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Abstract

A symplectic twist map near an anti-integrable limit is conjugate
to a full shift on a set of symbols. We couple such a system to another
twist map in such a way that the resulting system is symplectic. At the
anti-integrable limit we construct a set of nonzero measure of orbits
of the second map that drifts arbitrarily far, even when the coupling
is arbitrarily small. Moreover, these drifting orbits persist near the
anti-integrable limit.
AMS classification scheme numbers: 37E40, 37J40, 37C50

1 Introduction

Are elliptic fixed points of symplectic maps generally stable or unstable? This

question continues to prove an enticing problem. The answer was provided

∗RWE would like to thank Rick Moeckel for inspiring some of the ideas in this paper
during his lecture at the Celestial Mechanics conference in honor of Don Saari, Dec. 1999.
We would also like to thank the referee and Robert MacKay for pointing out the argument
based on Birkhoff’s theorem in §4. JDM was supported in part by NSF grant number
DMS-9971760. GR was supported by NSF Vigre grant number DMS-9810751

1



1 INTRODUCTION 2

for the planar case by the celebrated work of Kolmogorov, Arnold and Moser

(KAM): if the map satisfies a “twist condition” in a neighborhood of a fixed

point and is not low-order resonant, then the point is encircled by a family

of invariant curves and hence is stable [Arn78]. For 2n dimensions, KAM

theory implies that when a twist condition is satisfied there exists a positive

measure family of invariant n dimensional tori having the fixed point as a

limit point. When n > 1, this family of tori does not necessarily prevent an

orbit starting near the fixed point from wandering far away. The “density” of

the family of tori should increase as the distance to the fixed point decreases,

and the probability that the orbit of a randomly chosen point very close to

the fixed point passes beyond a sphere of fixed radius about that point is

close to zero. However, the fixed point, z, is by definition unstable if there

exists a sequence of points zn → z, and a neighborhood U of z such that

the orbit of each point zn intersects the complement of U . It is possible that

such a sequence exists even when the orbit of a randomly chosen point near

z is likely to remain in U .

Arnold gave a famous example of this behavior in 1964 [Arn64]. Specifi-

cally he showed that a nearly-integrable hamiltonian flow with more than two

degrees of freedom can have orbits that move arbitrarily far from their initial

action values. This phenomena has come to be known as Arnold diffusion.

The, as yet unsolved, “problem of Arnold diffusion” is to show that such

a topological instability “typically” occurs in nearly-integrable hamiltonian

systems (and perhaps eventually to show that the action drift is indeed diffu-

sive). Arnold’s example is special in that it is a periodically time dependent

system with two degrees of freedom, constructed in such a way as to have a

normally hyperbolic family of invariant two tori.

In this paper we are concerned with similar phenomena in symplectic

maps. A symplectic analogue of Arnold’s example is the map on T2 × R2

defined by

x′ = x + y′ ,

ξ′ = ξ + η′ ,

y′ = y − k(1 + h cos ξ) sin x ,

η′ = η − kh(1 + cos x) sin ξ . (1)
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Figure 1: Phase space of the map (1) when h = 0 consists of two uncoupled maps. On

the left is a standard map in (x, y), and on the right is an integrable twist map in (ξ, η).

This is a symplectic map preserving the two form ω = dx∧dy+dξ∧dη. When

h = 0, the map (1) reduces to a pair of uncoupled, area-preserving maps,

see Fig. 1. The (ξ, η) dynamics are integrable: each circle η = a is invariant.

The (x, y) dynamics are given by a “standard map,” which is not integrable.1

When k > 0 there is a cylinder C = ∪aCa foliated by the one parameter family

of hyperbolic invariant circles Ca = {x = π, y = 0, η = a}. These circles have

two dimensional stable and unstable manifolds and are called “whiskered

tori.” These manifolds intersect transversely giving a family of homoclinic

orbits to each Ca. The map is specially chosen so that the term 1 + cos x

in the η component vanishes on these circles; this implies that each circle,

Ca, exists for all h. Moreover, because the cylinder is normally hyperbolic

at h = 0, the cylinder itself persists as a normally hyperbolic invariant set.

The problem addressed by Arnold is to show that there are orbits that drift

arbitrarily far in η when h is arbitrarily small.

For his example, Arnold constructs a “transition chain” of whiskered

tori. For (1), this requires that one shows that the unstable manifold of an

invariant circle Ca intersects transversely with the stable manifold of a nearby

circle Ca′ whenever a′ is close enough to a, see Fig. 2. Once the transition

chain is obtained, the final step is to argue that orbits beginning near Ca can

1Thus this example differs from Arnold’s in that he considers perturbations of an
integrable system. This could be easily remedied by replacing the standard map with
a Suris map [Sur89]. This map has a homoclinic connection from the fixed point (π, 0) to
itself, and perturbations can be studied using Melnikov theory [LM00].
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Figure 2: Phase space of the map (1) when h 6= 0. On the left we sketch the dynamics

near the normally hyperbolic cylinder C suppressing the angle ξ, and showing the orbits

homoclinic to the invariant circles Ca. The transition from Ca to Ca′ occurs at the

heteroclinic point h.

drift near to Ca′ by shadowing the heteroclinic orbits. In this way one can

construct orbits that move an arbitrary distance in η for h arbitrarily small.

