x).

2.1 Invariant manifolds

Suppose the family fε has a family of invariant manifolds Wε ↪→ Rn. In this paper, we
will assume that Wε is a codimension-one surface. Our goal is to understand, at least to
first order, the relation between the perturbation vector field and the way these invariant
manifolds evolve with ε. Later, we will restrict ourselves to the case in which Wε consists
of pieces of stable and unstable manifolds of some invariant set. When Wε is a smooth
graph over W0, we can define a map that is adapted to the ε parameterization:

Definition (Adapted deformation). A map φ : W0 × (−ε0, ε0) → Rn, is adapted to
Wε, if there is an ε0 > 0 such that

• φε = φ(·, ε) is a diffeomorphism φε :W0 →Wε , ∀ε ∈ (−ε0, ε0).

• φ0 = φ(·, 0) = idW0.

There is quite a bit of freedom in the choice of φ; however, only the normal behavior
is important for our application, since it measures the actual motion of Wε with ε, and
this is unique:

Proposition 1. Suppose φε and φ̃ε are two adapted deformations for a family of invariant
manifolds Wε. Then [

∂

∂ε
φ̃ε(x)−

∂

∂ε
φε(x)

]
ε=0

∈ TxW0.

Proof. Since both φε(x) and φ̃ε(x) are points in Wε, the curve Cε(x) = φ−1
ε (φ̃ε(x)) is a

curve in W0 parameterized by ε, and C0(x) = x. Thus its derivative at zero is a tangent
vector to W0: [

∂

∂ε
Cε

]
ε=0

∈ TxW0.

Thus

∂

∂ε
φε(Cε(x))

∣∣∣∣
ε=0

=
∂

∂ε
φε(x)

∣∣∣∣
ε=0

+Dφ0(x)

[
∂

∂ε
Cε(x)

]
ε=0

=
∂

∂ε
φ̃ε(x)

∣∣∣∣
ε=0

,

Since Dφ0(x) = I, this gives the promised result.
We will use this proposition to compute the Melnikov function in §3. For this we

need to measure rate of change of an invariant manifold with respect to a perturbation—
changes in the tangent direction are unimportant. In order to measure the change in the
normal direction, we introduce the concepts of adapted normal vector fields and adapted
forms.



2 BASIC DEFINITIONS AND PROPERTIES 5

2.2 Adapted normals

We will measure the splitting by using a normal to the invariant manifold W0, that
throughout this paper will be a codimension-one submanifold, i.e. a surface. To be
useful, the normal field should evolve in a precise way under the unperturbed map or, as
we say, be “adapted” to the dynamics.

First we recall some notation. Let v be a vector field and f a diffeomorphism. The
pull-back of v under f is (f ∗v)(x) = (Df(x))−1v(f(x)). Similarly, the pull-back of a
k-form ω is (f ∗ω)x(v1, v2, ...vk) = ωf(x)(Df(x)v1, . . . , Df(x)vk). Finally the inner product
of a vector field Y with a k-form ω is defined as the (k − 1)-form iY ω = ω(Y, ·, . . . , ·).

Definition (Adapted normal field). Suppose that f : Rn → Rn is a diffeomorphism
with an invariant surface W, and there is given an inner product 〈, 〉 for vectors on Rn.
An adapted normal field is a smooth function η :W → Rn such that

• η(x) 6= 0 for all x ∈ W.

• η(x) is normal to the surface for all x ∈ W, that is η(x) ∈ TxW⊥.

• For all vector fields Y :W → Rn we have that

f ∗〈η, Y 〉 = 〈η, f∗Y 〉. (3)

The geometry is shown in Fig. 1. Note that the pullback of a scalar function g : Rn → R
is f ∗g(x) = g(f(x)); thus if we define Z(x) = f ∗Y (x), (3) is equivalent to

〈η(x), Z(x)〉 = 〈η(f(x)), Df(x)Z(x)〉

x

f(x)

η(x)

Y(f(x))
η(f(x))

Df(x)
f*Y(x)

f *<η,Y>

<η,f*Y>

Figure 1: η is an adapted normal if the two rectangles shown have the same area.
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Adapted normals can be thought of as a generalization of the gradient normal that
one gets from a first integral. Recall that the gradient of a smooth function J : Rn → R
is the unique vector field, ∇J , such that for all vector fields Y on Rn,

iY dJ ≡ dJ(Y ) = 〈∇J, Y 〉. (4)

If f has a nondegenerate first integral, J = J ◦ f , then (4) implies that f ∗〈∇J, Y 〉 =
〈∇(J ◦ f), f∗Y 〉. Therefore, if the diffeomorphism f has a first integral J , then ∇J is an
adapted vector field, provided it doesn’t vanish on W .

If we are using the standard inner product on Rn, then we can characterize adapted
normals more concretely.

Proposition 2. Let η : W → Rn be a smooth function defined on the invariant surface
W, and suppose 〈u, v〉 = ut · v is the standard inner product on Rn. Then η satisfies (3)
for all vector fields Y :W → Rn if and only if, for all x ∈ W

Df(x)tη(f(x)) = η(x).

In the general case W is not defined as the level set of an invariant, and it is not easy
to show that an adapted normal field exists. However, when the map is volume-preserving
and we are given an appropriate parameterization of the invariant surface, an adapted
normal vector field can easily be constructed.

