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[1.1] What's New?

Fixed lots of broken and outdated links. A few sites seem to be gone, and some new sites appeare
d.

To some extent this FAQ is now been superseded by the Dynamical Systems site run by SIAM. 
See http://www.dynamicalsystems.org There you will find a glossary that contains most of the answ
ers in this FAQ plus new ones. There is also a growing software list. You are encouraged to contrib
ute to this list, and can do so interactively.
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[2] Basic Theory
[2.1] What is nonlinear?

In geometry, linearity refers to Euclidean objects: lines, planes, (flat) three-dimensional space, etc.--t
hese objects appear the same no matter how we examine them. A nonlinear object, a sphere for exa
mple, looks different on different scales--when looked at closely enough it looks like a plane, and fr
om a far enough distance it looks like a point. 

In algebra, we define linearity in terms of functions that have the property f(x+y) = f(x)+f(y) and f(a
x) = af(x). Nonlinear is defined as the negation of linear. This means that the result f may be out of 
proportion to the input x or y. The result may be more than linear, as when a diode begins to pass cu
rrent; or less than linear, as when finite resources limit Malthusian population growth. Thus the fun
damental simplifying tools of linear analysis are no longer available: for example, for a linear syste
m, if we have two zeros, f(x) = 0 and f(y) = 0, then we automatically have a third zero f(x+y) = 0 (in f
act there are infinitely many zeros as well, since linearity implies that f(ax+by) = 0 for any a and b). 
This is called the principle of superposition--it gives many solutions from a few. For nonlinear syst
ems, each solution must be fought for (generally) with unvarying ardor! 

back to table of contents

[2.2] What is nonlinear science?

Stanislaw Ulam reportedly said (something like) "Calling a science 'nonlinear' is like calling zoolog
y 'the study of non-human animals'. So why do we have a name that appears to be merely a negative
? 

Firstly, linearity is rather special, and no model of a real system is truly linear. Some things are prof
itably studied as linear approximations to the real models--for example the fact that Hooke's law, the
 linear law of elasticity (strain is proportional to stress) is approximately valid for a pendulum of sm
all amplitude implies that its period is approximately independent of amplitude. However, as the am
plitude gets large the period gets longer, a fundamental effect of nonlinearity in the pendulum equati
ons (see http://monet.physik.unibas.ch/~elmer/pendulum/upend.htm and [3.10]).

(You might protest that quantum mechanics is the fundamental theory and that it is linear! However 
this is at the expense of infinite dimensionality which is just as bad or worse--and 'any' finite dimen
sional nonlinear model can be turned into an infinite dimensional linear one--e.g. a map x' = f(x) is e
quivalent to the linear integral equation often called the Perron-Frobenius equation

p'(x) = integral [ p(y) \delta(x-f(y)) dy ]) 
Here p(x) is a density, which could be interpreted as the probability of finding oneself at the point x,
 and the Dirac-delta function effectively moves the points according to the map f to give the new den
sity. So even a nonlinear map is equivalent to a linear operator.)

Secondly, nonlinear systems have been shown to exhibit surprising and complex effects that would 
never be anticipated by a scientist trained only in linear techniques. Prominent examples of these inc
lude bifurcation, chaos, and solitons. Nonlinearity has its most profound effects on dynamical syste
ms (see [2.3]).

Further, while we can enumerate the linear objects, nonlinear ones are nondenumerable, and as of ye
t mostly unclassified. We currently have no general techniques (and very few special ones) for tellin
g whether a particular nonlinear system will exhibit the complexity of chaos, or the simplicity of ord
er. Thus since we cannot yet subdivide nonlinear science into proper subfields, it exists as a whole. 



Sci.nonlinear FAQ, version  2.0 Sept 2003
© J.D. Meiss

4
Nonlinear science has applications to a wide variety of fields, from mathematics, physics, biology, a
nd chemistry, to engineering, economics, and medicine. This is one of its most exciting aspects--that
 it brings researchers from many disciplines together with a common language.

back to table of contents

[2.3] What is a dynamical system?

A dynamical system consists of an abstract phase space or state space, whose coordinates describe t
he dynamical state at any instant; and a dynamical rule which specifies the immediate future trend of
 all state variables, given only the present values of those same state variables. Mathematically, a dyn
amical system is described by an initial value problem. 

Dynamical systems are "deterministic" if there is a unique consequent to every state, and "stochastic
" or "random" if there is more than one consequent chosen from some probability distribution (the 
"perfect" coin toss has two consequents with equal probability for each initial state). Most of nonlin
ear science--and everything in this FAQ--deals with deterministic systems.

A dynamical system can have discrete or continuous time. The discrete case is defined by a map, z_
1 = f(z_0), that gives the state z_1 resulting from the initial state z_0 at the next time value. The conti
nuous case is defined by a "flow", z(t) = \phi_t(z_0), which gives the state at time t, given that the sta
te was z_0 at time 0. A smooth flow can be differentiated w.r.t. time to give a differential equation, d
z/dt = F(z). In this case we call F(z) a "vector field," it gives a vector pointing in the direction of the 
velocity at every point in phase space.

back to table of contents

[2.4] What is phase space?

Phase space is the collection of possible states of a dynamical system. A phase space can be finite (
e.g. for the ideal coin toss, we have two states heads and tails), countably infinite (e.g. state variables
 are integers), or uncountably infinite (e.g. state variables are real numbers). Implicit in the notion is 
that a particular state in phase space specifies the system completely; it is all we need to know about
 the system to have complete knowledge of the immediate future. Thus the phase space of the planar
 pendulum is two-dimensional, consisting of the position (angle) and velocity. According to Newton
, specification of these two variables uniquely determines the subsequent motion of the pendulum.

Note that if we have a non-autonomous system, where the map or vector field depends explicitly on 
time (e.g. a model for plant growth depending on solar flux), then according to our definition of pha
se space, we must include time as a phase space coordinate--since one must specify a specific time (
e.g. 3PM on Tuesday) to know the subsequent motion. Thus dz/dt = F(z,t) is a dynamical system o
n the phase space consisting of (z,t), with the addition of the new dynamics dt/dt = 1.

The path in phase space traced out by a solution of an initial value problem is called an orbit or traje
ctory of the dynamical system. If the state variables take real values in a continuum, the orbit of a co
ntinuous-time system is a curve, while the orbit of a discrete-time system is a sequence of points.

back to table of contents

[2.5] What is a degree of freedom?

The notion of "degrees of freedom" as it is used for Hamiltonian systems means one canonical conj
ugate pair, a configuration, q, and its conjugate momentum p. Hamiltonian systems (sometimes mist
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akenly identified with the notion of conservative systems) always have such pairs of variables, and s
o the phase space is even dimensional.

In the study of dissipative systems the term "degree of freedom" is often used differently, to mean a
 single coordinate dimension of the phase space. This can lead to confusion, and it is advisable to ch
eck which meaning of the term is intended in a particular context.

Those with a physics background generally prefer to stick with the Hamiltonian definition of the ter
m "degree of freedom." For a more general system the proper term is "order" which is equal to the 
dimension of the phase space.

Note that a  dynamical system with N d.o.f. Hamiltonian nominally moves in a 2N dimensional pha
se space. However, if H(q,p) is time independent, then energy is conserved, and therefore the motio
n is really on a 2N-1 dimensional energy surface, H(q,p) = E. Thus e.g. the planar, circular restricte
d 3 body problem is 2 d.o.f., and motion is on the 3D energy surface of constant "Jacobi constant."
 It can be reduced to a 2D area preserving map by Poincaré section (see [2.6]).

If the Hamiltonian is time dependent, then we generally say it has an additional 1/2 degree of freedo
m, since this adds one dimension to the phase space. (i.e. 1 1/2 d.o.f. means three variables, q, p and
 t, and energy is no longer conserved).

back to table of contents

[2.6] What is a map?

A map is simply a function, f, on the phase space that gives the next state, f(z) (the image), of the sys
tem given its current state, z. (Often you will find the notation z' = f(z), where the prime means the n
ext point, not the derivative.)

Now a function must have a single value for each state, but there could be several different states tha
t give rise to the same image. Maps that allow every state in the phase space to be accessed (onto) a
nd which have precisely one pre-image for each state (one-to-one) are invertible. If in addition the m
ap and its inverse are continuous (with respect to the phase space coordinate z), then it is called a ho
meomorphism. A homeomorphism that has at least one continuous derivative (w.r.t. z) and a contin
uously differentiable inverse is a diffeomorphism.

Iteration of a map means repeatedly applying the map to the consequents of the previous application
. Thus we get a sequence
                                                         n
                        z  = f(z   )  = f(f(z   )...) = f (z )
                         n      n-1          n-2            0

This sequence is the orbit or trajectory of the dynamical system with initial condition z_0.

back to table of contents

[2.7] How are maps related to flows (differential equations)?

Every differential equation gives rise to a map, the time one map, defined by advancing the flow one 
unit of time. This map may or may not be useful. If the differential equation contains a term or term
s periodic in time, then the time T map (where T is the period) is very useful--it is an example of a P
oincaré section. The time T map in a system with periodic terms is also called a stroboscopic map, s
ince we are effectively looking at the location in phase space with a stroboscope tuned to the period 
T. This map is useful because it permits us to dispense with time as a phase space coordinate: the re
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maining coordinates describe the state completely so long as we agree to consider the same instant 
within every period.

In autonomous systems (no time-dependent terms in the equations), it may also be possible to defin
e a Poincaré section and again reduce the phase space dimension by one. Here the Poincaré section 
is defined not by a fixed time interval, but by successive times when an orbit crosses a fixed surface
 in phase space. (Surface here means a manifold of dimension one less than the phase space dimens
ion).

However, not every flow has a global Poincaré section (e.g. any flow with an equilibrium point), whi
ch would need to be transverse to every possible orbit.

Maps arising from stroboscopic sampling or Poincaré section of a flow are necessarily invertible, b
ecause the flow has a unique solution through any point in phase space--the solution is unique both
 forward and backward in time. However, noninvertible maps can be relevant to differential equation
s: Poincaré maps are sometimes very well approximated by noninvertible maps. For example, the H
enon map (x,y) -> (-y-a+x^2,bx) with small |b| is close to the logistic map, x -> -a+x^2.

It is often (though not always) possible to go backwards, from an invertible map to a differential eq
uation having the map as its Poincaré map. This is called a suspension of the map. One can also do 
this procedure approximately for maps that are close to the identity, giving a flow that approximates 
the map to some order. This is extremely useful in bifurcation theory.

Note that any numerical solution procedure for a differential initial value problem which uses discre
te time steps in the approximation is effectively a map. This is not a trivial observation; it helps expl
ain for example why a continuous-time system which should not exhibit chaos may have numerical 
solutions which do--see [2.15].

back to table of contents

[2.8] What is an attractor?

Informally an attractor is simply a state into which a system settles (thus dissipation is needed). Thu
s in the long term, a dissipative dynamical system may settle into an attractor.

Interestingly enough, there is still some controversy in the mathematics community as to an 
appropriate definition of this term. Most people adopt the definition
Attractor: A set in the phase space that has a neighborhood in which every point stays nearby and a
pproaches the attractor as time goes to infinity.
Thus imagine a ball rolling inside of a bowl. If we start the ball at a point in the bowl with a velocity 
too small to reach the edge of the bowl, then eventually the ball will settle down to the bottom of the 
bowl with zero velocity: thus this equilibrium point is an attractor. The neighborhood of points that 
eventually approach the attractor is the basin of attraction for the attractor. In our example the basin
 is the set of all configurations corresponding to the ball in the bowl, and for each such point all sma
ll enough velocities (it is a set in the four dimensional phase space [2.4]).