Both Arnold’s flow and the map (1) are special for two reasons. First since

we assume k > 0 is independent of h, the cylinder C is a normally hyperbolic

invariant manifold. The case when k and h are linked is important for the

determination of the stability of a generic elliptic fixed point; however, it is

difficult [Loc99]. The second distinguishing characteristic is that all of the

whiskered tori persist when the coupling is nonzero. More generally one needs

to use KAM theory to show that some subset of the tori (with Diophantine

frequencies) persist. Unfortunately this means that there are gaps between

the tori so that a′ cannot be chosen arbitrarily closely to a. In this case one

would need to show that the heteroclinic connections can bridge the gaps. In

general this is also a difficult problem, see [Loc99] for a review. A variational

approach pioneered by Mather can successfully obtain some results along

these lines [BT99, DdlLS00].

We will avoid these difficulties by approaching the problem from a dif-

ferent direction. When h = 0 and k is large enough, there are many zero

measure sets on which the standard map dynamics is hyperbolic. For the

purposes of this introduction suppose that there is a hyperbolic Cantor set
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Figure 3: Phase space of an uncoupled map corresponding to a Cantor set cross an

integrable twist map.

in (x, y) that is conjugate to a full shift on a set of symbols. Instead of

considering the basic system to be the cylinder C, we focus on the Cantor

set cross the cylinder (ξ, η), see Fig. 3. The idea is to choose an orbit in

the Cantor set that “drives” the momentum η to drift when the coupling is

nonzero. Essentially we will use the symbolic description of the Cantor set

to decompose it into subsets for which the coupling drives η to increase or to

decrease. Careful choice of the symbol sequence can give an orbit with the

required behavior. Indeed, Moeckel has shown that the existence of drifting

orbits is generic in a similar situation [Moe00].

To show that such orbits exist at zero coupling and persist when the cou-

pling is nonzero, we utilize the “anti-integrable” limit of the standard map,

see §3. In this limit, the requisite Cantor set is easy to obtain, and a straight-

forward application of the implicit function theorem can be used to show that

orbits with bounded acceleration persist. We will see in §4 that when the

coupling is nonzero, a nonzero measure of orbits in the cylinder (ξ, η) can be

appropriately driven so that their momenta increase by an arbitrarily large

amount. We call such orbits “drifting orbits.” This argument is based on

the construction of a map on the cylinder with nonzero net flux, see §5.
Since the dynamics on the cylinder are not hyperbolic, we cannot use a

shadowing argument to show that this behavior persists away from the anti-

integrable limit; however, a continuity argument, given in §6, implies that

there are many orbits whose momenta drift arbitrarily far.
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2 Twist Maps

We begin by recalling some of the basic facts about symplectic twist maps

[Mei92]. We consider a map (x′, y′) = f(x, y), where x ∈ Tn represent the

configuration angles and y ∈ Rn the canonical momenta. We will often use

the same symbol x to represent a point on the universal cover, Rn, of Tn.
The map f is an exact, symplectic map when the one form α = y′dx′ − ydx

is exact, i.e., α = dL for some function L. We say the map has twist when

the function L can be written as L(x, x′), depending upon the coordinates x

and x′; in this case L is the discrete analogue of the Lagrangian. The map

is then defined implicitly through

y′dx′ − ydx = dL = L1dx + L2dx′ ,

where L1(x, x′) ≡ ∂L/∂x, and L2(x, x′) ≡ ∂L/∂x′. These equations define

the map f when the relation y = −L1(x, x′) is a diffeomorphism for each

fixed x. In this case the inverse of this relation is the projection of f onto

the configuration components, x′ = πf(x, y). It is easy to see that the map

is exact when the net flux

Fm = L(x + 2πm, x′ + 2πm)− L(x, x′) , (2)

vanishes for each pair (x, x′) in the covering space, and each vector m ∈ Zn.
It is convenient to lift the configuration coordinates to Rn and to consider

a sequence of configuration points X = {xt : t ∈ Z}. In this case, an orbit is

a critical point of the formal action sum

W (X) =
∞∑

t=−∞
L(xt, xt+1) .

The condition that DW = 0 gives the discrete Euler-Lagrange equations

L2(xt−1, xt) + L1(xt, xt+1) = 0 .

It is common in applications for the generating function L to have the natural

form

L(x, x′) = εT (x, x′) + V (x) , (3)
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where T represents a discrete kinetic energy and V represents (minus) the po-

tential energy. We insert the coefficient ε for later use. When T = 1
2
(x′−x)2,

then the Euler-Lagrange equations are equivalent to a generalized standard

map

ε(xt+1 − 2xt + xt−1) = DV (xt) ,

which is a discretized version of Newton’s second law. In terms of the canon-

ical variables (x, y) 7→ (x′, y′), the generalized standard map is

x′ = x +
1

ε
y′ ,

y′ = y + DV (x) . (4)

The case when the configuration space is one dimensional, n = 1, and V (x) =

k cos(x), corresponds to the standard map [Mei92].

3 Anti-Integrable Limit

A discrete dynamical system is said to have an anti-integrable limit [Aub92,

MM92, Aub95], when the dynamics reduces to a full shift on a discrete phase

space. For example, the variational principle for the natural system (3)

reduces to∑
t

V (xt) ,

when ε = 0. In this case the Euler-Lagrange equations reduce to DV (xt) = 0,

which implies that any sequence of critical points of the potential is an orbit.