Lemma 3. Suppose that f : Rn → Rn preserves the volume-form Ω, and has a smooth
invariant surface W. Suppose k : Rn−1 → Rn is a nondegenerate parameterization of W
with the property

f(k(u)) = k(u+ δ) , (5)

for a constant δ ∈ Rn−1. Then the vector field η :W → Rn restricted to W defined by

〈η, ·〉 = Ω(·, ∂u1k, ∂u2k, . . . , ∂un−1k) (6)

is an adapted vector field on W.

Proof. The nondegeneracy of the parameterization implies that η 6= 0 on the surface W .
Condition (5) implies that

Duk(u+ δ) = Du (f ◦ k) (u) = Dxf (k(u))Duk(u) ;

therefore, since f ∗Ω = Ω, we have

f ∗〈η(k), Y (k)〉 = 〈η(f(k)), Y (f(k))〉
= Ωf(k)

(
Y (f(k)), ∂u1k(u+ δ), . . . , ∂un−1k(u+ δ)

)
= Ωf(k)

(
Y (f(k)), Df(k)∂u1k(u), . . . , Df(k)∂un−1k(u)

)
= Ωx

(
Df(x)−1Y (f(k)), ∂u1k(u), . . . , ∂un−1k(u)

)
= 〈η(k), f∗Y )〉 .
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2.3 Adapted one-forms

An alternative concept to that of adapted vectors are adapted forms. The advantage of
one versus the other approach is mainly a question of taste, though differential forms can
be used without assuming an inner product. We now define an “adapted one-form.”

Definition (Adapted one-form). Suppose that f : Rn → Rn is a diffeomorphism. An
adapted one-form on an invariant surface W is a smooth function ν : TWRn → R such
that

• νx is nondegenerate for all x ∈ W.

• νx(v) = 0 for all v ∈ TxW.

• f ∗ν = ν

Note that when ν is an adapted one-form then for each x ∈ W , ker(νx) = TxW ,
but that since ν is nondegenerate, it will not be zero for vectors that are not tangent to
W . As before, we note that if W is given as the level surface of an invariant function
J , i.e. if J(f(x)) = J(x), then an adapted one-form is easy to obtain: the one-form
dJ is adapted provided only that J has no critical points on W . This follows because
f ∗dJ = d(J ◦ f) = dJ .

Given an inner product, 〈·, ·〉 we can always associate a unique vector field, η with a
form ν, through iXν = ν(X) = 〈η,X〉. Here η : W → Rn is a smooth function. It is
easy to see that, if the η is adapted, then ν is also adapted. Conversely, given an adapted
one-form, we can find an adapted normal field, through the same relation.

Proposition 4. Let η and ν be related through

iXν = 〈η,X〉 . (7)

Then η is an adapted normal if and only if ν is an adapted form.

Using this with Lem. 3 implies immediately.

Corollary 5. Let f : Rn → Rn preserve a volume-form Ω, and W be a smooth invariant
surface. Suppose k : Rn−1 → Rn is a nondegenerate parameterization of W such that
f(k(u, v)) = k(u+ δ) for constant δ ∈ Rn−1. Then

ν = Ω(·, ∂u1k, . . . , ∂un−1k) (8)

is an adapted one-form on W.
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2.4 Example

Let f : R3 → R3 be the two parameter family of diffeomorphisms

f(x, y, z) =

 eτ (x cos θ − y sin θ)
eτ (x sin θ + y cos θ)
1
2
(x2 + y2) + e−2τz

 ,

where τ and θ are constants. It is easy to see that f preserves the standard volume-form
Ω = dx ∧ dy ∧ dz. In addition, f has an invariant surface given by

W =
{
(x, y, z) ∈ Rn \ {0} : x2 + y2 = 4z sinh(2τ)

}
;

however, the “obvious” function x2 + y2 − 4z sinh(2τ) is not invariant. Instead, we pa-
rameterize W with the function k : R2 → R3 given by

k(u, v) =

 eu τ cos v
eu τ sin v

(4 sinh 2τ)−1e2u τ

 .

The function k is nondegenerate and satisfies

f(k(u, v)) = k(u+ 1, v + θ).

so that Lem. 3 and Lem. 5 apply. Using (8), we find that ν = −2τz(xdx + ydy −
2 sinh(2τ)dz) an adapted form on W . In other words f ∗ν = ν and ker νp = TpW , as can
be explicitly verified. Also using (6), it is possible to show that

η(x, y, z) =

 −2τxz
−2τyz

4τz sinh 2τ


is an adapted normal field on W . In other words, it satisfies Df(x)tη(f(x)) = η(x), for
each x ∈ W . Note that ν and η are related through iXν = 〈η,X〉.

3 Melnikov Function

Suppose that the diffeomorphism f0 has two normally hyperbolic invariant sets p and q,
and a codimension-one surface W = W u(p) = W s(q) that is a saddle connection between
them. Upon perturbation, suppose that the corresponding invariant sets pε and qε of fε
have a stable manifoldWs

ε and unstable manifoldWu
ε . Then in our notation, the classical

Melnikov function is the smooth function Mν : W → R on the saddle connection W
defined by

Mν ≡ ν

(
∂

∂ε

∣∣∣∣
ε=0

(φuε − φsε)
)
, (9)
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for a given adapted form ν on W , and a given pair of adapted perturbations φsε and φuε
corresponding to the stable and unstable manifolds, respectively. Thus Mν measures the
relative “velocity” of the manifolds as a function of ε. While Mν appears to depend on
the choice of adapted perturbations, we will show that it does not.