Attractors can be simple, as the previous example. Another example of an attractor is a limit 
cycle, which is a periodic orbit that is attracting (limit cycles can also be repelling). More surprisingl
y, attractors can be chaotic (see [2.9]) and/or strange (see [2.12]).

The boundary of a basin of attraction is often a very interesting object since it distinguishes 
between different types of motion. Typically a basin boundary is a saddle orbit, or such an orbit and
 its stable manifold. A crisis is the change in an attractor when its basin boundary is destroyed.

An alternative definition of attractor is sometimes used because there are systems that have s
ets that attract most, but not all, initial conditions in their neighborhood (such phenomena is someti
mes called riddling of the basin). Thus, Milnor defines an attractor as a set for which a positive mea
sure (probability, if you like) of initial conditions in a neighborhood are asymptotic to the set.
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[2.9] What is chaos?

It has been said that "Chaos is a name for any order that produces confusion in our minds." (Georg
e Santayana, thanks to Fred Klingener for finding this). However, the mathematical definition is, rou
ghly speaking, 
Chaos: effectively unpredictable long time behavior arising in a deterministic dynamical system bec
ause of sensitivity to initial conditions.
It must be emphasized that a deterministic dynamical system is perfectly predictable given perfect k
nowledge of the initial condition, and is in practice always predictable in the short term. The key to l
ong-term unpredictability is a property known as sensitivity to (or sensitive dependence on) initial c
onditions.

For a dynamical system to be chaotic it must have a 'large' set of initial conditions which are highly 
unstable. No matter how precisely you measure the initial condition in these systems, your predictio
n of its subsequent motion goes radically wrong after a short time. Typically (see [2.14] for one def
inition of 'typical'), the predictability horizon grows only logarithmically with the precision of measu
rement (for positive Lyapunov exponents, see [2.11]). Thus for each increase in precision by a facto
r of 10, say, you may only be able to predict two more time units (measured in units of the Lyapuno
v time, i.e. the inverse of the Lyapunov exponent).

More precisely: A map f is chaotic on a compact invariant set S if
(i) f is transitive on S (there is a point x whose orbit is dense in S), and
(ii) f exhibits sensitive dependence on S (see [2.10]).

To these two requirements Devaney adds the requirement that periodic points are dense in S, but thi
s doesn't seem to be really in the spirit of the notion, and is probably better treated as a theorem (ver
y difficult and very important), and not part of the definition.

Usually we would like the set S to be a large set. It is too much to hope for except in special exampl
es that S be the entire phase space. If the dynamical system is dissipative then we hope that S is an a
ttractor (see [2.8]) with a large basin. However, this need not be the case--we can have a chaotic sad
dle, an orbit that has some unstable directions as well as stable directions.

As a consequence of long-term unpredictability, time series from chaotic systems may appear irregu
lar and disorderly. However, chaos is definitely not (as the name might suggest) complete disorder; 
it is disorder in a deterministic dynamical system, which is always predictable for short times.

The notion of chaos seems to conflict with that attributed to Laplace: given precise knowledge of the
 initial conditions, it should be possible to predict the future of the universe. However, Laplace's dict
um is certainly true for any deterministic system, recall [2.3]. The main consequence of chaotic moti
on is that given imperfect knowledge, the predictability horizon in a deterministic system is much sh
orter than one might expect, due to the exponential growth of errors. The belief that small errors sho
uld have small consequences was perhaps engendered by the success of Newton's mechanics applie
d to planetary motions. Though these happen to be regular on human historic time scales, they are c
haotic on the 5 million year time scale (see e.g. "Newton's Clock", by Ivars Peterson (1993 W.H. F
reeman).

back to table of contents

[2.10] What is sensitive dependence on initial conditions?
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Consider a boulder precariously perched on the top of an ideal hill. The slightest push will cause th
e boulder to roll down one side of the hill or the other: the subsequent behavior depends sensitively 
on the direction of the push--and the push can be arbitrarily small.  Of course, it is of great importa
nce to you which direction the boulder will go if you are standing at the bottom of the hill on one si
de or the other!

Sensitive dependence is the equivalent behavior for every initial condition--every point in the phase 
space is effectively perched on the top of a hill.

More precisely a set S exhibits sensitive dependence if there is an r such that for any epsilon > 0 an
d for each x in S, there is a y such that |x - y| < epsilon, and |x_n - y_n| > r for some n > 0. Then ther
e is a fixed distance r (say 1), such that no matter how precisely one specifies an initial state there ar
e nearby states that eventually get a distance r away.

Note: sensitive dependence does not require exponential growth of perturbations (positive Lyapuno
v exponent), but this is typical (see [2.14]) for chaotic systems. Note also that we most definitely do
 not require ALL nearby initial points diverge--generically [2.14] this does not happen--some nearb
y points may converge. (We may modify our hilltop analogy slightly and say that every point in ph
ase space acts like a high mountain pass.) Finally, the words "initial conditions" are a bit misleading
: a typical small disturbance introduced at any time will grow similarly. Think of "initial" as meanin
g "a time when a disturbance or error is introduced," not necessarily time zero.

back to table of contents

[2.11] What are Lyapunov exponents?
(Thanks to Ronnie Mainieri & Fred Klingener for contributing to this answer)

The hardest thing to get right about Lyapunov exponents is the spelling of Lyapunov, which you wil
l variously find as Liapunov, Lyapunof and even Liapunoff. Of course Lyapunov is really spelled in
 the Cyrillic alphabet: (Lambda)(backwards r)(pi)(Y)(H)(0)(B). Now that there is an ANSI standard
 of transliteration for Cyrillic, we expect all references to converge on the version Lyapunov.

Lyapunov was born in Russia in 6 June 1857. He was greatly influenced by Chebyshev and was a s
tudent with Markov. He was also a passionate man: Lyapunov shot himself the day his wife died. H
e died 3 Nov. 1918, three days later. According to the request on a note he left, Lyapunov was burie
d with his wife. [biographical data from a biography by A. T. Grigorian].

Lyapunov left us with more than just a simple note. He left a collection of papers on the equilibrium
 shape of rotating liquids, on probability, and on the stability of low-dimensional dynamical systems
. It was from his dissertation that the notion of Lyapunov exponent emerged. Lyapunov was interest
ed in showing how to discover if a solution to a dynamical system is stable or not for all times. The 
usual method of studying stability, i.e. linear stability, was not good enough, because if you waited l
ong enough the small errors due to linearization would pile up and make the approximation invalid. 
Lyapunov developed concepts (now called Lyapunov Stability) to overcome these difficulties.

Lyapunov exponents measure the rate at which nearby orbits converge or diverge. There are as man
y Lyapunov exponents as there are dimensions in the state space of the system, but the largest is us
ually the most important. Roughly speaking the (maximal) Lyapunov exponent is the time constant, 
lambda, in the expression for the distance between two nearby orbits, exp(lambda * t).! If lambda is
 negative, then the orbits converge in time, and the dynamical system is insensitive to initial conditio
ns.! However, if lambda is positive, then the distance between nearby orbits grows exponentially in t
ime, and the system exhibits sensitive dependence on initial conditions.
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There are basically two ways to compute Lyapunov exponents. In one way one chooses two nearby 
points, evolves them in time, measuring the growth rate of the distance between them. This is useful 
when one has a time series, but has the disadvantage that the growth rate is really not a local effect a
s the points separate. A better way is to measure the growth rate of tangent vectors to a given orbit.

More precisely, consider a map f in an m dimensional phase space, and its derivative matrix Df(x). L
et v be a tangent vector at the point x. Then we define a function
                              1          n
        L(x,v)  =    lim     --- ln |( Df (x)v )|
                   n -> oo    n
Now the Multiplicative Ergodic Theorem of Oseledec states that this limit exists for almost all point
s x and all tangent vectors v. There are at most m distinct values of L as we let v range over the tange
nt space. These are the Lyapunov exponents at x.

For more information on computing the exponents see

Wolf, A., J. B. Swift, et al. (1985). "Determining Lyapunov Exponents from a Time Series." Phys
ica D 16: 285-317.

Eckmann, J.-P., S. O. Kamphorst, et al. (1986). "Liapunov exponents from time series." Phys. Re
v. A 34: 4971-4979.

back to table of contents

[2.12] What is a Strange Attractor?
Before Chaos (BC?), the only known attractors (see [2.8]) were fixed points, periodic orbits

 (limit cycles), and invariant tori (quasiperiodic orbits). In fact the famous Poincaré-Bendixson theo
rem states that for a pair of first order differential equations,  only fixed points and limit cycles can 
occur (there is no chaos in 2D flows). 

In a famous paper in 1963, Ed Lorenz discovered that simple systems of three differential e
quations can have complicated attractors. The Lorenz attractor (with its butterfly wings reminding u
s of sensitive dependence (see [2.10])) is the "icon" of chaos http://kong.apmaths.uwo.ca/~bfraser/v
ersion1/lorenzintro.html. Lorenz showed that his attractor was chaotic, since it exhibited sensitive de
pendence. Moreover, his attractor is also "strange," which means that it is a fractal (see [3.2]).

The term strange attractor was introduced by Ruelle and Takens in 1970 in their discussion 
of a scenario for the onset of turbulence in fluid flow. They noted that when periodic motion goes u
nstable (with three or more modes), the typical (see [2.14]) result will be a geometrically strange obj
ect.

Unfortunately, the term strange attractor is often used for any chaotic attractor. However, the
 term should be reserved for attractors that are "geometrically" strange, e.g. fractal. One can have ch
aotic attractors that are not strange (a trivial example would be to take a system like the cat map, whi
ch has the whole plane as a chaotic set, and add a third dimension which is simply contracting onto t
he plane). There are also strange, nonchaotic attractors (see Grebogi, C., et al. (1984). "Strange Attr
actors that are not Chaotic." Physica D 13: 261-268).

back to table of contents

[2.13] Can computers simulate chaos?

Strictly speaking, chaos cannot occur on computers because they deal with finite sets of numbers. T
hus the initial condition is always precisely known, and computer experiments are perfectly predicta
ble, in principle. In particular because of the finite size, every trajectory computed will eventually hav
e to repeat (an thus be eventually periodic). On the other hand, computers can effectively simulate c
haotic behavior for quite long times (just so long as the discreteness is not noticeable). In particular 
if one uses floating point numbers in double precision to iterate a map on the unit square, then there
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 are about 10^28 different points in the phase space, and one would expect the "typical" chaotic orbi
t to have a period of about 10^14 (this square root of the number of points estimate is given by Ran
nou for random diffeomorphisms and does not really apply to floating point operations, but noneth
eless the period should be a big number). See, e.g.,

Earn, D. J. D. and S. Tremaine, "Exact Numerical Studies of Hamiltonian Maps: Iterating without
 Roundoff Error," Physica D 56, 1-22 (1992). 

Binder, P. M. and R. V. Jensen, "Simulating Chaotic Behavior with Finite State Machines," Phys.
 Rev. 34A, 4460-3 (1986).