We restrict our consideration to those critical points that are (uniformly)

nondegenerate. Thus the set of orbits is equivalent to a full shift on the set

of uniformly nondegenerate critical points of V :

crit(V ) ≡ {c : DV (c) = 0, ||D2V (c)|| > b > 0} . (5)

Any sequence in crit(V ) corresponds to an “orbit” when ε = 0. Of course,

this limit is singular, in the sense that the map is no longer deterministic;

moreover, since L2 = 0, the momentum y′ is not defined.
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More generally, consider the Banach space B = (Rn)Zof bi-infinite se-

quences equipped with the sup norm. For any X ∈ B, define the acceleration

X as

At(X) ≡ −T2(xt−1, xt)− T1(xt, xt+1) . (6)

The reason for calling this the acceleration is that for generalized standard

maps, A becomes the sequence of second differences of xt: the discrete accel-

eration. We let A ⊂ B be the subspace of sequences for which the maximal

acceleration is a:

A = {X ∈ B : ||A(X)|| ≤ a} . (7)

When ε 6= 0 the Euler-Lagrange equation becomes

DV (xt) = εAt(X) . (8)

Note that a sequence X ∈ crit(V )Zis a solution of this equation at ε = 0,

and that if X ∈ A the right hand side of this equation is bounded. Moreover,

since the critical points are assumed to be uniformly nondegenerate, the left

hand side has a uniformly bounded inverse. In this case, the implicit function

theorem gives the following

Theorem 1. ([MM92]) For each sequence X(0) ∈ crit(V )
Z∩A, there is an

ε0(a, b) > 0 such that there is a unique continuation of X(0) to an orbit X(ε)

that satisfies (8) for all |ε| < ε0 .

Here we intend to obtain related results for a system that is the direct

product of an anti-integrable system with a symplectic map. The idea is

to show that we can decompose the system into a semidirect product of a

hyperbolic map with a symplectic map.

4 Coupled Systems

In this paper we wish to study maps that are coupled to a system near

an anti-integrable limit. Denote the configuration by (x, ξ) ∈ Tm × T, and

consider a generating function of the form

L(x, ξ, x′, ξ′) = εT (x, x′) + T (ξ, ξ′) + V (x)[1 + C(ξ)] + W (ξ) . (9)
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Here the periodic functions V and W represent the potential energies of

separated systems, and the periodic function C represents the coupling. For

example, the Arnold analogue (1) occurs when W = 0, V = k(1 + cos x),

and C = h cos ξ. Since V and W are periodic, L has zero net flux, (2), and

therefore generates an exact, symplectic twist map, f(x, ξ, y, η), on Tm×T×
Rm × R. Here the momenta are defined by y = −∂L/∂x and η = −∂L/∂ξ.

This class of maps generalizes (1), but retains some special features.

When C is identically zero, the dynamics becomes the direct product of two

area-preserving twist maps. Neither of these maps is integrable. Moreover

(9) does not generally have an invariant, hyperbolic cylinder. When ε = 0

the map in (x, y) is at an “anti-integrable” limit. Our goal is to show that we

can utilize the anti-integrable states to drive the momentum η to arbitrarily

large values even when C is arbitrarily small.

The Euler-Lagrange equations for (9) have the form

εAt(X) = DV (xt)[1 + C(ξt)] , (10)

At(Ξ) = DW (ξt) + V (xt)DC(ξt) , (11)

where X = {xt} and Ξ = {ξt}. These equations take a second difference

form when T (x, x′) = 1
2
(x′ − x)2:

ε(xt+1 − 2xt + xt−1) = DV (xt)[1 + C(ξt)] ,

ξt+1 − 2ξt + ξt−1 = DW (ξt) + V (xt)DC(ξt) . (12)

Drift at the Anti-Integrable Limit

When ε = 0, (10) becomes particularly simple: DV (xt)(1+C(ξt)) = 0. There

are several possible solutions to this set of equations, however, we consider

only the nondegenerate critical points of V :

xt = ct ∈ crit(V ) . (13)

where crit(V ) was defined in (5). We discard the other solutions because the

degenerate critical points may not persist, and points where C(ξ) = −1 do

not correspond to orbits in general.
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When ε = 0 and we choose a particular sequence ct in the critical set,

(11) has the form

At(Ξ) = DW (ξt) + V (ct)DC(ξt) , (14)

which is a sequence of area-preserving maps. Orbits in this limit consist of so-

lutions of (13), arbitrary sequences of critical points, together with solutions

of (14).

We wish to show that the ξ dynamics can be driven far from its unper-

turbed motion even when C is arbitrarily small. For example, when W = 0,

(14) implies that the acceleration is vanishingly small as C → 0. Thus the

momentum, ηt = T2(ξt−1, ξt), becomes constant. Our goal is to show that

there are orbits that drift for arbitrarily small C . These can be constructed

as follows. Suppose that crit(V ) has nonempty subsets crit(V )± such that if

c ∈ crit(V )+, then V (c) > 0, and if c ∈ crit(V )−, then V (c) < 0. Then for

each step we can choose ct so that the map has a net flux.