A function similar to Mν was used in [22], to study the topology of heteroclinic con-
nections of fixed points. Our purpose is to apply the method to the case of invariant
circles, as illustrated in Fig. 2.

C

C

W

2

1

Figure 2: Two normally hyperbolic invariant circles C1 and C2 with a saddle connection W.

3.1 The fundamental iterative relation

The fundamental relation used in deriving the Melnikov function is an iteration formula
obtained by combining the definition of adapted one-form and Prop. 1.

Theorem 6. Suppose fε is a family of diffeomorphisms with invariant surfaces Wε. Let
ν be an adapted one-form and φε be an adapted deformation on W0. Define µ : W → R
by

µ(x) = ν (∂εφ(x, ε)|ε=0) .

Then
µ− µ ◦ f−1

0 = ν(X0) , (10)

where X0 is the perturbation vectorfield, (1). Moreover, if φ̃ε is another adapted deforma-
tion and µ̃ is defined similarly to µ, then µ = µ̃.
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Proof. By Prop. 1 the difference between the derivatives of two adapted diffeomorphisms
is tangent to W , and by Defn. 2.3, ν vanishes on any tangent vector. Thus µ = µ̃. To
compute the second relation, use f ∗0 ν = ν to find

µ = f ∗0 νx(∂εφε(x))

= νf0(x) (Df0(x)∂εφε(x))

= νf0(x) (∂εfε(φε(x))− ∂εfε(x)) ,

where we suppress the ε = 0 expressions for simplicity. Using (1) X0 = ∂εfε(f
−1
0 (x)), we

have µ ◦ f−1
0 = νx

(
∂εfε(φε(f

−1
0 (x)))

)
− νx(X0), and therefore

µ− µ ◦ f−1
0 = ν

(
∂εφ− ∂εfε(φε(f−1

0 (x)))
)

+ ν(X0) .

Noting that φ̃ε = fε(φε(f
−1
0 (x)) is also an adapted diffeomorphism, we see that the first

term vanishes by Prop. 1.
Equation (10) gives us a recursive formula to compute the normal component of the

change in the manifold Wε.

Corollary 7. Under the assumptions of Thm. 6, for all n ∈ N

µ = µ ◦ f−n0 +
n−1∑
k=0

ν(X0) ◦ f−k0 .

In addition, if lim
n→∞

µ ◦ f−n0 (x) = 0, then

µ(x) =
∞∑
k=0

ν(X0) ◦ f−k0 =
∞∑
k=0

ν
(
(f−k0 )∗X0

)
. (11)

These statements can be directly transcribed for adapted normals using Prop. 4.

3.2 Transversal intersections

According to Thm. 6 and Cor. 7, we can compute the Melnikov function (9) in terms of
the first order perturbation vector field X0.

Proposition 8. Suppose f has a codimension-one saddle connection W between two
normally hyperbolic invariant sets p and q. Assume that for all x ∈ p∪q, the perturbation
vector field X0(x) = 0. Let ν be an adapted form and η the corresponding adapted normal
defined on W. Define the Melnikov function by

Mν =
∞∑

k=−∞

ν(X0) ◦ fk0 =
∞∑

k=−∞

〈η,X0〉 ◦ fk0 . (12)

Then if a point x0 ∈ W is a nondegenerate zero of Mν, the stable and unstable manifolds
W u(q, fε) and W s(p, fε) intersect transversally near x0 for ε small enough.
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Proof. For each point x in the saddle connectionW , there is a neighborhoodN0 ⊂ W , such
that all the iterates fk(N0) are disjoint. Moreover, since p and q are normally hyperbolic,
the stable manifold theorem implies that there is an ε0 > 0 such that there exist adapted
deformations φu : N0 × (−ε0, ε0)→ W u(q, fε), and φs : N0 × (−ε0, ε0)→ W s(p, fε).

Consider first the unstable part. Let V =
⋃∞
k=0 f

−k
0 (N0). Clearly V is a immersed

manifold. Moreover, we can extend the domain of φu to all of V , by defining

φu(x, ε) = f−kε (φu(fk0 (x), ε)) ,

provided that x ∈ f−k0 (N0). It is clear that for each ε ∈ (−ε0, ε0) and x ∈ V, we have
that φu(x, ε) ∈ W u(q, fε).

For each x, we are interested in estimating φ(x, ε) to first order in ε. Using φu in
Cor. 7 gives (11) providing µu ◦ f−n(x)→ 0. This is the case because φu(f−n(x), ε)→ 0
so that ∂εφ

u is bounded, and νf−n
0 (x) → 0 since it is an adapted form.

Similar analysis applies to the stable adapted deformation, and again Cor. 7 applies,
though we iterate in the opposite direction, to obtain µs = −

∑∞
k=1 ν(X0)◦fk0 . According

to (9), the difference between µu and µs gives the Melnikov function, which yields (12).
Following a standard Melnikov argument based on the implicit function theorem [25],

we conclude that if x0 is a nondegenerate zero Mν then near x0, the two manifolds W u(fε)
and W s(fε) intersect transversely.