Rannou, F., "Numerical Study of Discrete Plane Area-Preserving Mappings," Astron. and Astrop
hys. 31, 289-301 (1974).

back to table of contents

[2.14] What is generic?
(Thanks to Hawley Rising for contributing to this answer)

Generic in dynamical systems is intended to convey "usual" or, more properly, "observable". Roug
hly speaking, a property is generic over a class if any system in the class can be modified ever so sli
ghtly (perturbed), into one with that property.

The formal definition is done in the language of topology: Consider the class to be a space of syste
ms, and suppose it has a topology (some notion of a neighborhood, or an open set). A subset of this
 space is dense if its closure (the subset plus the limits of all sequences in the subset) is the whole s
pace. It is open and dense if it is also an open set (union of neighborhoods). A set is countable if it 
can be put into 1-1 correspondence with the counting numbers. A countable intersection of open de
nse sets is the intersection of a countable number of open dense sets. If all such intersections in a s
pace are also dense, then the space is called a Baire space, which basically means it is big enough. If
 we have such a Baire space of dynamical systems, and there is a property which is true on a counta
ble intersection of open dense sets, then that property is generic.

If all this sounds too complicated, think of it as a precise way of defining a set which is near every s
ystem in the collection (dense), which isn't too big (need not have any "regions" where the property 
is true for every system). Generic is much weaker than "almost everywhere" (occurs with probabilit
y 1), in fact, it is possible to have generic properties which occur with probability zero. But it is as st
rong a property as one can define topologically, without having to have a property hold true in a regi
on, or talking about measure (probability), which isn't a topological property (a property preserved b
y a continuous function).

back to table of contents

[2.15] What is the minimum phase space dimension for chaos?

This is a slightly confusing topic, since the answer depends on the type of system considered. First 
consider a flow (or system of differential equations). In this case the Poincaré-Bendixson theorem t
ells us that there is no chaos in one or two-dimensional phase spaces. Chaos is possible in three-di
mensional flows--standard examples such as the Lorenz equations are indeed three-dimensional, an
d there are mathematical 3D flows that are provably chaotic (e.g. the 'solenoid').

Note: if the flow is non-autonomous then time is a phase space coordinate, so a system with two ph
ysical variables + time becomes three-dimensional, and chaos is possible (i.e. Forced second-order 
oscillators do exhibit chaos.)
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For maps, it is possible to have chaos in one dimension, but only if the map is not invertible. A pro
minent example is the Logistic map
                    x' = f(x) = rx(1-x).
This is provably chaotic for r = 4, and many other values of r as well (see e.g. Devaney). Note that e
very point x < f(1/2) has two preimages, so this map is not invertible.

For homeomorphisms, we must have at least two-dimensional phase space for chaos. This is equiva
lent to the flow result, since a three-dimensional flow gives rise to a two-dimensional homeomorphi
sm by Poincaré section (see [2.7]).

Note that a numerical algorithm for a differential equation is a map, because time on the computer is
 necessarily discrete. Thus numerical solutions of two and even one dimensional systems of ordinar
y differential equations may exhibit chaos. Usually this results from choosing the size of the time st
ep too large. For example Euler discretization of the Logistic differential equation, dx/dt = rx(1-x), is
 equivalent to the logistic map. See e.g. S. Ushiki, "Central difference scheme and chaos," Physica 4
D (1982) 407-424.

back to table of contents
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[3] Applications and Advanced Theory
[3.1] What are complex systems?
(Thanks to Troy Shinbrot for contributing to this answer)

Complex systems are spatially and/or temporally extended nonlinear systems characterized by colle
ctive properties associated with the system as a whole--and that are different from the characteristic 
behaviors of the constituent parts.

While, chaos is the study of how simple systems can generate complicated behavior, complexity is t
he study of how complicated systems can generate simple behavior. An example of complexity is th
e synchronization of biological systems ranging from fireflies to neurons (e.g. Matthews, PC, Mirol
lo, RE & Strogatz, SH "Dynamics of a large system of coupled nonlinear oscillators," Physica 52D
 (1991) 293-331). In these problems, many individual systems conspire to produce a single collecti
ve rhythm.

The notion of complex systems has received lots of popular press, but it is not really clear as of yet 
if there is a "theory" about a "concept". We are withholding judgment. See

http://www.calresco.org/index.htm The Complexity & Artificial Life Web Site 
http://www.calresco.org/sos/sosfaq.htm The self-organized systems FAQ

back to table of contents

[3.2] What are fractals?

One way to define "fractal" is as a negation: a fractal is a set that does not look like a Euclidean obje
ct (point, line, plane, etc.) no matter how closely you look at it. Imagine focusing in on a smooth cur
ve (imagine a piece of string in space)--if you look at any piece of it closely enough it eventually loo
ks like a straight line (ignoring the fact that for a real piece of string it will soon look like a cylinder 
and eventually you will see the fibers, then the atoms, etc.). A fractal, like the Koch Snowflake, whic
h is topologically one dimensional, never looks like a straight line, no matter how closely you look. 
There are indentations, like bays in a coastline; look closer and the bays have inlets, closer still the i
nlets have subinlets, and so on. Simple examples of fractals include Cantor sets (see [3.5], Sierpins
ki curves, the Mandelbrot set  and (almost surely) the Lorenz attractor (see [2.12]). Fractals also ap
proximately describe many real-world objects, such as clouds (see http://makeashorterlink.com/?Z5
0D42C16) mountains, turbulence, coastlines, roots and branches of trees and veins and lungs of ani
mals.

"Fractal" is a term which has undergone refinement of definition by a lot of people, but was first coi
ned by B. Mandelbrot, http://physics.hallym.ac.kr/reference/physicist/Mandelbrot.html,  and define
d as a set with fractional (non-integer) dimension (Hausdorff dimension, see [3.4]). Mandelbrot def
ines a fractal in the following way:

    A geometric figure or natural object is said to be fractal if it
    combines the following characteristics: (a) its parts have the same
    form or structure as the whole, except that they are at a different
    scale and may be slightly deformed; (b) its form is extremely irregular,
    or extremely interrupted or fragmented, and remains so, whatever the scale
    of examination; (c) it contains "distinct elements" whose scales are very
    varied and cover a large range." (Les Objets Fractales 1989, p.154)

See the extensive FAQ from sci.fractals at
<ftp://rtfm.mit.edu/pub/usenet/news.answers/fractal-faq
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back to table of contents

[3.3] What do fractals have to do with chaos?

Often chaotic dynamical systems exhibit fractal structures in phase space. However, there is no dire
ct relation. There are chaotic systems that have nonfractal limit sets (e.g. Arnold's cat map) and fract
al structures that can arise in nonchaotic dynamics (see e.g. Grebogi, C., et al. (1984). "Strange Attr
actors that are not Chaotic." Physica 13D: 261-268.)

back to table of contents

[3.4] What are topological and fractal dimension?

See the fractal FAQ:
ftp://rtfm.mit.edu/pub/usenet/news.answers/fractal-faq

or the site
http://pro.wanadoo.fr/quatuor/mathematics.htm

back to table of contents

[3.5] What is a Cantor set?
(Thanks to Pavel Pokorny for contributing to this answer)

A Cantor set is a surprising set of points that is both infinite (uncountably so, see [2.14]) and yet di
ffuse. It is a simple example of a fractal, and occurs, for example as the strange repellor in the logist
ic map (see [2.15]) when r>4. The standard example of a Cantor set is the "middle thirds" set constr
ucted on the interval between 0 and 1. First, remove the middle third. Two intervals remain, each one
 of length one third. From each remaining interval remove the middle third. Repeat the last step infin
itely many times. What remains is a Cantor set.

More generally (and abstrusely) a Cantor set is defined topologically as a nonempty, compact set w
hich is perfect (every point is a limit point) and totally disconnected (every pair of points in the set a
re contained in disjoint covering neighborhoods).

See also
http://www.shu.edu/html/teaching/math/reals/topo/defs/cantor.html
http://personal.bgsu.edu/~carother/cantor/Cantor1.html
http://mizar.uwb.edu.pl/JFM/Vol7/cantor_1.html

Georg Ferdinand Ludwig Philipp Cantor was born 3 March 1845 in St Petersburg, Russia, and die
d 6 Jan 1918 in Halle, Germany. To learn more about him see:

http://turnbull.dcs.st-and.ac.uk/history/Mathematicians/Cantor.html
http://www.shu.edu/html/teaching/math/reals/history/cantor.html

To read more about the Cantor function (a function that is continuous, differentiable, increasing, no
n-constant, with a derivative that is zero everywhere except on a set with length zero) see
http://www.shu.edu/projects/reals/cont/fp_cantr.html

back to table of contents

[3.6] What is quantum chaos?
(Thanks to Leon Poon for contributing to this answer)
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 According to the correspondence principle, there is a limit where classical behavior as described by 
Hamilton's equations becomes similar, in some suitable sense, to quantum behavior as described by 
the appropriate wave equation. Formally, one can take this limit to be h -> 0, where h is Planck's con
stant; alternatively, one can look at successively higher energy levels. Such limits are referred to as "
semiclassical". It has been found that the semiclassical limit can be highly nontrivial when the classi
cal problem is chaotic. The study of how quantum systems, whose classical counterparts are chaotic
, behave in the semiclassical limit has been called quantum chaos. More generally, these considerati
ons also apply to elliptic partial differential equations that are physically unrelated to quantum consi
derations. For example, the same questions arise in relating classical waves to their corresponding r
ay equations. Among recent results in quantum chaos is a prediction relating the chaos in the classic
al problem to the statistics of energy-level spacings in the semiclassical quantum regime.

Classical chaos can be used to analyze such ostensibly quantum systems as the hydrogen atom, wh
ere classical predictions of microwave ionization thresholds agree with experiments. See Koch, P. 
M. and K. A. H. van Leeuwen (1995). "Importance of Resonances in Microwave Ionization of Exci
ted Hydrogen Atoms." Physics Reports 255: 289-403.

See also: 
http://sagar.physics.neu.edu/qchaos/qc.html Quantum Chaos
http://www.mpipks-dresden.mpg.de/~noeckel/microlasers.html  Microlaser Cavities

back to table of contents

[3.7] How do I know if my data are deterministic?
(Thanks to Justin Lipton for contributing to this answer)

How can I tell if my data is deterministic? This is a very tricky problem. It is difficult because in pra
ctice no time series consists of pure 'signal.' There will always be some form of corrupting noise, ev
en if it is present as round-off or truncation error or as a result of finite arithmetic or quantization. T
hus any real time series, even if mostly deterministic, will be a stochastic processes

All methods for distinguishing deterministic and stochastic processes rely on the fact that a determi
nistic system will always evolve in the same way from a given starting point. Thus given a time serie
s that we are testing for determinism we

(1) pick a test state
(2) search the time series for a similar or 'nearby' state and
(3) compare their respective time evolution.

Define the error as the difference between the time evolution of the 'test' state and the time evolution 
of the nearby state. A deterministic system will have an error that either remains small (stable, regula
r solution) or increase exponentially with time (chaotic solution). A stochastic system will have a ra
ndomly distributed error.

Essentially all measures of determinism taken from time series rely upon finding the closest states t
o a given 'test' state (i.e., correlation dimension, Lyapunov exponents, etc.). To define the state of a s
ystem one typically relies on phase space embedding methods, see [3.14].