Theorem 2. Consider the Lagrangian (9) at ε = 0 and let (x, ξ, y, η) denote

the coordinates of the phase space Tm × T × Rm × R. Assume that the set

crit(V ) has nonempty subsets crit(V )± where sign(V ) = ±1, and assume that

DC is not identically zero. Then given any a < b, there is a nonzero measure

of initial states (ξ0, ξ1) and a sequence ct ∈ crit(V )+ ∪ crit(V )− such that the

solution of (14) has momenta, ηt = T2(ξt−1, ξt) satisfying η0 < a and ηT > b

for some time T .

Proof. Choose any two points c− ∈ crit(V )− and c+ ∈ crit(V )+. For a point

ξt, let xt = c± if sign(DC(ξt)) = ±1. In this case the map (14) can be thought

of as an autonomous twist map, obtained from the generating function

L̃(ξ, ξ′) = T (ξ, ξ′) + W (ξ) + C̃(ξ) ,

where C̃ is the function whose derivative is

DC̃ = V (c±(ξ))DC(ξ) > 0 .

Thus C̃(ξ+2π)−C̃(ξ) > 0, and so the net flux F = L̃(ξ+2π, ξ′+2π)−L̃(ξ, ξ′)

is positive. As we will see below in Cor. 5, this implies there is a nonzero

measure of drifting orbits.



4 COUPLED SYSTEMS 11

Standard Example

Consider the four dimensional Lagrangian

L(x, x′, ξ, ξ′) =
ε

2
(x′ − x)2 +

1

2
(ξ′ − ξ)2 + k cosx(1 + h cos ξ) , (15)

where we take k > 0 and h > 0. Unlike the Arnold analogue (1), the

hyperbolic invariant circles of (15) that exist for h = 0 at x = π are not

all preserved when the coupling is nonzero. Thus the Arnold argument does

not directly apply to this system (one would have to deal with gaps between

the circles). Nevertheless, we will see there is a set of drifting orbits at the

anti-integrable limit and, from the results in §6, near it as well.

Since V = k cos x we have crit(V )+ = {2nπ : n ∈ Z}, and crit(V )− =

{(2n + 1)π : n ∈ Z}. Since kh > 0, we choose xt ∈ crit(V )− for 0 6 ξt < π

and xt ∈ crit(V )+ for π 6 ξt < 2π. In canonical coordinates, the effective

map at ε = 0, (14), becomes

ξt+1 = ξt + ηt+1 ,

ηt+1 = ηt + U ′(ξt) . (16)

where U ′(x) = kh| sin ξt|. For this simplest case, the promised sequence of

maps reduces to a single, piecewise smooth map. In fact this system is a

twist map of the cylinder and is generated by the Lagrangian

L̃(ξ, ξ′) =
1

2
(ξ′ − ξ)2 + U(ξ) ,

where the potential function is

U(ξ) =

 kh(4n − cos ξ) 2nπ < ξ ≤ (2n + 1)π

kh(4n + 2 + cos ξ) (2n + 1)π < ξ ≤ (2n + 2)π
.

The net flux is

F = L̃(ξ + 2π, ξ′ + 2π)− L̃(ξ, ξ′) = 4kh ,

and so our general results of the next section imply there is a nonzero measure

of drifting orbits.
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In fact, the dynamics of this map are quite easy to understand: almost

every orbit is unbounded. For (16) implies that the sequence ηt is monotone

nondecreasing; thus if it is bounded it has a limit, η∗. For this to be the

case, we must have ξt approaching 0 or π or some sequence of these points.

There are three possibilities: if ξt → 0 or ξt → π then η∗ = 2πm. These

points, (0, 2πm) and (π, 2πm), are the fixed points of (16). The only other

possibility is that η∗ = (2m + 1)π, in which case the orbit approaches the

period two orbit (0, η∗) 7→ (π, η∗).

The map (16) is area-preserving since it is generated by a Lagrangian

(even though the map is not smooth it is the composition of a pair of shears,

each of which is area-preserving). An orbit of a measure-preserving map at-

tracts a set of at most measure zero, because if the stable set had nonzero

measure it would eventually be mapped into a ball of arbitrarily small mea-

sure about the orbit, violating measure preservation. Thus the only bounded

orbits of (16) are the three orbits that we found and the set of zero measure

which limits on these. Therefore, almost all orbits are unbounded.

With an effective, area-preserving map of the form (16), an alternative

argument based on the Birkhoff ergodic theorem, can also be used. Recall

that this theorem states that the time average, g∗ of a measurable function,

g exists almost everywhere, and the space average of g∗ is equal to the space

average of g. The map (16) is periodic both in the coordinate and momentum

directions, and so can be considered to be a map on the 2π torus T2 = {(ξ, η) :

0 < ξ, η < 2π}. We are interested in average drift rate of the momentum,

∆η∗ = (ηt+1 − ηt)
∗ = lim

T→∞

1

T

T−1∑
t=0

(U ′(ξt))

Averaging this over all initial conditions, and using the Birkhoff theorem

implies that

< ∆η∗ >=
1

4π2

∫
T2

U ′(ξ) =
F
2π

.

Whenever the spatial average of the average momentum change per iteration

is positive, there must be a nonzero measure of orbits that is unbounded.