4 Flux

The flux across a surface is the volume that crosses the surface each iterate of a map; it is
an important measure of transport. Recall that for area-preserving maps, the Melnikov
function is a measure of the distance between the stable and unstable manifolds, and that
its integral between two successive zeros is the geometric flux that crosses the “separatrix”
each iteration of the map [15, 16]. The outgoing flux is exactly balanced by an ingoing
flux, so that the net, or algebraic, flux crossing the separatrix is zero.

Here we will obtain an analogous formula for volume-preserving maps (see also [8]).
We start by constructing a flux form on an invariant set. We will see that the algebraic
flux crossing the separatrix is zero. This implies, for example that the Melnikov function
has zeros in the separatrix.

4.1 Flux Form

It is well known that a volume-preserving map with an invariant J can be restricted to
a measure preserving map on any surface J = c on which ∇J is nonzero. That is, the
form ω = |∇J |−2i∇JΩ is an invariant n − 1 form for the map f |J=c. We show here that
a similar preserved measure also exists if we can find an adapted normal for an invariant
surface W . We will then use this to construct a flux form on W .

As usual, we assume that f is a diffeomorphism with an invariant volume-form Ω, W
is an invariant codimension-one hypersurface, and 〈 , 〉 is an inner product on Rn.
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Proposition 9. Suppose η is an adapted normal field on W. Then

ωη =
iηΩ

〈η, η〉

is a nondegenerate (n − 1)-form on W that is invariant under the restricted map f |W :
W →W.

Proof. It is clear that ωη is a nondegenerate (n − 1)-form on W . We need to show that
f ∗0ωη = ωη for vectors in TW . With some manipulations we have

f ∗ωη − ωη =
if∗ηf

∗Ω

f ∗〈η, η〉
− iηΩ

〈η, η〉

=
if∗ηΩ

〈η, f∗η〉
− iηΩ

〈η, η〉
= ivΩ.

where we define the vector field:

v =
f ∗η

〈η, f∗η〉
− η

〈η, η〉
.

Since 〈η, v〉 = 0 on W for each point x ∈ W , and η defines the normal direction, then
v(x) ∈ TxW . Since v is tangent to W , the form ivΩ restricted to W has to vanish. Thus,
we conclude that (f ∗ωη − ωη)W = 0.

From now on assume that W has an adapted vector field η, and the Melnikov sum
(12) exists. We then define

Definition (Flux Form). The flux form Φ ≡Mηωη is an (n− 1)-form on W.

Note that Φ might be degenerate (it has zeros), and since the space of (n−1)-forms on
the (n−1)-dimensional manifoldW is one-dimensional, it might not be unique. However,
this is not the case:

Lemma 10. If the Melnikov function exists, then the form Φ is independent of the choice
of η.

Proof. The projection of X0 onto TW is the vector v = X0 − 〈η,X0〉
〈η,η〉 η. Note that

iX0Ω− 〈η,X0〉ωη = ivΩ.

Since v ∈ TW , we conclude that ivΩ = 0, as a (n− 1)-form in the surface W , and so we
have

〈η,X0〉ωη = iX0Ω

for all vectors in TW . This implies that the summand of Mηωη, recall (12), can be
rewritten

(fk0 )∗〈η,X0〉ωη = (fk0 )∗iX0Ω ,

which is independent of η.
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Thus we have

Φ = Mηωη =
∞∑

k=−∞

(fk0 )∗iX0Ω . (13)

Since ωη is nondegenerate, the degenerate points of the flux form correspond to zeros of
the Melnikov function. As we will see in §4.3, the integral of the flux form over a piece of
W gives flux through that surface to first order in ε.

The form iXεΩ has some interesting properties:

Proposition 11. Let Xε be a perturbation vector field (1). Then the form iXεΩ is exact.

Proof. As we already noted,Thm 2.2.24 in [24] implies that the divergence of Xε vanishes,
which by definition (divΩXε)Ω ≡ LXεΩ, means that the Lie derivative vanishes as well.
Since dΩ = 0 and LXεΩ ≡ d(iXεΩ)+ iXεdΩ, this implies that d(iXεΩ) = 0. Thus the form
is closed. Since iXεΩ is globally defined in Rn, the form is exact.

Using this result we can obtain an (n− 2)-form β on W such that

dβ ≡ iX0Ω . (14)

In this case we will say that β represents the perturbation onW . Using Lem. 10 and (14),
it is easy to see that if Mη exists then the following (n− 2)-form is well-defined on W .

α =
∞∑

k=−∞

(fk0 )∗β.

Notice that α is invariant under f and is independent of η. Using this we can see that:

Proposition 12. The flux form Φ is

Φ = dα .

Proof. This is a straightforward calculation using Lem. 10 and Prop. 9.

4.2 Fundamental Domains

Our goal in this section is to find a compact subset of the manifold—a fundamental
domain—that generates the entire manifold under iteration by f0. We will integrate
the flux form over the fundamental domain to show that the algebraic flux crossing the
separatrix is zero. From this point on, we will concentrate on the case n = 3. To define
the fundamental domain we start with the concept of a proper loop:

Definition (Proper loop). Let f0 : R3 → R3 be a diffeomorphism, and W a forward
invariant surface. We say that a smooth Jordan loop γ ⊂ W is a proper boundary in W
if there γ bounds a surface Wγ ⊂ int(W) which is a trapping region:

f(cl(Wγ)) ⊂ int(Wγ) .
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Similarly a loop γ is a proper loop for a backward invariant surface if it is a proper
loop for the map f−1.