Typically one chooses an embedding dimension, and investigates the propagation of the error betwe
en two nearby states. If the error looks random, one increases the dimension. If you can increase th
e dimension to obtain a deterministic looking error, then you are done. Though it may sound simple
 it is not really! One complication is that as the dimension increases the search for a nearby state req
uires a lot more computation time and a lot of data (the amount of data required increases exponenti
ally with embedding dimension) to find a suitably close candidate. If the embedding dimension (nu
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mber of measures per state) is chosen too small (less than the 'true' value) deterministic data can app
ear to be random but in theory there is no problem choosing the dimension too large--the method w
ill work. Practically, anything approaching about 10 dimensions is considered so large that a stocha
stic description is probably more suitable and convenient anyway.

See e.g.,
Sugihara, G. and R. M. May (1990). "Nonlinear Forecasting as a Way of 

      Distinguishing Chaos from Measurement Error in Time Series." Nature 344: 734-740.

back to table of contents

[3.8] What is the control of chaos?

Control of chaos has come to mean the two things:
stabilization of unstable periodic orbits,
use of recurrence to allow stabilization to be applied locally.

Thus term "control of chaos" is somewhat of a misnomer--but the name has stuck. The ideas for co
ntrolling chaos originated in the work of Hubler followed by the Maryland Group.

Hubler, A. W. (1989). "Adaptive Control of Chaotic Systems." Helv. Phys. Acta 62: 343-346.
Ott, E., C. Grebogi, et al. (1990). "Controlling Chaos." Physical Review Letters 64(11): 1196-119

9. http://www-chaos.umd.edu/publications/abstracts.html#prl64.1196

The idea that chaotic systems can in fact be controlled may be counterintuitive--after all they are unp
redictable in the long term. Nevertheless, numerous theorists have independently developed method
s which can be applied to chaotic systems, and many experimentalists have demonstrated that physi
cal chaotic systems respond well to both simple and sophisticated control strategies. Applications h
ave been proposed in such diverse areas of research as communications, electronics, physiology, epi
demiology, fluid mechanics and chemistry.

The great bulk of this work has been restricted to low-dimensional systems; more recently, a few re
searchers have proposed control techniques for application to high- or infinite-dimensional systems
. The literature on the subject of the control of chaos is quite voluminous; nevertheless several revie
ws of the literature are available, including:

Shinbrot, T. Ott, E., Grebogi, C. & Yorke, J.A., "Using Small Perturbations to Control Chaos," N
ature, 363 (1993) 411-7.

Shinbrot, T., "Chaos: Unpredictable yet Controllable?" Nonlin. Sciences Today, 3:2 (1993) 1-8.
Shinbrot, T., "Progress in the Control of Chaos," Advance in Physics (in press).
Ditto, WL & Pecora, LM "Mastering Chaos," Scientific American (Aug. 1993), 78-84.
Chen, G. & Dong, X, "From Chaos to Order -- Perspectives and Methodologies in Controlling C

haotic Nonlinear Dynamical Systems," Int. J. Bif. & Chaos 3 (1993) 1363-1409.

It is generically quite difficult to control high dimensional systems; an alternative approach is to use
 control to reduce the dimension before applying one of the above techniques. This approach is in it
s infancy; see:

Auerbach, D., Ott, E., Grebogi, C., and Yorke, J.A. "Controlling Chaos in
   High Dimensional Systems," Phys. Rev. Lett. 69  (1992) 3479-82
   http://www-chaos.umd.edu/publications/abstracts.html#prl69.3479

back to table of contents

[3.9] How can I build a chaotic circuit?
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(Thanks to Justin Lipton and Jose Korneluk for contributing to this answer)

There are many different physical systems which display chaos, dripping faucets, water wheels, osci
llating magnetic ribbons etc. but the most simple systems which can be easily implemented are chao
tic circuits. In fact an electronic circuit was one of the first demonstrations of chaos which showed t
hat chaos is not just a mathematical abstraction. Leon Chua designed the circuit 1983.

The circuit he designed, now known as Chua's circuit, consists of a piecewise linear resistor as its n
onlinearity (making analysis very easy) plus two capacitors, one resistor and one inductor--the circu
it is unforced (autonomous). In fact the chaotic aspects (bifurcation values, Lyapunov exponents, va
rious dimensions etc.) of this circuit have been extensively studied in the literature both experimenta
lly and theoretically. It is extremely easy to build and presents beautiful attractors (see [2.8]) (the m
ost famous known as the double scroll attractor) that can be displayed on a CRO.

For more information on building such a circuit try: see

http://www.cmp.caltech.edu/~mcc/chaos_new/Chua.html  Chua's Circuit  Applet

References
Matsumoto T. and Chua L.O. and Komuro M. "Birth and Death of the Double 

      Scroll" Physica D24 97-124, 1987.
Kennedy M. P., "Robust OP Amp Realization of Chua's Circuit", Frequenz 

      46, no. 3-4, 1992
Madan, R. A., Chua's Circuit: A paradigm for chaos, ed. R. A. Madan, 

      Singapore: World Scientific, 1993.
Pecora, L. and Carroll, T. Nonlinear Dynamics in Circuits, Singapore: 

      World Scientific, 1995.
Nonlinear Dynamics of Electronic Systems, Proceedings of the Workshop 

      NDES 1993, A.C.Davies and W.Schwartz, eds., World Scientific, 1994, 
      ISBN 981-02-1769-2.

Parker, T.S., and L.O.Chua, Practical Numerical Algorithms for Chaotic 
      Systems, Springer-Verlag, 1989, ISBN's: 0-387-96689-7 
      and 3-540-96689-7.
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[3.10] What are simple experiments to demonstrate chaos?

 There are many "chaos toys" on the market. Most consist of some sort of pendulum that is forced 
by an electromagnet. One can of course build a simple double pendulum to observe beautiful chaoti
c behavior see 

http://quasar.mathstat.uottawa.ca/~selinger/lagrange/doublependulum.html Experimental Pendulu
m Designs

http://www.maths.tcd.ie/~plynch/SwingingSpring/doublependulum.html  Java Applet
http://monet.physik.unibas.ch/~elmer/pendulum/ Java Applets Pendulum Lab

My favorite double pendulum consists of two identical planar pendula, so that you can demonstrate 
sensitive dependence [2.10], for a Java applet simulation see http://www.cs.mu.oz.au/~mkwan/pend
ulum/pendulum.html. Another cute toy is the "Space Circle" that you can find in many airport gift s
hops. This is discussed in the article:

A. Wolf & T. Bessoir, Diagnosing Chaos in the Space Circle, Physica 50D, 1991.
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One of the simplest chemical systems that shows chaos is the Belousov-Zhabotinsky reaction. The 
book by Strogatz [4.1] has a good introduction to this subject,. For the recipe see http://www.ux.his
.no/~ruoff/BZ_Phenomenology.html. Chemical chaos is modeled (in a generic sense) by the "Brus
selator" system of differential equations. See

Nicolis, Gregoire & Prigogine, (1989) Exploring Complexity: An 
      Introduction W. H. Freeman

The Chaotic waterwheel, while not so simple to build, is an exact realization of Lorenz famous equat
ions. This is nicely discussed in Strogatz book [4.1] as well.

Billiard tables can exhibit chaotic motion, see http://www.maa.org/mathland/mathland_3_3.html, tho
ugh it might be hard to see this next time you are in a bar, since a rectangular table is not chaotic!

back to table of contents

[3.11] What is targeting?
(Thanks to Serdar Iplikçi for contributing to this answer)

Targeting is the task of steering a chaotic system from any initial point to the target, which can be eit
her an unstable equilibrium point or an unstable periodic orbit, in the shortest possible time, by appl
ying relatively small perturbations. In order to effectively control chaos, [3.8] a targeting strategy is 
important. See:

Kostelich, E., C. Grebogi, E. Ott, and J. A. Yorke, "Higher
      Dimensional Targeting," Phys Rev. E,. 47, , 305-310 (1993).

Barreto, E., E. Kostelich, C. Grebogi, E. Ott, and J. A. Yorke, "Efficient
      Switching Between Controlled Unstable Periodic Orbits in Higher
      Dimensional Chaotic Systems," Phys Rev E, 51, 4169-4172 (1995).

One application of targeting is to control a spacecraft's trajectory so that one can find low energy or
bits from one planet to another. Recently targeting techniques have been used in the design of trajec
tories to asteroids and even of a grand tour of the planets. For example,

E. Bollt and J. D. Meiss, "Targeting Chaotic Orbits to the Moon 
      Through Recurrence," Phys. Lett. A  204, 373-378 (1995).

http://www.cds.caltech.edu/~marsden/software/spacecraft_orbits.html
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 [3.12] What is time series analysis?
(Thanks to Jim Crutchfield for contributing to this answer)

This is the application of dynamical systems techniques to a data series, usually obtained by "measu
ring" the value of a single observable as a function of time. The major tool in a dynamicist's toolkit i
s "delay coordinate embedding" which creates a phase space portrait from a single data series. It see
ms remarkable at first, but one can reconstruct a picture equivalent (topologically) to the full Lorenz 
attractor (see [2.12])in three-dimensional space by measuring only one of its coordinates, say x(t), a
nd plotting the delay coordinates (x(t), x(t+h), x(t+2h)) for a fixed h.

It is important to emphasize that the idea of using derivatives or delay coordinates in time series mo
deling is nothing new. It goes back at least to the work of Yule, who in 1927 used an autoregressive 
(AR) model to make a predictive model for the sunspot cycle. AR models are nothing more than del
ay coordinates used with a linear model. Delays, derivatives, principal components, and a variety of 
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other methods of reconstruction have been widely used in time series analysis since the early 50's, a
nd are described in several hundred books. The new aspects raised by dynamical systems theory ar
e (i) the implied geometric view of temporal behavior and (ii) the existence of "geometric invariants"
, such as dimension and Lyapunov exponents. The central question was not whether delay coordinat
es are useful for time series analysis, but rather whether reconstruction methods preserve the geome
try and the geometric invariants of dynamical systems. (Packard, Crutchfield, Farmer & Shaw)

G.U. Yule, Phil. Trans. R. Soc. London A 226 (1927) p. 267.
N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Shaw, "Geometry

      from a time series", Phys. Rev. Lett. 45, no. 9 (1980) 712.
F. Takens, "Detecting strange attractors in fluid turbulence", in: Dynamical 

      Systems and Turbulence, eds. D. Rand and L.-S. Young 
      (Springer, Berlin, 1981)

Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., and Tsimring, L.Sh.T. 
      "The analysis of observed chaotic data in physical systems",  
      Rev. Modern Physics 65 (1993) 1331-1392.

D. Kaplan and L. Glass (1995). Understanding Nonlinear Dynamics, 
      Springer-Verlag http://www.cnd.mcgill.ca/books_understanding.html

E. Peters (1994) Fractal Market Analysis : Applying Chaos Theory to 
      Investment and Economics, Wiley
      http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471585246.html
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[3.13] Is there chaos in the stock market?
(Thanks to Bruce Stewart for Contributions to this answer)

In order to address this question, we must first agree what we mean by chaos, see [2.9].