Thus whenever the map (16) has nonzero net flux, there is a nonzero measure
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of unbounded orbits. An argument similar to this has been used to show

that there are drifting orbits for other area-preserving maps as well as time

periodic flows in [MBW96].

We will see in §5 that when the potential W 6= 0, the bounded set can

have nonzero measure, but when the net flux is nonzero, there is always a

set of positive measure that drifts.

5 Net Flux

Imagine a cafe so popular that it is, at all times, completely full. The entrance

is carefully guarded and patrons are admitted only when others leave. The

establishment has two exits, front and back. Patrons leave at a varying

rate, which is the same as the rate at which new customers are admitted.

Suppose that the front exit is always too narrow to accommodate all of those

leaving. It is perhaps intuitively clear that some of the entering patrons must

eventually leave through the back door. This is true even if the back door is

almost inaccessible and there is a large, unyielding group who never leave.

Below we formalize this simple result. We then apply it to maps of the

cylinder with nonzero net flux and show that orbits must drift. Here the cafe

is replaced by an annulus, and patrons are collapsed to points.

Transitions

We begin by recalling some general definitions in transport theory [Eas91,

Mei97]. For a map f and a region R, we define the incoming set as

I = {z ∈ R : f−1(z) 6∈ R} = R \ f(R) ,

and the exit set as

E = {z ∈ R : f(z) 6∈ R} = R \ f−1(R) .

When f is one-to-one and preserves a measure, µ, and R is measurable,
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Figure 4: Incoming and exit sets for a region R.

then the measures of the incoming and exit sets must be equal:

µ(E) = µ(R \ f−1(R)) = µ(R)− µ(R ∩ f−1(R))

= µ(R) − µ(f(R) ∩R) = µ(R \ f(R))

= µ(I) . (17)

Moreover, almost all orbits that start in the incoming set must eventually

fall in the exit set. To see this let St be the portion of the tth image of I that

stays in R for all times up to t. These sets can be defined recursively by

S0 = I ,

St = f(St−1) ∩R = f(St−1 \ E) .

The sets St are disjoint, since their preimages f−j(St) are in R for j = 0 . . . t,

but their (t + 1)st preimage is not. Since the St are subsets of R we have∑∞
t=0 µ(St) < µ(R). Thus µ(St) → 0 as t → ∞. It follows that almost all

points in I must eventually leave R and therefore must land at some time in

E.

We can say even more:

Lemma 3. Let f be a measure preserving homeomorphism, and R a mea-

surable set with incoming set I and exit set E. Define disjoint decompositions
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I = Ia ∪ Ib and E = Ea ∪Eb, such that µ(Ia) > µ(Ea), c.f., Fig. 4. Then the

subset of orbits starting in Ia that first leaves R through Eb has a measure at

least µ(Ia)− µ(Ea).

Proof. Almost all points in I must eventually iterate to points in E. Let

T j be the transit time decomposition of E, i.e., the decomposition into sets

T j = Sj ∩ E. The sets T j are disjoint, and since their jth preimages are

subsets of I we can define the first transit Poincaré map, p : I → E, as

p(x) = f j(x) if x ∈ f−j(T j) ,

for almost all points in I . Since f is measure preserving, so is p. The image

of a portion of the incoming set can be decomposed as p(Ia) = p(Ia) ∩ Ea +

p(Ia) ∩ Eb, and we note that µ(p(Ia) ∩ Ea) ≤ µ(Ea). Thus the measure of

orbits that leave through Eb is

µ(p(Ia) ∩Eb) = µ(p(Ia))− µ(p(Ia) ∩Ea) > µ(Ia)− µ(Ea) .

A similar result can be obtained for a sequence of maps ft. For a fixed

region R, the incoming and exit sets at time t are defined by

It = R \ ft(R) ,

Et = R \ f−1
t (R) .

When ft is measure preserving, the measures of these sets must be equal: we

can transcribe the previous argument, (17), directly. We can similarly define

the set which has just entered R at time k and stays to at least time t by St
k.

These obey recursion relations similar to the previous ones

Sk
k = Ik−1 ,

St+1
k = ft(S

t
k \ Et) .

As before the sets St
k for a fixed t and for all k ≤ t are disjoint subsets of R

because they have distinct prehistories under the sequence of maps; thus

t∑
k=−∞

µ(St
k) < µ(R) , (18)

for each t.
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Lemma 4. Let ft be a sequence of measure preserving homeomorphisms,

and R a measurable set with incoming sets It and exit sets Et. Divide each

exit set Et into a disjoint union of sets with nonzero measure. Then there

is a nonzero measure of orbits that enter R at some time j ≤ t and leave

through each portion of Et.

Proof. Let Bt and Ft denote the sets of nonzero measure that form the par-

tition of Et. Suppose that µ(Bt) > δ > 0, but that almost none of the orbits

that entered R from the outside leave through Bt. Then the set Ft can be

partitioned into disjoint sets T t
k = St

k ∩ Ft that entered R at time k. Thus

t∑
k=−∞

µ(T t
k) ≤ µ(Ft) .