It is important to notice that not all invariant surfaces admit proper boundaries. A
trivial observation is:

Proposition 13. If γ is a proper boundary in W, then f(γ) is also a proper boundary.
In addition, Wf(γ) = f(Wγ).

The situation that we have in mind relates to the structure of stable and unstable
manifolds. Let a, b be compact, normally hyperbolic invariant sets of f , andW = W s(a) =
W u(b) a saddle connection between them. A proper loop γ ⊂ W is a submanifold of W
that bounds a local submanifold that is a isolating neighborhood of a in W s(a). In other
words γ is proper if it bounds an open local submanifold, W s

loc(a) =Wγ, that maps inside
itself.

If γ is proper, we can define the stable manifold starting at γ, denoted byWγ = W s
γ (a),

as the closure in W s(a) of the local stable manifold bounded by γ. In the same way, for
b, if we have a proper loop σ for f−1, we define the unstable manifold up to σ, denoted
W u
σ (b), as the interior of the local unstable manifold bounded by σ. We will see below

why it is convenient to use this slightly asymmetric definition.
Given a proper loop we can define

Definition (Fundamental domain). Let W be a forward invariant surface. An sub-
manifold with boundary, P, is a fundamental domain of W if there exists some proper
loop γ in W, such that

P = Pγ =Wγ \Wf(γ) .

The fundamental domain is a manifold with the boundary

∂P = γ ∪ f(γ) ,

see Fig. 3. An immediate consequence of the definition is that all the forward iterations
of a fundamental domain are also fundamental and Pf(γ) = f(Pγ). It is easy to see that,
if proper boundaries exist, then the forward invariant manifold can be decomposed as the
disjoint union of fundamental domains.

W = (W \Wγ) ∪
⋃
k≥0

fk (P) .

If the surface W is both forward and backward invariant, then this decomposition works
in both directions. In such case we have

W =
⋃
k∈Z

fk (P) .
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a

W

γ

P
P

γ

P

f( )γ
f( )γ

f( )γ

γ≡f( )γ

Figure 3: Fundamental domain P on a stable manifold of an invariant circle a bounded by a loop γ and
its image f(γ). The second part of the figure shows the annular fundamental domain itself, together with
an assigned orientation. Finally, if we identify the points on γ with their images, then the fundamental
domain is equivalent to a torus.

4.3 Algebraic Flux

Given a vector field X, the differential form iXΩ represents the flux associated with
X; that is given set of vectors v1, v2, ...vn−1, Ω(X, v1, v2, ...vn−1) is the volume of the
parallelepiped formed from these vectors, and thus measures the rate at which volume is
swept out by X through the parallelepiped defined by v1, v2, ...vn−1.

According to (13), the form Φ is the sum of iX0Ω along an orbit on W . Thus Φ
evaluated at a point on a fundamental domain P measures the total flux of X0 along the
orbit of that point.

The algebraic flux through a surface is the integral of the flux over the surface. Since
Φ measures the flux along an orbit on W , the integral of Φ over a fundamental domain is
the algebraic flux through the entire surface W .

Proposition 14. The algebraic flux through W is zero:
∫
W iX0Ω =

∫
P Φ = 0.

Proof. The fundamental domain P = Pγ is a submanifold with boundary, such that
∂Pγ = γ ∪ f(γ), where γ is closed curve that does not intersect f(γ). If we give an
orientation [P ] to P , the induced orientation on the boundary satisfies [γ] = − [f(γ)],
recall Fig. 3. Since Φ = dα by Prop. 12, and α is invariant under f , Stokes’s theorem,
implies ∫

P
Φ =

∫
P
dα =

∫
∂P
α =

∫
γ

α+

∫
f(γ)

α

=

∫
γ

α−
∫
γ

f ∗α = 0
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A simple corollary is

Corollary 15. The Melnikov function must have zeros on P.

The importance of fundamental domains is that much of the information about the
entire manifold can be found by looking only at these submanifolds. In particular, if we
have a transversal intersection of two invariant surfaces, we can look at a pair of funda-
mental domains and study primary intersections. In Fig. 4 we show a pair of fundamental
domains of two stable and unstable manifolds that intersect transversally.

γ

f ( )γ

a

f( )a

b

f( )b

Figure 4: A pair of fundamental domains for two different circles C1 and C2 that intersect transversally,
forming three-dimensional lobes.

The curves of zeros of the Melnikov function can be classified by their homology on P .
To do this, we identify two boundaries of the fundamental annulus by identifying γ with
f(γ). With this identification the fundamental annulus becomes a torus, as sketched in
Fig. 3. Since the homology group of the torus is Z2, we can label the curves by a pair of
integers (m,n) which represent the number of times the curves wrap around each circuit
of the torus. For example when the identification is performed on Fig. 4 there are a pair
of zero crossing curves with homology type (3, 1)—they move once around the annulus in
three vertical transits.