In dynamical systems theory, chaos means irregular fluctuations in a deterministic system (see [2.3]
 and [3.7]). This means the system behaves irregularly because of its own internal logic, not becaus
e of random forces acting from outside. Of course, if you define your dynamical system to be the s
ocio-economic behavior of the entire planet, nothing acts randomly from outside (except perhaps th
e occasional meteor), so you have a dynamical system. But its dimension (number of state variables
--see [2.4]) is vast, and there is no hope of exploiting the determinism. This is high-dimensional cha
os, which might just as well be truly random behavior. In this sense, the stock market is chaotic, but 
who cares?

To be useful, economic chaos would have to involve some kind of collective behavior which can be f
ully described by a small number of variables. In the lingo, the system would have to be self-organi
zing, resulting in low- dimensional chaos. If this turns out to be true, then you can exploit the low- d
imensional chaos to make short-term predictions. The problem is to identify the state variables whic
h characterize the collective modes. Furthermore, having limited the number of state variables, many 
events now become external to the system, that is, the system is operating in a changing environmen
t, which makes the problem of system identification very difficult.

If there were such collective modes of fluctuation, market players would probably know about them;
 economic theory says that if many people recognized these patterns, the actions they would take to 
exploit them would quickly nullify the patterns. Market participants would probably not need to kn
ow chaos theory for this to happen. Therefore if these patterns exist, they must be hard to recognize
 because they do not emerge clearly from the sea of noise caused by individual actions; or the patter
ns last only a very short time following some upset to the markets; or both.
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A number of people and groups have tried to find these patterns. So far the published results are ne
gative. There are also commercial ventures involving prominent researchers in the field of chaos; we
 have no idea how well they are succeeding, or indeed whether they are looking for low-dimensional
 chaos. In fact it seems unlikely that markets remain stationary long enough to identify a chaotic attr
actor (see [2.12]). If you know chaos theory and would like to devote yourself to the rhythms of ma
rket trading, you might find a trading firm which will give you a chance to try your ideas. But don't 
expect them to give you a share of any profits you may make for them :-) !

In short, anyone who tells you about the secrets of chaos in the stock market doesn't know anything
 useful, and anyone who knows will not tell. It's an interesting question, but you're unlikely to find t
he answer.

On the other hand, one might ask a more general question: is market behavior adequately described 
by linear models, or are there signs of nonlinearity in financial market data? Here the prospect is mo
re favorable. Time series analysis (see [3.14]) has been applied these tests to financial data; the resu
lts often indicate that nonlinear structure is present. See e.g. the book by Brock, Hsieh, LeBaron, "N
onlinear Dynamics, Chaos, and Instability", MIT Press, 1991; and an update by B. LeBaron, "Chao
s and nonlinear forecastability in economics and finance," Philosophical Transactions of the Royal 
Society, Series A, vol 348, Sept 1994, pp 397-404. This approach does not provide a formula for m
aking money, but it is stimulating some rethinking of economic modeling. A book by Richard M. G
oodwin, "Chaotic Economic Dynamics," Oxford UP, 1990, begins to explore the implications for b
usiness cycles.
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[3.14] What are solitons?

The process of obtaining a solution of a linear (constant coefficient) differential equations is simplif
ied by the Fourier transform (it converts such an equation to an algebraic equation, and we all know 
that algebra is easier than calculus!); is there a counterpart which similarly simplifies nonlinear equa
tions? The answer is No. Nonlinear equations are qualitatively more complex than linear equations, 
and a procedure which gives the dynamics as simply as for linear equations must contain a mistake.
 There are, however, exceptions to any rule.

Certain nonlinear differential equations can be fully solved by, e.g., the "inverse scattering method." 
Examples are the Korteweg-de Vries, nonlinear Schrodinger, and sine-Gordon equations. In these c
ases the real space maps, in a rather abstract way, to an inverse space, which is comprised of continu
ous and discrete parts and evolves linearly in time. The continuous part typically corresponds to rad
iation and the discrete parts to stable solitary waves, i.e. pulses, which are called solitons. The linear 
evolution of the inverse space means that solitons will emerge virtually unaffected from interactions 
with anything, giving them great stability.

More broadly, there is a wide variety of systems which support stable solitary waves through a bala
nce of dispersion and nonlinearity. Though these systems may not be integrable as above, in many 
cases they are close to systems which are, and the solitary waves may share many of the stability pr
operties of true solitons, especially that of surviving interactions with other solitary waves (mostly) 
unscathed. It is widely accepted to call these solitary waves solitons, albeit with qualifications.

Why solitons? Solitons are simply a fundamental nonlinear wave phenomenon. Many very basic lin
ear systems with the addition of the simplest possible or first order nonlinearity support solitons; th
is universality means that solitons will arise in many important physical situations. Optical fibers ca
n support solitons, which because of their great stability are an ideal medium for transmitting infor
mation. In a few years long distance telephone communications will likely be carried via solitons.
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The soliton literature is by now vast. Two books which contain clear discussions of solitons as well 
as references to original papers are

A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia,
      Penn. (1985)

M.J. Ablowitz and P.A.Clarkson, Solitons, nonlinear evolution equations and inverse
      scattering, Cambridge (1991). http://www.cup.org/titles/catalogue.asp?isbn=0521387302

See  http://www.ma.hw.ac.uk/solitons/
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[3.15] What is spatio-temporal chaos?

Spatio-temporal chaos occurs when system of coupled dynamical systems gives rise to dyn
amical behavior that exhibits both spatial disorder (as in rapid decay of spatial correlations) and tem
poral disorder (as in nonzero Lyapunov exponents). This is an extremely active, and rather unsettled
 area of research. For an introduction see:

Cross, M. C. and P. C. Hohenberg (1993). "Pattern Formation outside of
       Equilibrium."  Rev. Mod. Phys. 65: 851-1112.

http://www.cmp.caltech.edu/~mcc/st_chaos.html Spatio-Temporal Chaos

An interesting application which exhibits pattern formation and spatio-temporal chaos is to excitable
 media in biological or chemical systems. See

Chaos, Solitions and Fractals 5 #3&4 (1995) Nonlinear Phenomena in Excitable 
      Physiological System,  http://www.elsevier.nl/locate/chaos

http://ojps.aip.org/journal_cgi/dbt?KEY=CHAOEH&Volume=8&Issue=1 
      Chaos focus issue on Fibrillation
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[3.16] What are cellular automata?
(Thanks to Pavel Pokorny for Contributions to this answer)

A Cellular automaton (CA) is a dynamical system with discrete time (like a map, see [2.6]), 
discrete state space and discrete geometrical space (like an ODE), see [2.7]). Thus they can be repre
sented by a state s(i,j) for spatial state i, at time j, where s is taken from some finite set. The update r
ule is that the new state is some function of the old states, s(i,j+1) = f(s). The following table shows 
the distinctions between PDE's, ODE's, coupled map lattices (CML) and CA in taking time, state sp
ace or geometrical space either continuous (C) of discrete (D):
        time   state space    geometrical space
 PDE      C          C              C
 ODE      C          C              D
 CML      D          C              D
 CA       D          D              D

Perhaps the most famous CA is Conway's game "life." This CA evolves according to a deter
ministic rule which gives the state of a site in the next generation as a function of the states of neigh
boring sites in the present generation. This rule is applied to all sites.

For further reading see

S. Wolfram (1986) Theory and Application of Cellular Automata, World Scientific Singapore.
Physica 10D (1984)--the entire volume
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Some programs that do CA, as well as more generally "artificial life" are available at 

http://www.alife.org/links.html
http://www.kasprzyk.demon.co.uk/www/ALHome.html

back to table of contents

[3.17] What is a Bifurcation?
(Thanks to Zhen Mei for Contributions to this answer)

A bifurcation is a qualitative change in dynamics upon a small variation in the parameters of a syste
m.

Many dynamical systems depend on parameters, e.g. Reynolds number, catalyst density, temperatur
e, etc. Normally a gradually variation of a parameter in the system corresponds to the gradual variati
on of the solutions of the problem. However, there exists a large number of problems for which the 
number of solutions changes abruptly and the structure of solution manifolds varies dramatically w
hen a parameter passes through some critical values. For example, the abrupt buckling of a stab whe
n the stress is increased beyond a critical value, the onset of convection and turbulence when the flo
w parameters are changed, the formation of patterns in certain PDE's, etc. This kind of phenomena i
s called bifurcation, i.e. a qualitative change in the behavior of solutions of a dynamics system, a par
tial differential equation or a delay differential equation.

Bifurcation theory is a method for studying how solutions of a nonlinear problem and their stability
 change as the parameters varies. The onset of chaos is often studied by bifurcation theory. For exa
mple, in certain parameterized families of one dimensional maps, chaos occurs by infinitely many p
eriod doubling bifurcations

(See http://www.stud.ntnu.no/~berland/math/feigenbaum/)

There are a number of well constructed computer tools for studying bifurcations. In particular see [
5.2] for AUTO and DStool.
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[3.18] What is a Hamiltonian Chaos?

The transition to chaos for a Hamiltonian (conservative) system is somewhat different than that for 
a dissipative system (recall [2.5]). In an integrable (nonchaotic) Hamiltonian system, the motion is "
quasiperiodic", that is motion that is oscillatory, but involves more than one independent frequency (
see also [2.12]). Geometrically the orbits move on tori, i.e. the mathematical generalization of a don
ut. Examples of integrable Hamiltonian systems include harmonic oscillators (simple mass on a spr
ing, or systems of coupled linear springs), the pendulum, certain special tops (for example the Euler
 and Lagrange tops), and the Kepler motion of one planet around the sun. 

It was expected that a typical perturbation of an integrable Hamiltonian system would lead to "ergod
ic" motion, a weak version of chaos in which all of phase space is covered, but the Lyapunov expon
ents [2.11] are not necessarily positive. That this was not true was rather surprisingly discovered by
 one of the first computer experiments in dynamics, that of Fermi, Pasta and Ulam. They showed th
at trajectories in nonintegrable system may also be surprisingly stable. Mathematically this was sho
wn to be the case by the celebrated theorem of Kolmogorov Arnold and Moser (KAM), first propos
ed by Kolmogorov in 1954. The KAM theorem is rather technical, but in essence says that many of
 the quasiperiodic motions are preserved under perturbations. These orbits fill out what are called K
AM tori.
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An amazing extension of this result was started with the work of John Greene in 1968. He showed t
hat if one continues to perturb a KAM torus, it reaches a stage where the nearby phase space [2.4] b
ecomes self-similar (has fractal structure [3.2]). At this point the torus is "critical," and any increase
 in the perturbation destroys it. In a remarkable sequence of papers, Aubry and Mather showed that 
there are still quasiperiodic orbits that exist beyond this point, but instead of tori they cover cantor s
ets [3.5]. Percival actually discovered these for an example in 1979 and named them "cantori." Mat
hematicians tend to call them "Aubry-Mather" sets. These play an important role in limiting the rate 
of transport through chaotic regions.

Thus, the transition to chaos in Hamiltonian systems can be thought of as the destruction of invaria
nt tori, and the creation of cantori. Chirikov was the first to realize that this transition to "global chao
s" was an important physical phenomena. Local chaos also occurs in Hamiltonian systems (in the r
egions between the KAM tori), and is caused by the intersection of stable and unstable manifolds in
 what Poincaré called the "homoclinic trellis."