Since ft is area-preserving, µ(St+1
k ) = µ(St

k \ Et) = µ(St
k) − µ(T t

k), and we

have
t+1∑

k=−∞
µ(St+1

k ) =
t∑

k=−∞
µ(St+1

k ) + µ(St+1
t+1)

=

t∑
k=−∞

[
µ(St

k)− µ(T t
k)
]
+ µ(It)

≥
t∑

k=−∞
µ(St

k)− µ(Ft) + µ(It) =
t∑

k=−∞
µ(St

k) + µ(Bt) .

Thus the sequence
∑t

k=−∞ µ(St
k) is strictly increasing and therefore un-

bounded, which violates (18). Thus we contradict the hypothesis that almost

nothing leaves through Bt.

It is not true in this case that almost all entering orbits must leave. For

example, for the sequence of maps {. . . , f, g, g, g, . . .}, f could map a point

from outside R onto an invariant set of g that is completely contained in R.

Maps of the Cylinder

We now specialize to the case of area-preserving maps of the cylinder. The

net flux, F , is the net area that crosses a homotopically nontrivial circle upon
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D(a)

U(b)

A

y = a

y = b

U(a)

D(b)

Figure 5: Upward and downward moving sets for a map on the cylinder.

each iteration of map. For any noncontractible loop C , the net flux is defined

to be the algebraic area contained between C and its image f(C):

F =

∫
C

y′dx′ − ydx .

It is easy to see that area-preservation implies that F is independent of C .

A simple, noncontractible loop C divides the cylinder into two pieces, a

top T and bottom B. Let U ⊂ T denote the “upward moving” set: those

points in the top whose preimage is in the bottom

U = {z ∈ T : f−1(z) ∈ B} .

Similarly, let D ⊂ B denote the “downward moving” set: those points in the

bottom whose preimage is in the top:

D = {z ∈ B : f−1(z) ∈ T} .

The difference in area µ(U) − µ(D) = F is the net flux.

A simple corollary of Lem. 4 implies that maps with nonzero net flux

have orbits that drift arbitrarily far.



5 NET FLUX 18

Corollary 5. Suppose that ft is a sequence of area and end-preserving home-

omorphisms of the cylinder, and that the net flux Ft ≥ δ > 0. Let A denote

the annulus bounded by the circles {y = a} and {y = b} where a < b. Then

there is a set of positive measure of orbits that cross the annulus.

Proof. Let Ut(a) and Dt(a) be the upward and downward moving sets associ-

ated with a curve {y = a} for ft, and similarly for b, see Fig. 5. The annulus

A has incoming sets It = Ut(a) ∪ Dt(b), and exit sets Et = f−1
t (Dt(a)) ∪

f−1
t (Ut(b)). Since µ(Ut(b)) > 0, this decomposition satisfies the hypothesis

of Lem. 4, and so we know that a nonzero measure of orbits that start below

a eventually cross b upon landing in f−1
t (Ut(b)).

Standard Map with Net Flux

Consider a generalized standard map (4) on the cylinder (0, 2π)×R. The net

flux is given by F = V (2π)−V (0). In general, the force DV can be separated

into its mean and oscillatory parts, giving a constant flux and periodic force,

respectively. Thus the general situation is modeled by the standard map:

x′ = x + y′ ,

y′ = y − k sin(x) +
1

2π
F .

When F = 0, and k < kcr ≈ 0.971635406 this map has rotational invari-

ant circles, and hence all orbits are bounded. The phase space for k = 0.5

is shown in Fig. 6. By Cor. 5, whenever F 6= 0 there is a nonzero mea-

sure of orbits that cross from y = 0 to y = 2π. By periodicity, these or-

bits are unbounded. We can visualize these orbits most easily by noting

that the standard map can be put on the torus since for any integer m,

f(x, y + 2πm) = f(x, y) + 2π(m, m). In Fig. 7, we show that even when F
is quite small much of the phase space contains unbounded orbits.

Periodic orbits of the zero flux standard map are successively destroyed

by saddle-center bifurcations as F increases. For example, there are fixed

points at y = 0 and the two branches of

x = arcsin

(
F

2πk

)
,

which collide in a saddle-center bifurcation at F = 2πk.
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Figure 6: Phase space of the standard map for k = 0.5. There are many rotational

invariant circles
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Figure 7: Phase space of the standard map with k = 0.5, and net flux F = 4π2/1000.

There are no rotational invariant circles, and the majority of phase space is covered by a

single orbit (grey region).
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6 Persistence of Drift

In this section we study the dynamics of the 4D maps given by (12) for small

ε. Here we find it convenient to use the coordinates zt−1 = (xt−1, xt, ξt−1, ξt)
T

so that the map becomes

zt = ϕε(zt−1) =


xt

−xt−1 + 2xt + 1
ε
DV (xt)[1 + C(ξt)]

ξt

−ξt−1 + 2ξt + DW (ξt) + V (xt)DC(ξt)

 (19)

When ε = 0, then any sequence xt = ct ∈ crit(V ) can be used to form an

orbit of ϕ0. We first show that if the acceleration is bounded, then for ε > 0,

there are orbits whose x-coordinates stay close to the critical points forever.

Lemma 6. Suppose that ϕε, given by (19), is a C2 map of T4, such that

1 + C(ξ) > τ > 0. Then, for any sequence {c0, c1, . . .} with ct ∈ crit(V ) ∩
A, any initial condition (ξ0, ξ1), and any δ > 0, there exists an orbit zt =

(xt, xt+1, ξt, ξt+1), t > 0 of ϕε such that

|xt − ct| 6 δ for all t > 0 ,

provided

0 6 ε < ε0 = στ/(4δ + a) , (20)

where σ(δ, b) ≡ inft>0 |DV (ct ± δ)|.