5 Examples

In this section we construct a family of volume-preserving maps that have a saddle con-
nection between a pair of invariant circles. We obtain this family by starting with an



5 EXAMPLES 17

area-preserving twist map that preserves an axis and extending it to a three-dimensional,
volume-preserving map by composing it with a sheared rotation about that axis. The
twist map is defined in such a way that it has a saddle connection between two fixed
points, and so the resulting three-dimensional map has a pair of invariant circles with a
two-dimensional connection. Examples similar to these were found by Lomeĺı [23] and are
closely related to those in [22].

We begin with an area-preserving map on R2 in coordinates (z, r) that preserves the
axis r = 0, and has a fixed point at some nonzero r = r∗. For example, set

(r′, z′) = G(r, z) =
(
h−1(r + h(z))− z, h(z) + r − r∗

)
,

where r∗ ∈ Z. Here we assume that h : R → R is an increasing circle diffeomorphism of
period 1, i.e., h(z + 1) = h(z) + 1. Moreover we can verify that det(DG) = 1, so that G
is area-preserving. Finally

G−1(r, z) =
(
z − h(h−1(z)− r), h−1(z) + r∗ − r

)
,

so that G is a diffeomorphism.
It is easy to see that G(0, z) = (0, h(z)− r∗) so that the z-axis is preserved. The map

has fixed points at solutions of z = 1
2
(h−1(z)+h(z)), with r = r∗+z−h(z). In particular,

any hyperbolic fixed point of h, z∗ = h(z∗), yields a saddle fixed point (r∗, z∗) of G whose
multipliers are λ = h′(z∗) and 1/λ. Between every pair of such fixed points of h there is
at least one other fixed point of G; it is typically elliptic.

The map G is not necessarily integrable (in §5.1 we will choose an h that leads to an
integrable map). However, G always has a pair of invariant curves:

W0 = {(z, r) : r = r∗} ,
W1 =

{
(z, r) : r = h−1(z)− h(z) + r∗

}
. (15)

These curves intersect at any fixed point z∗ of h. Thus they provide a saddle connection
between points (z∗1 , r

∗) and (z∗2 , r
∗), where z∗i are neighboring fixed points of h.

We show an example of the dynamics of G in Fig. 5 for the case that h(z) = z −
k
2π

cos(2πz), and r∗ = 1.0. Here one can see the saddle connection at r = r∗ as well as
chaotic dynamics in other regions of phase space.

We can extend G to R3 by introducing the cylindrical angle θ and using the volume-
form Ω = dr ∧ dθ ∧ dz. Defining r to be the “symplectic” polar radius,

r =
1

2
(x2 + y2) , (16)

the cylindrical coordinates are

(x, y, z) = P (r, θ, z) = (
√

2r cos θ,
√

2r sin θ, z)

so that Ω = dx∧dy∧dz. In terms of these coordinates the map becomes g = P ◦G◦P−1:

g(x, y, z) = (ρ(r, z)x, ρ(r, z)y, r + h(z)− r∗) ,
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z
0.0

0.25

-0.25

r 1.00.5

Figure 5: Dynamics of G for the Arnold circle map with k = 0.9. The domain of the figure is
[0, 1.5]× [−0.5, 0.5].

where ρ =
√
r′/r is explicitly

ρ(r, z) =


√
h−1(r + h(z))− z

r
, r 6= 0

(h′(z))−
1
2 , r = 0.

(17)

It was shown in [22] that if h is Cr, then ρ is Cr−1 so that, in this case, g is a
diffeomorphism.

The map becomes fully three-dimensional if we introduce dynamics in the angle θ. To
do this, we compose the map with a rotation. Denote the rotation about the z-axis by
angle ψ by

Rψ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (18)

Introducing a rotation angle τ(r, z) that depends smoothly on (r, z), we define a diffeo-
morphism f by

f = g ◦Rτ , (19)

Note that since Rτ and g both preserve Ω, so does f .
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The map f still has a rotational symmetry

f ◦Rψ = Rψ ◦ f , (20)

for any constant ψ ∈ R. This implies that when G has a saddle connection, so does f :

Proposition 16. The surfaces (15) are invariant under (19). In addition, W0 and W1

intersect on the invariant circles

C(z∗) = {(x, y, z) : z = z∗, r = r∗} ,

where z∗ is any fixed point of h.

Every point on the circles C(z∗) is fixed under g. The derivative of g at such points is

Dg(x, y, z) =


1

2r∗
(λ−1x2 + y2) 1

2r∗
(λ−1 − 1)xy 0

1
2r∗

(λ−1 − 1)xy 1
2r∗

(x2 + λ−1y2) 0

x y λ

 , (21)

where λ = h′(z∗). More generally, we can compute the derivative of fn on the invariant
circles for the special case that the rotation angle is constant:

Proposition 17. Suppose f is given by (19), that τ is constant, z∗ = h(z∗),and C(z∗) is
the corresponding invariant circle. Then for all (x, y, z) ∈ C(z∗)

Dfn(x, y, z) = Rnτ



1
2r∗

(λ−nx2 + y2) 1
2r∗

(λ−n − 1)xy 0

1
2r∗

(λ−n − 1)xy 1
2r∗

(x2 + λ−ny2) 0

(λ2n − 1)x

λn−1(λ2 − 1)

(λ2n − 1) y

λn−1(λ2 − 1)
λn

 , (22)

where λ = h′(z∗). Moreover, if λ > 1 (< 1) the invariant circle has a stable (unstable)
manifold contained in W1, and unstable (stable) manifold contained in W0.