To learn more: See the introductory article by Berry, the text by Percival and Richards and the colle
ction of articles on Hamiltonian systems by MacKay and Meiss [4.1]. There are a number of excell
ent advanced texts on Hamiltonian dynamics, some of which are listed in [4.1], but we also mention

Meyer, K. R. and G. R. Hall (1992), Introduction to Hamiltonian dynamical systems and the N-b
ody problem  (New York, Springer-Verlag).

back to table of contents
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[4] To Learn More
[4.1] What should I read to learn more?

Popularizations
1 Gleick, J. (1987). Chaos, the Making of a New Science. 
      London, Heinemann. http://www.around.com/chaos.html
2 Stewart, I. (1989). Does God Play Dice? Cambridge, Blackwell.
      http://www.amazon.com/exec/obidos/ASIN/1557861064
3 Devaney, R. L. (1990). Chaos, Fractals, and Dynamics: Computer 
      Experiments in Mathematics. Menlo Park, Addison-Wesley
      http://www.amazon.com/exec/obidos/ASIN/1878310097
4 Lorenz, E., (1994) The Essence of Chaos, Univ. of Washington Press.
      http://www.amazon.com/exec/obidos/ASIN/0295975148
5 Schroeder, M. (1991) Fractals, Chaos, Power: Minutes from an infinite paradise
      W. H. Freeman New York: 

Introductory Texts
1 Abraham, R. H. and C. D. Shaw (1992) Dynamics: The Geometry of 
      Behavior, 2nd ed. Redwood City, Addison-Wesley.
2 Baker, G. L. and J. P. Gollub (1990). Chaotic Dynamics. 
      Cambridge, Cambridge Univ. Press. 
      http://www.cup.org/titles/catalogue.asp?isbn=0521471060
3 Devaney, R. L. (1986). An Introduction to Chaotic Dynamical 
      Systems. Menlo Park, Benjamin/Cummings.
      http://math.bu.edu/people/bob/books.html
4 Kaplan, D. and L. Glass (1995). Understanding Nonlinear Dynamics, 
      Springer-Verlag New York.  http://www.cnd.mcgill.ca/books_understanding.html
5 Glendinning, P. (1994). Stability, Instability and Chaos. 
      Cambridge, Cambridge Univ Press. 
       http://www.cup.org/Titles/415/0521415535.html 
6 Jurgens, H., H.-O. Peitgen, et al. (1993). Chaos and Fractals: New 
      Frontiers of Science. New York, Springer Verlag.
      http://www.springer-ny.com/detail.tpl?isbn=0387979034
7 Moon, F. C. (1992). Chaotic and Fractal Dynamics. New York, John Wiley. 
      http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471545716.html 
8 Percival, I. C. and D. Richard (1982). Introduction to Dynamics. Cambridge, 
      Cambridge Univ. Press. http://www.cup.org/titles/catalogue.asp?isbn=0521281490 
9 Scott, A. (1999). NONLINEAR SCIENCE: Emergence and Dynamics of 
      Coherent Structures, Oxford http://www4.oup.co.uk/isbn/0-19-850107-2
      http://www.imm.dtu.dk/documents/users/acs/BOOK1.html 
10 Smith, P (1998) Explaining Chaos, Cambridge 
       http://us.cambridge.org/titles/catalogue.asp?isbn=0521477476
11 Strogatz, S. (1994). Nonlinear Dynamics and Chaos. Reading, 
      Addison-Wesley
      http://www.perseusbooksgroup.com/perseus-cgi-bin/display/0-7382-0453-6
12 Thompson, J. M. T. and H. B. Stewart (1986) Nonlinear Dynamics and 
      Chaos. Chichester, John Wiley and Sons.
      http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471876844.html
13 Tufillaro, N., T. Abbott, et al. (1992). An Experimental Approach 
      to Nonlinear Dynamics and Chaos. Redwood City, Addison-Wesley. 
      http://www.amazon.com/exec/obidos/ASIN/0201554410/
14 Turcotte, Donald L. (1992). Fractals and Chaos in Geology and 
      Geophysics, Cambridge Univ. Press. 
      http://www.cup.org/titles/catalogue.asp?isbn=0521567335 
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Introductory Articles
1 May, R. M. (1986). "When Two and Two Do Not Make Four." 
      Proc. Royal Soc. B228: 241.
2 Berry, M. V. (1981). "Regularity and Chaos in Classical Mechanics, 
      Illustrated by Three Deformations of a Circular Billiard." 
      Eur. J. Phys. 2: 91-102.
3 Crawford, J. D. (1991). "Introduction to Bifurcation Theory." 
      Reviews of Modern Physics 63(4): 991-1038.
3 Shinbrot, T., C. Grebogi, et al. (1992). "Chaos in a Double Pendulum." 
      Am. J. Phys 60: 491-499.
5 David Ruelle. (1980). "Strange Attractors," 
      The Mathematical Intelligencer 2:  126-37.

Advanced Texts
1 Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics.

     New York, Springer.
        http://www.springer-ny.com/detail.tpl?isbn=038796890

2 Arrowsmith, D. K. and C. M. Place (1990),  An Introduction to Dynamical Systems.
      Cambridge, Cambridge University Press.
      http://us.cambridge.org/titles/catalogue.asp?isbn=0521316502

3 Guckenheimer, J. and P. Holmes (1983), Nonlinear Oscillations, Dynamical
      Systems, and Bifurcation of Vector Fields, Springer-Verlag New York.

4 Kantz, H., and T. Schreiber (1997). Nonlinear time series analysis.
      Cambridge, Cambridge University Press
      http://www.mpipks-dresden.mpg.de/~schreibe/myrefs/book.html

5 Katok, A. and B. Hasselblatt (1995), Introduction to the Modern
      Theory of Dynamical Systems, Cambridge, Cambridge Univ. Press.
       http://titles.cambridge.org/catalogue.asp?isbn=0521575575 

6 Hilborn, R. (1994), Chaos and Nonlinear Dyanamics: an Introduction for
      Scientists and Engineers, Oxford Univesity Press.
       http://www4.oup.co.uk/isbn/0-19-850723-2

7 Lichtenberg, A.J. and M. A. Lieberman (1983), Regular and Chaotic Motion, 
      Springer-Verlag, New York .

8 Lind, D. and Marcus, B.  (1995) An Introduction to Symbolic Dynamics and Coding,
Cambridge University Press, Cambridge http://www.math.washington.edu/SymbolicDynam
ics/

9 MacKay, R.S and  J.D. Meiss  (eds) (1987), Hamiltonian Dynamical Systems A reprint 
      selection, , Adam Hilger, Bristol

10 Nayfeh, A.H.  and B. Balachandran (1995), Applied Nonlinear Dynamics:
      Analytical, Computational and Experimental Methods
      John Wiley& Sons Inc., New York
      http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471593486.html

11 Ott, E. (1993). Chaos in Dynamical Systems. Cambridge University Press, 
      Cambridge. http://us.cambridge.org/titles/catalogue.asp?isbn=0521010845

12 L.E. Reichl, (1992), The Transition to Chaos, in Conservative and Classical Systems: 
      Quantum Manifestations  Springer-Verlag, New York

13 Robinson, C. (1999), Dynamical Systems: Stability, Symbolic
      Dynamics, and Chaos, 2nd Edition, Boca Raton, CRC Press. 
      http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=8495

14 Ruelle, D. (1989), Elements of Differentiable Dynamics and Bifurcation Theory,
       Academic Press Inc.
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15 Tabor, M. (1989), Chaos and Integrability in Nonlinear Dynamics:

      an Introduction, Wiley, New York.
      http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471827282.html

16 Wiggins, S. (1990), Introduction to Applied Nonlinear Dynamical Systems and Chaos,
      Springer-Verlag New York.

17 Wiggins, S. (1988), Global Bifurcations and Chaos, Springer-Verlag New York.
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[4.2] What technical journals have nonlinear science articles?

Physica D                    The premier journal in Applied Nonlinear Dynamics
Nonlinearity                 Good mix, with a mathematical bias
Chaos                        AIP Journal, with a good physical bent
SIAM J. of Dynamical Systems Online Journal with multimedia
                              http://www.siam.org/journals/siads/siads.htm
Chaos Solitons and Fractals  Low quality, some good applications
Communications in Math Phys  an occasional paper on dynamics
Comm. in Nonlinear Sci.      New Elsevier journal
     and Num. Sim.              http://www.elsevier.com/locate/cnsns
Ergodic Theory and           Rigorous mathematics, and careful work
      Dynamical Systems
International J of           lots of color pictures, variable quality.
    Bifurcation and Chaos
J Differential Equations     A premier journal, but very mathematical
J Dynamics and Diff. Eq.     Good, more focused version of the above
J Dynamics and Stability     Focused on Eng. applications. New editorial
      of Systems              board--stay tuned.
J Fluid Mechanics            Some expt. papers, e.g. transition to turbulence
J Nonlinear Science          a newer journal--haven't read enough yet.
J Statistical Physics        Used to contain seminal dynamical systems papers
Nonlinear Dynamics           Haven't read enough to form an opinion
Nonlinear Science Today      Weekly News: http://www.springer-ny.com/nst/
Nonlinear Processes in       New, variable quality...may be improving
    Geophysics
Physics Letters A            Has a good nonlinear science section
Physical Review E            Lots of Physics articles with nonlinear emphasis
Regular and Chaotic Dynamics Russian Journal http://web.uni.udm.ru/~rcd/
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[4.3] What are net sites for nonlinear science materials?

Bibliography
http://www.uni-mainz.de/FB/Physik/Chaos/chaosbib.html Mainz http site
ftp://ftp.uni-mainz.de/pub/chaos/chaosbib/ Mainz ftp site
http://www-chaos.umd.edu/publications/searchbib.html Seach the Mainz Site
http://www-chaos.umd.edu/publications/references.html Maryland
http://www.cpm.mmu.ac.uk/~bruce/combib/  Complexity Bibliography
http://www.mth.uea.ac.uk/~h720/research/ Ergodic Theory and Dynamical Systems
http://www.drchaos.net/drchaos/intro.html Nonlinear Dynamics Resources (pdf file)
http://www.nonlin.tu-muenchen.de/chaos/Projects/miguelbib Sanjuan's Bibliography

Preprint Archives
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http://www.math.sunysb.edu/dynamics/preprints/  StonyBrook
http://cnls.lanl.gov/People/nbt/intro.html Los Alamos Preprint Server
http://xxx.lanl.gov/  Nonlinear Science Eprint Server
http://www.ma.utexas.edu/mp_arc/mp_arc-home.html   Math-Physics Archive
http://www.ams.org/global-preprints/ AMS Preprint Servers List

Conference Announcements
http://at.yorku.ca/amca/conferen.htm Mathematics Conference List
http://www.math.sunysb.edu/dynamics/conferences/conferences.html StonyBrook List
http://www.nonlin.tu-muenchen.de/chaos/termine.html Munich List
http://xxx.lanl.gov/Announce/Conference/ Los Alamos List
http://www.tam.uiuc.edu/Events/conferences.html Theoretical & Applied Mechanics
http://www.siam.org/meetings/ds99/index.htm SIAM Dynamical Systems 1999 

Newsletters
gopher://gopher.siam.org:70/11/siag/ds   SIAM Dynamical Systems Group
http://www.amsta.leeds.ac.uk/Applied/news.dir/  UK Nonlinear News