Recall that a is the maximal acceleration in A, (7), and b is the minimal

curvature in crit(V ), (5). Note that since V is C2 we can bound σ by

δ sup
x
|D2V (x)| > σ > δ inf

x
|D2V (x)| , x ∈ ∪t>0[ct − δ, ct + δ] .

The lower bound is nonzero for small enough δ since the critical points are

nondegenerate. Thus ε0 → 0 as δ → 0.
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Proof. For each critical point ct in the sequence, choose c+
t to be either ct± δ

in order that DV (c+
t ) > 0. Similarly choose c−t so that DV (c−t ) < 0. Since

the critical points are uniformly nondegenerate, there is a σ(δ) > 0 such that

|DV (c±t )| > σ. Note that it is possible that c+
t < c−t . However, we will still

use [c−t , c+
t ] to denote the closed interval between these points.

We start by defining four dimensional “windows” Wt = [c−t , c+
t ]×[c−t+1, c

+
t+1]×

R2. The “top” of the window Wt is the set [c−t , c+
t ]×c+

t+1×R2, and the region

“above” the window is the set Ut = [c−t , c+
t ] × (c∗t+1,∞) × R2 where c∗t+1 is

the maximum of c−t+1 and c+
t+1.

It suffices to show that there exists an orbit zt of ϕ with zt ∈ Wt for

each t > 0 and with z0 = (x0, x1, ξ0, ξ1). Note that ϕ maps Wt into the set

[c−t+1, c
+
t+1]× R3, see Fig. 8.

Choose a point (xt, c
+
t+1, ξt, ξt+1) in the top of Wt. We show that ϕ maps

this point into the region Ut+1 above the next window. Let ϕ(xt, c
+
t+1, ξt, ξt+1) =

(c+
t+1, xt+2, ξt+1, ξt+2). Thus we need only show that the second coordinate

xt+2 > c∗t+2. By (19),

xt+2 = 2c+
t+1 − xt +

1

ε
DV (c+

t+1)[1 + C(ξt+1)] ,

thus we must show that

(1/ε)DV (c+
t+1)[1 + C(ξt+1)] > c∗t+2 − 2c+

t+1 + xt .

Since xt, c+
t+1 and c∗t+2 and are all within δ of the respective values ct, ct+1

and ct+2, it is sufficient to show

1

ε
DV (c+

t+1)[1 + C(ξt+1)] > 4δ + ct+2 − 2ct+1 + ct .

Since the final three terms are bounded by a and since 1 + C(ξ) > τ by

assumption, we need to require that 1
ε
DV (c+

t+1)τ > (4δ + a). Thus the final

condition (on ε) is the condition στ/ε > 4δ + a or equivalently (20).

A similar argument shows that the bottom of the window Wt maps into

the region Bt+1 below the window Wt+1.

Let S be a “slice” of the window W0 defined by S = R2 × (ξ0, ξ1) ∩W0.

It is sufficient to show that the orbit of some point z0 in S stays inside the

sequence of windows. Let T be the set of points in S which exit the window
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xt

xt+1

Wt+1

ct+2

ϕ(Wt)

ct+1

Ut+1

Bt+1

ct+1
+ct+1

-

ct+2
+

ct+2
-

Figure 8: The image of a four dimensional window, Wt under ϕ crosses the window

Wt+1. We suppress both of the ξ coordinates.

sequence by landing in some set Ut above the window Wt for some t > 1.

Similarly let B denote the set of points which exit the window sequence by

falling below some window. Since the set S intersects the top and bottom of

the window W0, these sets T and B are non-empty.

We note that the sets T and B are also open sets. This is because the

top and bottom of any window Wt maps above or below the next window.

Therefore, since the slice S is connected, it is not the disjoint union of T and

B. Therefore there exist some points in S that remain in the sequence of

windows Wt forever.

By Thm. 2 there is a nonzero measure of points (ξ0, ξ1) such that there

exists a sequence {ct} ∈ crit(V ) for which an “orbit” Zt = (ct, ct+1, ξt, ξt+1)

at the anti-integrable limit has momenta that drift arbitrarily far. We show
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next that for ε sufficiently small, the orbit {Zt} is “shadowed” by an orbit

{zt} of the 4-D map ϕ for some arbitrarily long time T if ε is small enough.

Theorem 7. Suppose that ϕε satisfies the hypotheses of Lem. 6. Let Zt =

(ct, ct+1, ξt, ξt+1) be an orbit of ϕ0 with ct ∈ crit(V ). Then for any T > 0 and

γ > 0, there is a δ > 0 such that for all ε < ε0(δ) in (20) there is an orbit

zt = (xt, xt+1, ζt, ζt+1) of ϕε such that |ζt − ξt| < γ for all 0 6 t 6 T .

Proof. Chose δ and ε obeying (20). By Lem. 6 there is an orbit zt =

(xt, xt+1, ζt, ζt+1) of ϕε with ζ0 = ξ0, ζ1 = ξ1 and |xt − ct| ≤ δ for all t.