Proof. Given the symmetry (20), it is enough to check (22) for points of the form

(
√

2r∗, 0, z∗).

Since (22) reduces to (21) when n = 1, it is enough to verify the induction step

Dg(
√

2r∗, 0, z∗)Dgn(
√

2r∗, 0, z∗) = Dgn+1(
√

2r∗, 0, z∗) .

The vector (0, 0, 1)t is an eigenvector of Dg(x, y, z∗) with eigenvalue λ. Since this is
tangent to W0, this shows that it is the stable manifold when λ < 1. Similarly the vector
(x, y, 2r∗ λ

1−λ2 )
t is an eigenvector with eigenvalue λ−1 that is tangent to W1. The final

eigenvector of Dg is (y,−x, 0)t which is tangent to C and has eigenvalue 1.
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5.1 Integrable case

In general the maps g and f are not integrable, even though they have a saddle connection.
However, for a special choice of h there is an integral. This example is related to the
work of Suris [26, 27] on area-preserving integrable maps, but is distinct from the three-
dimensional maps found in [28] that have an invariant but which do not have a rotational
symmetry.

Let m(w) = aw+b
cw+d

be the Möbius transformation on R ∪ {∞} with ad − bc = 1. A
circle map conjugate to m is obtained by defining w = tanπz, giving h

hm(z) =
1

π
arctan (m(tan πz)) . (23)

This map can be written more explicitly as a circle map using trigonometric identities:

hm(z) = z +
1

π
arctan

[
b− c+ (b+ c) cos(2πz) + (a− d) sin(2πz)

a+ d− (a− d) cos(2πz) + (b+ c) sin(2πz)

]
(24)

0

.4

.8

0 .4 .8

h(z)

h-1(z)

z

z'

Figure 6: The circle map hm(z) and its inverse for (a, b, c, d) = (1, 1
2 , 2, 2).

Requiring ad−bc = 1, some useful properties of this family of circle maps follow easily
from its conjugacy to the Möbius transformation

• htm = hmt , for all t ∈ Z;

• If |tr(m)| > 2 then hm has two fixed points z∗± ∈ [0, 1).
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• The fixed points have multipliers Dh(z∗±) = 4
(σ±

√
σ2−4)2

> 0, where σ = a+ d.

• Thus z∗− is unstable and z∗+ is stable.

For any hm, the resulting map G is integrable. To see this, we show how this map is
related to the Suris example. First note that G can be rewritten as a second difference
equation

zt+1 − 2zt + zt−1 = h(zt) + h−1(zt)− 2zt = F (zt) ,

where rt = zt+1 − h(zt) + r∗. Suris showed that this family is integrable when F is given
by

F (z) =
1

π
arctan

[
A sin(2πx) +B cos(2πx) + C sin(4πx) +D cos(4πx)

1− E − A cos(2πx) +B sin(2πx)− C cos(4πx) +D sin(4πx)

]
,

for any values of the parameters A,B,C,D,E. After some algebra one can see that our
map has this form with A = b2 − c2, B = (a − d)(c − b), C = 1

2
(b + c)2 − 1

2
(a − d)2,

D = (d− a)(b+ c), E = 1
2
(a2 + b2 + c2 + d2).

The map G with this h has the integral

J(z, z′) =(1− E) cos(2π(z − z′))− A(cos(2πz) + cos(2πz′))+

B(sin(2πz) + sin(2πz′))− C cos(2π(z + z′)) +D sin(2π(z + z′)) .

For the examples, we will use the map (19) with hm given by (24) with

m(w) =
(ν + 1)w + ν − 1

(ν − 1)w + ν + 1
(25)

This corresponds to setting m to the hyperbolic rotation matrix a = d = cosh(ln(ν)),
b = c = sinh(ln(ν)). In this case mt is given by replacing ν with νt; thus iteration of h is
extremely easy. This was also the example used in [22].

This gives a family of three-dimensional maps, f , with parameters ν and τ . Setting
r∗ = 1, there are invariant circles at (r∗, z∗) = (1,±1

4
). For this case the invariant has the

form
J(x, y, z) = 2ν cos(2πr) + (1− ν2) cos(2πz) sin(2πr) . (26)

The level sets corresponding to J = 2ν give the invariant manifolds W0, W1, and the
circles C(z∗). The level sets of J are shown in Fig. 7 for the case ν = 0.3. Though the
level sets of J make it appear that (1

2
,±1

4
) are also invariant; G(1

2
, 1

4
) = (1

2
,−1

4
), so these

points move downward. Moreover the curve {r = 1
2
} has image {r = h−1

ν (z)−hν(z) + 1
2
},

and this latter curve has image again of r = 1
2
.

5.2 Perturbed Map

We break the invariant surfaces by choosing a perturbation of the form (2). For the first
example, we choose a composition of two simple perturbations:

P1(x, y, z) =
(
(1 + y2)(z∗2 − z2), 0, 0

)
,

P2(x, y, z) =
(
0, x(z∗2 − z2), 0

)
.