Education Sites
http://math.bu.edu/DYSYS/  Devaney's Dynamical Systems Project

Electronic Journals
http://www.springer-ny.com/nst/   Nonlinear Science Today
http://www3.interscience.wiley.com/cgi-bin/jtoc?ID=38804 Complexity
http://journal-ci.csse.monash.edu.au/  Complexity International Journal

Electronic Texts
http://cnls.lanl.gov/People/nbt//Book/node1.html An experimental approach 

            to nonlinear dynamics and chaos
http://www.nbi.dk/~predrag/QCcourse/  Lecture Notes on Periodic Orbits
http://hypertextbook.com/chaos/ The Chaos HyperTextBook

Institutes and Academic Programs
http://physicsweb.org/resources/dsearch.phtml Physics Institutes
http://ip-service.com/WiW/institutes.html   Nonlinear Groups
http://www-chaos.engr.utk.edu/related.html Research Groups in Chaos

Java Applets Sites
http://physics.hallym.ac.kr/education/TIPTOP/VLAB/about.html Virtual Laboratory
http://monet.physik.unibas.ch/~elmer/pendulum/ Java Pendulum
http://kogs-www.informatik.uni-hamburg.de/~wiemker/applets/fastfrac/fastfrac.html 

     Java Fractal Explorer
http://www.apmaths.uwo.ca/~bfraser/index.html B. Fraser’s Nonlinear Lab
http://www.cmp.caltech.edu/~mcc/Chaos_Course/ Mike Cross' Demos

Who is Who in Nonlinear Dynamics
http://www.chaos-gruppe.de/wiw/wiw.html Munich List
http://www.math.sunysb.edu/dynamics/people/list.html  Stonybrook List

Lists of Nonlinear sites
http://makeashorterlink.com/?C58C23C16 Netscape’s List
http://cnls.lanl.gov/People/nbt/sites.html  Tufillaro's List
http://cires.colorado.edu/people/peckham.scott/chaos.html Peckham's List
http://members.tripod.com/~IgorIvanov/physics/nonlinear.html Physics Encyclopedia
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http://www.maths.ex.ac.uk/~hinke/dss/index.html  Osinga's Software List

Dynamical Systems
http://www.math.sunysb.edu/dynamics/  Dynamical Systems Home Page
http://www.math.psu.edu/gunesch/entropy.html  Entropy and Dynamics

Chaos sites
http://www.industrialstreet.net/chaosmetalink/  Chaos Metalink
http://bofh.priv.at/ifs/  Iterated Function Systems Playground
http://www.xahlee.org/PageTwo_dir/more.html Xah Lee's dynamics and Fractals pages
http://acl2.physics.gatech.edu/tutorial/outline.htm Tutorial on Control of Chaos
http://www.mathsoft.com/mathresources/constants/wellknown/article/0,,2090,00.html

             All about  Feigenbaum Constants
http://www.stud.ntnu.no/~berland/math/feigenbaum/ The Feigenbaum Fractal
http://members.aol.com/MTRw3/index.html  Mike Rosenstein's Chaos Page.
http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/cspls.html Chaos in Psychology
http://www.eie.polyu.edu.hk/~cktse/NSR/  Movies and Demonstrations

Time Series
http://www.drchaos.net/drchaos/refs.html Dynamics and Time Series
http://astro.uni-tuebingen.de/groups/time/ Time series Analysis
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/index.htm 

                 Time Series Data Library

Complex Systems Sites
http://www.math.upatras.gr/~mboudour/nonlin.html  Complexity Home Page
http://www.calresco.org/ The Complexity & Artificial Life Web Site
http://www.physionet.org/  Complexity and Physiology Site

Fractals Sites
http://forum.swarthmore.edu/advanced/robertd/index.html#frac A Fractal Gallery
http://spanky.triumf.ca/www/welcome1.html  The Spanky Fractal DataBase
http://sprott.physics.wisc.edu/fractals.htm  Sprott's Fractal Gallery
http://fractales.inria.fr/ Projet Fractales
http://force.stwing.upenn.edu/~lau/fractal.html  Lau's Fractal Stuff
http://skal.planet-d.net/quat/f_gal.html 3D Fractals
http://www.cnam.fr/fractals.html  Fractal Gallery
http://www.fractaldomains.com/ Fractal Domains Gallery
http://home1.swipnet.se/~w-17723/fracpro.html Fractal Programs
http://xahlee.org/PageTwo_dir/MathPrograms_dir/mathPrograms.html#Fractals

         Fractal Programs

back to table of contents
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[5] Computational Resources

[5.1] What are general computational resources?
CAIN Europe Archives

      http://www.can.nl/education/material/software.html  Software Area
FAQ guide to packages from sci.math.num-analysis

      ftp://rtfm.mit.edu/pub/usenet/news.answers/num-analysis/faq/part1
NIST Guide to Available Mathematical Software

      http://gams.cam.nist.gov/
Mathematics Archives Software 

      http://archives.math.utk.edu/software.html
Matpack, C++ numerical methods and data analysis library

       http://www.matpack.de/
Numerical Recipes Home Page

      http://www.nr.com/

[5.2] Where can I find specialized programs for  nonlinear science?

The Academic Software Library:
Chaos Simulations

Bessoir, T., and A. Wolf, 1990. Demonstrates logistic map, Lyapunov exponents, billiards in a stadi
um, sensitive dependence, n-body gravitational motion.

Chaos Data Analyser
A PC program for analyzing time series. By Sprott, J.C. and G. Rowlands. 
For more info:http://sprott.physics.wisc.edu/cda.htm

Chaos Demonstrations
A PC program for demonstrating chaos, fractals, cellular automata, and related nonlinear phenomen
a.  By J. C. Sprott and G. Rowlands.
System: IBM PC or compatible with at least 512K of memory.
Available: The Academic Software Library, (800) 955-TASL. $70.

Chaotic Dynamics Workbench
Performs interactive numerical experiments on systems modeled by ordinary differential equations, 
including: four versions of driven Duffing oscillators, pendulum, Lorenz, driven Van der Pol osc., d
riven Brusselator, and the Henon-Heils system.  By R. Rollins.
System: IBM PC or compatible, 512 KB memory.
Available: The Academic Software Library, (800) 955-TASL, $70

Applied Chaos Tools
Software package for time series analysis based on the UCSD group's, work. This package is a co
mpanion for Abarbanel's book Analysis of Observed Chaotic Data, Springer-Verlag.
System: Unix-Motif, Windows 95/NT
For more info see: http://www.zweb.com/apnonlin/csp.html

AUTO
Bifurcation/Continuation Software (THE standard). The latest version is AUTO97. The GUI requir
es X and Motif to be present. There is also a command line version AUTO86. The software is trans
ported as a compressed file called auto.tar.Z.
System: versions to run under X windows--SUN or sgi or LINUX
Available: anonymous ftp from ftp://ftp.cs.concordia.ca/pub/doedel/auto 

BZphase
Models Belousov- Zhabotinsky reaction based on the scheme of Ruoff and Noyes. The dynamics r
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anges from simple quasisinusoidal oscillations to quasiperiodic, bursting, complex periodic and cha
otic.
System: DOS 6 and higher + PMODE/W DOS Extender. Also openGL version
Available: http://members.tripod.com/~RedAndr/BZPhase.htm

Chaos
Visual simulation in two- and three-dimensional phase space; based on visual algorithms rather than
 canned numerical algorithms; well-suited for educational use; comes with tutorial exercises. By Br
uce Stewart
System: Silicon Graphics workstations, IBM RISC workstations with GL
Available: http://msg.das.bnl.gov/~bstewart/software.html

Chaos
A Program Collection for the PC by Korsch, H.J. and H-J. Jodl, 1994, A book/disk combo that giv
es a hands-on, computer experiment approach to learning nonlinear dynamics. Some of the module
s cover billiard systems, double pendulum, Duffing oscillator, 1D iterative maps, an "electronic chao
s-generator", the Mandelbrot set, and ODEs.
System: IBM PC or compatible.
Available: $$http://www.springer-ny.com/catalog/np/updates/0-387-57457-3.html

CHAOS II
Chaos Programs to go with Baker, G. L. and J. P. Gollub (1990) Chaotic Dynamics. Cambridge, C
ambridge Univ. http://www.cup.org/titles/catalogue.asp?isbn=0521471060
System: IBM, 512K memory, CGA or EGA graphics, True Basic
For more info: contact Gregory Baker, P.O. Box 278 ,Bryn Athyn, PA, 19009

Chaos Analyser
Programs to Time delay embedding, Attractor (3d) viewing and animation, Poincaré sections, Mutua
l information, Singular Value Decomposition embedding, Full Lyapunov spectra (with noise cancell
ation), Local SVD analysis (for determining the systems dimension). By Mike Banbrook.
System: Unix, X windows
For more info: http://www.ee.ed.ac.uk/~mb/analysis_progs.html

Chaos Cookbook
These programs go with J. Pritchard's book, The Chaos Cookbook System: Programs written in Vi
sual Basic & Turbo Pascal
Available: $$http://www.amazon.com/exec/obidos/ASIN/0750617772

Chaos Plot
ChaosPlot is a simple program which plots the chaotic behavior of a damped, driven anharmonic os
cillator.
System: Macintosh
For more info: http://archives.math.utk.edu/software/mac/diffEquations/.directory.html

Cubic Oscillator Explorer
The CUBIC OSCILLATOR EXPLORER is a Macintosh application which allows interactive explo
ration of the chaotic processes of the Cubic Oscillator, i.e..Duffing's equation.
System: Macintosh + Digidesign DSP!card, Digisystem init 2.6 and (optional) MIDI Manager
Available: (Missing??) Fractal Music

DataPlore
Signal and time series analysis package. Contains standard facilities for signal processing as well as
 advanced features like wavelet techniques and methods of nonlinear dynamics.
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Systems: MS Windows, Linux, SUN Solaris 2.6
Available: $$http://www.datan.de/dataplore/

dstool
Free software from Guckenheimer's group at Cornell; DSTool has lots of examples of chaotic syste
ms, Poincaré sections, bifurcation diagrams.
System: Unix, X windows.
Available: ftp://cam.cornell.edu/pub/dstool/

Dynamical Software Pro
Analyze non-linear dynamics and chaos. Includes ODEs, delay differential equations, discrete maps
, numerical integration, time series embedding, etc. 
System: DOS. Microsoft Fortran compiler for user defined equations.
Available: SciTech http://www.scitechint.com/

Dynamics: Numerical Explorations.
A book + disk by H. Nusse,  and J.Yorke. A hands on approach to learning the concepts and the m
any aspects in computing relevant quantities in chaos
System: PC-compatible computer or X-windows system on Unix computers
Available: $$ http://www.springer-ny.com/detail.tpl?isbn=0387982647 

Dynamics Solver
Dynamics Solver solve numerically both initial-value problems and boundary-value problems for co
ntinuous and discrete dynamical systems.
System: Windows 3.1 or Windows 95/98/NT
Available: http://tp.lc.ehu.es/jma/ds/ds.html

DynaSys
Phase plane portraits of 2D ODEs by Etienne Dupuis
System: Windows 95/98
Available: (Missing??)