We have

ξt+1 − 2ξt + ξt−1 = V (ct)DC(ξt) + DW (ξt) ,

and

ζt+1 − 2ζt + ζt−1 = V (xt)DC(ζt) + DW (ζt) .

Let λt = ξt − ζt. Then λt+1 − 2λt + λt−1 = V (ct)DC(ξt) − V (xt)DC(ζt) +

DW (ξt)−DW (ζt), and λ0 = λ1 = 0. Since V is C2, and DC is bounded, we

have

|V (ct)DC(ξt)− V (xt)DC(ζt)| 6
1

2
Mδ2 ,

where M = maxx |D2V (x)| maxξ |DC(ξ)| such that x ∈ ∪t>0[ct − δ, ct + δ]

and ξ ∈ T. Since W is C2 as well, λt obeys the inequality

|λt+1 − (2 + DW (x̃t))λt + λt−1| 6
1

2
Mδ2 ,

where x̃t is some point in [ct, xt]. It is straightforward to see that the solutions

of this second difference inequality are bounded by

|λt| 6
1

2
Mδ2

t−1∑
τ=1

(
|λ1
tλ

2
τ |+ |λ1

τλ
2
t |
)

,

where λ1
t , and λ2

t are linearly independent solutions of the homogeneous

equation normalized so that their Wronskian λ1
1λ

2
0− λ1

0λ
2
1 = 1. For example,

we may choose solutions so that λ1
1 = λ2

0 = 1 and λ1
0 = λ2

1 = 0. These can be
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easily bounded by |λit| 6 rt, where r > 1 is the positive root of r2−wr−1 = 0,

and w = maxx(2 + |DW (x)|). Thus we obtain the bound

|λt| 6
1

2
Mδ2r2t .

This result can be made stronger when DW = 0, because in this case λt can

only grow as t2—see below. Thus for any T and any γ we can choose δ small

enough so that |λt| 6 γ for t 6 T .

Remark: The orbit ξt in the anti-integrable limit is not necessarily hy-

perbolic and thus one does not expect to be able to shadow such an orbit for

more than a finite interval.

Since the orbit of the anti-integrable system can be chosen to have drifting

momenta, this result implies that for small enough ε, there are orbits of the

full system whose momenta grow by an arbitrarily large amount. Note that

this is true even when the coupling C(ξ), is arbitrarily small.

Standard Example, Continued

Theorem 7 applies to the example (15), and we can compute the bounds

explicitly. Since V (x) = k cos x, if we assume δ < π
2
, we find σ = k sin δ.

Since C(ξ) = h cos ξ, we have τ = 1−h, so we require h < 1. We can choose

the critical points ct ∈ {0, π}, so that the (x, y) orbit does not undergo any

rotations. In this case the acceleration of an arbitrary sequence of critical

points is at most a = 2π. Then Lem. 6 applies for

ε 6 ε0 =
k(1− h) sin δ

4δ + 2π
.

The bound in Thm. 7 is obtained by setting M = kh and noting that since

W = 0, we can use the homogeneous solutions λ1
t = t , and λ2

t = 1, so that

|λt| 6
3

4
khδ2t(t− 1) ,

Thus it is sufficient, for shadowing within γ up to time T , to choose

δ 6 1

T

√
γ

kh
,
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Figure 9: Bound on ε for the standard example with k = 1, h = 0.001, for a deviation

of γ = 1.

providing h < 1 and ε 6 ε0. We show a sketch of the bound on ε in Fig. 9. We

expect that this bound is overly restrictive, and that the drift will actually

persist farther.

7 Conclusions

We have shown that a twist map coupled to a map that is near an anti-

integrable limit has many orbits whose momenta drift arbitrarily far—even

when the coupling is arbitrarily small. Our analysis applies only to the case

of “a priori chaotic” systems [DdlLS00] as all the continued orbits from an

anti-integrable limit are hyperbolic.

The separation of a system into an essentially chaotic degree of freedom

that drives an essentially integrable degree of freedom is a common technique

used in physical calculations of Arnold diffusion rates [CLSV84, Viv84, LL92].

In this sense our calculation can be thought of as treating the case of “thick

layer” diffusion, rather than the essentially more difficult “thin layer” case,

where the chaotic motion is exponentially slow. In the calculations, the

coupling—which necessarily affects both degrees of freedom for a symplectic

system—is treated by what is called the “stochastic pump model” of Ten-

nyson et al. [TLL79]. In our analysis this is essentially equivalent to the
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semidirect product at the anti-integrable limit. Our results can be viewed as

a step along the road to validating the stochastic pump model.

Of course, we have not provided a solution to the difficult problem: is

Arnold diffusion generic in near-integrable systems? Nor have we shown that

our drift is actually diffusive. To this end, Moeckel has shown that an ergodic

theorem applies in some cases when the full shift is coupled via a semidirect

product to an area-preserving map [Moe00].

The approach we have presented might be generalizable to the case when

the dynamics in the (x, y) system is not assumed to be conjugate to a full

shift, as in the anti-integrable limit, but rather to some subshift. In this

case, one is no longer able to drive the drift monotonically, but drift may

nevertheless occur. Our approach may also be useful for numerical compu-

tations, since the anti-integrable limit is an effective point at which to begin

continuation methods [SDM99].
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