(27)
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–0.4

–0.2

0

0.2

0.4

z

0.2 0.4 0.6 0.8 1 1.2 1.4
r

Figure 7: Levels sets of J for ν = 0.3 Here the maximum of J occurs at z = 0 near r = 1.1, while a
minimum occurs near r = 0.7.

Each of these maps has a nilpotent Jacobian, which implies that the maps id + εPi are
volume-preserving for all ε. The complete perturbation is then defined as

id+ εPε = (id+ εP2) ◦ (id+ εP1) .

Substituting the perturbation into the computation (1) for the vector field Xε gives

X0 = P2 + P1 .

Fundamental domains Pi on Wi are given by the annuli bounded by the circles γi =
{z = 0} ∩Wi and their images, f(γ0) = {z = h(0)} ∩W0 or f(γ1) = {z = h−1(0)} ∩W1,
respectively. These can be projected onto (z, θ) coordinates for visualization. Calculation
of the Melnikov sum (12) is straightforward using the adapted form dJ associated with
the invariant (26).

We show several representative contour plots of MdJ in Fig. 8. In the figure, positive
values of MdJ are shown as dashed lines and negative as dotted lines, while the zero
contour is the solid line. For example, in the bottom-left panel (ν = 0.275 and τ = 0.325)
there are two zero contours, corresponding to the unstable and stable manifolds crossing
with opposite signatures (since the algebraic flux through the fundamental annulus is
zero, the zero contours must come in pairs). Since the unperturbed map takes the circle
γ1 to the circle f(γ1) shifting each point by τ , the lower boundary of P can be identified
with the upper boundary after shifting the latter to the right by τ (we show this shift by
the arrows in Fig. 8). After this identification the fundamental annulus becomes a torus,
and the zero contours correspond to a pair of circles that wrap once vertically. Thus these
contours have homology type (1, 0). The bottom right panel also has this homology type,
though the curves are very close to a bifurcation.
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ν=0.275, τ=0.325

z

θ θ ν=0.25, τ=0.425

z

θ ν=0.3, τ=0.375

z

θ ν=0.3, τ=0.425

z

Figure 8: Contours of the Melnikov function for W0 with the perturbation (27). Shown are four values
of the parameters (ν, τ). Bounds for the figures are z = [0, h−1(0)] and θ = [0, 2π]. The arrow at the top
of each panel shows the translation by τ .

There are several such bifurcations in homology type of the zero contours as we vary
the parameters. For example in the upper left panel, the homology type is (3, 1)— as each
zero contour moves from the bottom to the top of P , it lags the maps translation of θ by
a full circuit in three vertical transits. In the top-right panel there are two zero contours
with the homology (2, 1). To elucidate these changes in homology, we show a bifurcation
diagram in the space of the parameters in Fig. 9. We have only found the three homology
classes already mentioned.

Also shown in Fig. 9 are contours of the geometric flux

Flux =
1

2

∫
P
|Φ|

as a function of ν and τ . The flux is largest when ν and τ are both small, and it appears
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to get extremely small as ν approaches one. Note that there is a “valley” in the flux
contours near both homology bifurcations.

ν

τ

(1,0)

(3,1)

(2,1)

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

Figure 9: Contours of the geometric flux through W0 as a function of ν and τ for the perturbation
(27). The nine contours are at equally spaced levels ranging from a flux of 0.09 at the lower left to 0.01
at the top. Also shown are bifurcation curves corresponding to the change in homology types of the zero
contours of MdJ .

Finally, we have also studied the perturbation

P1(x, y, z) =
(
(1 + y2)(z∗2 − z2), 0, 0

)
,

P2(x, y, z) =
(
0, x2(z∗2 − z2), 0

)
,

P3(x, y, z) = (0, 0, r − r∗) .
(28)

giving a perturbation vector field X0 = P1 + P2 + P3. We show the bifurcation diagram
for the zero contours of MdJ for W0 in Fig. 10. For this case there appear to be only two
homology types, (1, 0) and (3, 1). Again there is a “valley” in the flux near the bifurcation
curve.

We have also computed the Melnikov function for the second invariant set, W1, but
do not show the curves since they are very similar to those for W0.

6 Conclusion

We have shown that the flux-form Φ is the unique (n−1)-form on a codimension-one saddle
connection that describes the lowest order splitting of the manifolds upon perturbation.
The integral of the one-way flux over a fundamental domain characterizes the transport
across the manifolds in the perturbed system. For our example, the magnitude of the
flux is strongly correlated with bifurcations in the homology of the crossing curves—near
a bifurcation the flux is small. It would be nice to understand if this is a general feature
of transport for volume-preserving maps.
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0.3

0.5

0 0.1 0.2 0.3 0.4 0.5

0.7

0.9

ν

τ

(1,0) (3,1)

Figure 10: Contours of the geometric flux throughW0 as a function of ν and τ for the perturbation (28).
Also shown are bifurcation curves corresponding to the change in homology types of the zero contours of
MdJ . In this case there is only one curve of bifurcation, corresponding to (1, 0)←→ (3, 1).

In the future we also hope to study the evolution of the full manifolds numerically,
to compare with our Melnikov results. We would also like to develop a nonperturbative
method to compute the geometric flux, analogous to the action techniques for symplectic
maps [10]. With this, we would like to verify that the geometric flux quantifies the
transport observed numerically.
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