FD3
A program to estimate fractal dimensions of a set. By DiFalco/Sarraille  
System: C source code, suitable for compiling for use on a Unix or DOS platform.
Available: ftp://ftp.cs.csustan.edu/pub/fd3/

FracGen
FracGen is a freeware program  to create fractal images using Iterated Function Systems. A tutorial 
is provided with the program. By Patrick Bangert  
System: PC-compatible computer, Windows 3.1
Available: http://212.201.48.1/pbangert/site/fracgen.html

Fractal Domains
Generates of Mandelbrot and Julia sets. By Dennis C. De Mars
System: Power Macintosh
Available: http://www.fractaldomains.com/

Fractal Explorer
Generates Mandelbrot and Newton's method fractals. By Peter Stone
System: Power Macintosh
Available: http://usrwww.mpx.com.au/~peterstone/index.html
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GNU Plotutils

The GNU plotutils package contains C/C++ function library for exporting 2-D vector graphics in 
many file formats, and for doing vector graphics animations. The package also contains several com
mand-line programs for plotting scientific data, such as GNU graph, which is based on libplot, and 
ODE integration software.
System: GNU/Linux, FreeBSD, and Unix systems.
Available: http://www.gnu.org/software/plotutils/plotutils.html

Ilya
A program to visually study a reaction-diffusion model based on the Brusselator from Future Skills
 Software, Herber Sauro.
System: Requires Windows 95, at least 256 colours
Available : http://www.fssc.demon.co.uk/rdiffusion/ilya.htm

INSITE
(It's a Nonlinear Systems Investigative Toolkit for Everyone) is a collection for the simulation and c
haracterization of dynamical systems, with an emphasis on chaotic systems. Companion software fo
r T.S. Parker and L.O. Chua (1989) Practical Numerical Algorithms for Chaotic Systems  Springer
 Verlag. See their paper "INSITE A Software Toolkit for the Analysis of Nonlinear Dynamical Syst
ems," Proc. of the IEEE, 75, 1081-1089 (1987).
System: C codes in Unix Tar or DOS format (later requires QuickWindowC
             or MetaWINDOW/Plus 3.7C. and  MS C compiler 5.1)
Available: INSITE SOFTWARE, p.o. Box 9662, Berkeley, CA , U.S.A.

Institut fur ComputerGraphik
A collection of programs for developing advanced visualization techniques in the field of three-dime
nsional dynamical systems. By Löffelmann H., Gröller E.
System: various, requires AVS
Available: http://www.cg.tuwien.ac.at/research/vis/dynsys/

KAOS1D
A tool for studying one-dimensional (1D) discrete dynamical systems. Does bifurcation diagrams, 
etc. for a number of maps
System: PC compatible computer, DOS, VGA graphics
Available: http://www.if.ufrgs.br/~arenzon/jsoftw.html

LOCBIF
An interactive tool for bifurcation analysis of non-linear ordinary differential equations ODE's and 
maps. By Khibnik, Nikolaev, Kuznetsov and V. Levitin 
System: Now part of XPP (See below)
Available: http://www.math.pitt.edu/~bard/classes/wppdoc/locbif.html

Lyapunov Exponents
Keith Briggs Fortran codes for Lyapunov exponents
System: any with a Fortran compiler
Available: http://more.btexact.com/people/briggsk2/

Lyapunov Exponents and Time Series
Based on Alan Wolf's algorithm, see [2.11], but a more efficient version.
System: Comes as C source, Fortran source, PC executable, etc
Available: http://www.cooper.edu/engineering/physics/wolf/  (Seems to be missing?)

Lyapunov Exponents and Time Series
Michael Banbrook's C codes for Lyapunov exponents & time series analysis
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System: Sun with X windows.
Available: http://www.see.ed.ac.uk/~mb/analysis_progs.html

Lyapunov Exponents Toolbox (LET)
A user-contributed MATLAB toolbox  that provides a graphical user interface for users to determin
e the full sets of Lyapunov exponents and Lyapunov dimensions of discrete and continuous chaotic
 systems.
System: MATLAB 5
Available: ftp://ftp.mathworks.com/pub/contrib/v5/misc/let

Lyapunov.m
A Matlab program based on the QR Method , by von Bremen, Udwadia, and Proskurowski,
Physica D, vol. 101, 1-16, (1997)
System: Matlab
Available: http://www.usc.edu/dept/engineering/mecheng/DynCon/

Macintosh Dynamics Programs
Lists available at: http://hypertextbook.com/chaos/92.shtml
and http://www.xahlee.org/PageTwo_dir/MathPrograms_dir/mathPrograms.html

MacMath
Comes on a disk with the book MacMath, by Hubbard and West. A collection of programs for dyn
amical systems (1 & 2 D maps, 1 to 3D flows). Version 9.2 is the current version, but West is work
ing on a much improved update.
System: Macintosh
For more info: http://www.math.hmc.edu/codee/solvers/mac-math.html
Available: $$ Springer-Verlag http://www.springer-ny.com/detail.tpl?isbn=0387941355 

Madonna
Solves Differential and Difference Equations. Runs STELLA. Has a parser with a control language.
 By Robert Macey and George Oster at Berkeley
System: Macintosh or Windows 95 or later
Available : $$  http://www.berkeleymadonna.com/

MatLab Chaos
A collection of routines for generate diagrams which illustrate chaotic behavior associated with the l
ogistic equation.
System: Requires MatLab.
Available : ftp://ftp.mathworks.com/pub/contrib/misc/chaos/

MTRChaos
MTRCHAOS and MTRLYAP compute correlation dimension and largest Lyapunov exponents, del
ay portraits. By Mike Rosenstein. 
System: PC-compatible computer running DOS 3.1 or higher, 640K RAM, and EGA display. VGA
 & coprocessor recommended
Available:  ftp://spanky.triumf.ca/pub/fractals/programs/ibmpc/

Nonlinear Dynamics Toolbox
Josh Reiss' NDT includes routines for the analysis of chaotic data, such as power spectral
analyses, determination of the Lyapunov spectrum, mutual information function, prediction,
noise reduction, and dimensional analysis.
System: Windows 95, 98, or NT
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Available : Missing??

NLD Toolbox
This toolbox has many of the standard dynamical systems, By Jeff Brush
System: PC, MS-DOS.
Available: http://www.physik.tu-darmstadt.de/nlp/nldtools/nldtools.html

ODECalc
A program for integrating boundary value and initial value Problems for up to 9th order ODEs. By 
Optimal Designs.
System: PC 386+, DOS 3.3+, 16 bit arch.
Available : ftp://ftp.mecheng.asme.org/pub/EDU_TOOL/Ode200.exe

PHASER
Kocak, H., 1989. Differential and Difference Equations through Computer Experiments: with a sup
plementary diskette containing PHASER: An Animator/Simulator for Dynamical Systems. Demons
trates a large number of 1D-4D differential equations--many not chaotic--and 1D-3D difference eq
uations.
System: PC-compatible
Available: Springer-Verlag http://www.springer-ny.com/detail.tpl?isbn=0387142029

PhysioToolkit
Software for physiologic signal processing and analysis, detection of physiologically significant
events using both classical techniques and novel methods based on statistical physics and
nonlinear dynamics
System: Unix
Available: http://www.physionet.org/physiotools/

Recurrence Quantification Analysis
Recurrence plots give a visual indication of deterministic behavior in complex time series. The progr
am, by Webber and Zbilut creates the plots and quantifies the determinism with five measures.
System: DOS executable
Available:http://homepages.luc.edu/~cwebber/

SciLab
A simulation program similar in intent to MatLab. It's primarily designed for systems/signals work, 
and is large. From INRIA in France.
System: Unix, X Windows, 20 Meg Disk space.
Available : ftp://ftp.inria.fr/INRIA/Projects/Meta2/Scilab

StdMap
Iterates Area Preserving Maps, by J. D. Meiss. Iterates 8 different maps. It will find periodic orbits, 
cantori, stable and unstable manifolds, and allows you to iterate curves.
System: Macintosh
Available: http://amath.colorado.edu/faculty/jdm/stdmap.html

STELLA
Simulates dynamics for Biological and Social systems modelling. Uses a building block metaphor 
constructing models.
System: Macintosh and Windows PC
Available: $$ http://www.hps-inc.com/edu/stella/stella.htm
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Time Series Tools

An extensive list of Unix tools for Time Series analysis
System: Unix
For more info: http://chuchi.df.uba.ar/guille/TS/tools/tools.html (Link down??)

Time Series Analysis from Darmstadt
Four prgrams Time Series analysis and Dimension calculation from the Institute of Applied Physic
s at Darmstadt.
System: OS2 or Solaris/Linux/Win9X/NT + Fortran source
For more info: http://www.physik.tu-darmstadt.de/nlp/distribution.html

Time Series Analysis from Kennel
The program mkball  finds the minimum embedding dimension using the false strands enhancemen
t of the false neighbors algorithm of Kennel & Abarbanel.
System: any C compiler
Available: ftp://lyapunov.ucsd.edu/pub/nonlinear/mbkall.tar.gz

TISEAN Time Series Analysis
Agorithms for data representation, prediction, noise reduction, dimension and Lyapunov estimation, 
and nonlinearity testing. By Rainer Hegger, Holger Kantz and Thomas Schreiber
System:  C, C++ and Fortran Codes for Unix,
Available: http://www.mpipks-dresden.mpg.de/~tisean/

Tufillaro's Programs
From the book Nonlinear Dynamics and Chaos by Tufillaro, Abbot and Reilly (1992) (for a sample
 section see http://www.drchaos.net/drchaos/Book/node1.html). A collection of programs for the M
acintosh.
System: Macintosh
Available: http://www.drchaos.net/drchaos/bb.html

Unified Life Models (ULM)
ULM, by Stephane Legendre, is a program to study population dynamics and more generally, discr
ete dynamical systems. It models any species life cycle graph (matrix models) inter- and intra-speci
fic competition (non linear systems), environmental stochasticity, demographic stochasticity (branch
ing processes), and  metapopulations, migrations (coupled systems).
System: PC/Windows 3.X
Available: from http://www.snv.jussieu.fr

Virtual Laboratory
Simulations of 2D active media by the Complex Systems Group at the Max Planck Inst. in Berlin.
System: Requires PV-Wave by Visual Numerics $$http://www.vni.com/products/wave/
Available: $$ http://w3.rz-berlin.mpg.de/~mik/oertzen/vlm/m_contents.htm

VRA (Visual Recurrence Analysis)
VRA is a software to display and Study the recurrence plots, first described by Eckmann, Oliffson 
Kamphorst And Ruelle in 1987. With RP, one can graphically detect hidden patterns and structural 
changes in data or see similarities in patterns across the time series under study. By Eugene Konon
ov
Stystem: Windows 95
Available: http://pweb.netcom.com/~eugenek/download.html

Xphased
Phase 3D plane program for X-windows systems (for systems like Lorenz, Rossler). Plot, rotate in 
3-d, Poincaré sections, etc. By Thomas P. Witelski
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System: X-windows, Unix, SunOS 4 binary
Available: http://www.alumni.caltech.edu/~witelski/xphased.html

XPP-Aut
Differential equations and maps for x-windows systems. Links to Auto for bifurcation analysis. By
 Bard Ermentrout
System: X-windows, Binaries for many unix systems
Available : ftp://ftp.math.pitt.edu/pub/bardware/tut/start.html

XSpiral
Simulate pattern formation in 2-D excitable media (in particular 2 models, one of them the  FitzHug
h-Nagumo). By Flavio Fenton.
System: X-windows
Available : (Missing??)

back to table of contents
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