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Abstract

The modeling of blood flow through a compliant vessel requires solving a system of coupled nonlinear partial differential equations (PDES).
Traditional methods for solving the system of PDEs do not scale optimally, i.e., doubling the discrete problem size results in a computational
time increase of more than a factor of 2. However, the development of multigrid algorithms and, more recently, the first-order system least-
squares (FOSLS) finite-element formulation has enabled optimal computational scalability for an ever increasing set of problems. Previous
work has demonstrated, and in some cases proved, optimal computational scalability in solving Stokes, Navier—Stokes, elasticity, and elliptic
grid generation problems separately. Additionally, coupled fluid—elastic systems have been solved in an optimal manner in 2D for some
geometries. This paper presents a FOSLS approach for solving a 3D model of blood flow in a compliant vessel. Blood is modeled as a
Newtonian fluid, and the vessel wall is modeled as a linear elastic material of finite thickness. The approach is demonstrated on three different
geometries, and optimal scalability is shown to occur over a range of problem sizes. The FOSLS formulation has other benefits, including

that the functional is a sharp, a posteriori error measure.
© 2005 Published by Elsevier Ltd on behalf of IPEM.

Keywords: Navier—Stokes; Blood flow; Coupled; Finite elements; Least-squares; Multigrid

1. Introduction some power greater than 1. However, we have recently shown
that the use of a first-order system least-squares (FOSLS)
Over the past century, many mathematical models for finite-element formulation in conjunction with an algebraics
blood flow have been developgt0]. From the earliest 1D  multigrid (AMG) solver is capable of achieving optimal scal-x
models, which were solved analytically, to the present 3D ability of the computational costs for some 2D fluid—structure:
unsteady models, for which only an approximate numerical problemg[8]. The goal of this paper is not to present a new.
solution can be obtained, the goal has always been to obtairmodel of blood flow, but to extend this new method and show
more accurate models. Further, to avoid the error associatedhat it achieves optimal computational scalability on a 3D
with the introduction of artificial boundary conditions, there transient model of blood flow through a compliant vessel. s
is a constant desire to model larger regions of the circula- Modeling blood flow within a compliant vessel wall s
tory system. Unfortunately, present methods for solving the requires consideration of both the vessel wall domain and
large linear systems of equations associated with the numerthe flowing blood domain. As an added complication, thes
ical approximation generally do not scale optimally, i.e., the shape of the blood domain is not known a priori to solvings
computation costs are not proportional to the number of the equations and is continually evolving with the current
unknowns but proportional to the number of unknowns to displacement of the vessel wall. An example of a no-flow:
domain is shown in the upper half Bfg. 1, and this domain s
— is separated into a blood regiom2§) and a vessel wall s
* Corresponding author. . .
E-mail addresses: jheys@asu.edu (J.J. Heys), degroff.curt@tchden.org reg_|on (QV) The equatlons_fpr the vessel wall are normallw
(C.G. DeGroff), tmanteuf@colorado.edu (T.A. Manteuffel), defined from the rest position, so they are based on this
stevem@colorado.edu (S.F. McCormick). no-flow domain. The deformed, flowing blood domain withse

1350-4533/$ — see front matter © 2005 Published by Elsevier Ltd on behalf of IPEM.
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method include the ability to use straightforward finite dif-ss
ference approximations and the computational savings from
not having to move the mesh over the fluid domain. The
immersed boundary method can have problems with numet-
ical stability if explicit time stepping is usef@1], and the «

2 use of discrete delta functions prevents the method frosa

achieving more that first-order accurddyl]. Lee and LeV- o

% eque[12] derived a similar method, called the immerseds
v

interface method, that overcomes some of the traditional
difficulties with the immersed boundary method. The othes
option is to model the vessel wall as a structure of finites
thickness. The choice between these two options depends
upon the ratio of vessel wall thickness to vessel diametes.
The smaller this ratio, the smaller the error introduced hy
the shell approximation. For purposes of generality, all mod-
els presented in this paper are based on finite vessel wall
thickness. 104
Because the position of the interface and the final shapa®f
the deformed fluid domain are not known a priori, a numbes
of different iterative methods have been developed to handie

Fig. 1. The no-flow blood$s) and vessel wall®y) domains (above) and this moving domain prObIem' They can Ioosely be divideg:

the deformed blood domait2g) (below) for a coupled blood vessel system  INtO tWo categories: (1) one iteration per time step approaches
with the initial interface and a deformed interfaEe or (2) multiple iterations per time step. Unfortunately, botho

approaches have potential pitfalls because performing multi-
ple iterations may result in slow convergerigeéand higher 1.2
displaced vessel wall is shown in the lower halfFeg. 1, computational costs, and the single iteration approach may
and the blood flow region is denoted 2g. The fluid equa- require very small time steps to maintain a stable solutian
tions are typically defined on this deformed domain, and the [21]. All simulations in this paper used multiple iterations tas
interface between the two domains is shown/asin the ensure that the domain shape was nearly correct for the time
deformed case. Mechanical coupling between the domainsstep. However, in many cases, the second iteration was net
requires the traction to be continuous along the interface necessary if the time step was sufficiently small. The choice
between the blood and vessel wall regions. In the typical here is highly dependent upon the choice of equation cau-
case of a non-steady problem, the velocity must also be pling, which is described next. 120
continuous. The third choice that must be made concerns the coupling
Three important choices must be made when modeling of the three different sets of equations—blood flow equa-
blood flow in a compliant vessel. The first choice is the tions, vessel wall equations, and the equations that handie
mathematical model of the vessel wall—both shell mod- the changing shape of the blood domain. The first optian
els and finite thickness models have been used by othersis to solve the equations in series, beginning with the equa-
The second choice is in the iteration approach used to han-tions describing the blood flow on the current (fixed) domaits
dle the changing blood domain shape—one iteration per The wall stress along the interface from the blood flow solu-
time step or multiple iterations. The third choice is the cou- tion is then used in the solution of the vessel wall equas
pling between the three sets of equations, i.e., the couplingtions to find the new wall displacement. At this point, thes
between the blood equations (Navier—Stokes), the vesselshape of the blood flow domain has changed, and addi-
wall equations, and the remapping or remeshing equations.tional equations are typically solved to account for the newa
which handle the changing blood domain shape. We look shape. Depending on the solution approach, the nodes asso-
at each of these choices, beginning with the vessel wall ciated with the blood flow discretization are moved, or thes
model. new blood flow domain may be mapped back to the origis
The simplest method is to model the vessel wall as a nal domain. The second option is to couple just the bload
shell [13,20] The viscous shear stress is typically ignored flow and vessel wall equations and solve them simultane-
[14], resulting in displacement only in the radial direction. ously, with the mapping equations solved separately. Finally,
An important method related to modeling the vessel wall it is also possible to solve all of the equations couplee
as a shell is the immersed boundary method developed bytogether so that the remapping or remeshing equations ase
Peskin[16], which uses a regular structured grid over the solved simultaneously with the blood flow and vessel wailb
fluid domain, with the elastic boundary expressed in terms of equations. 141
a localized force distribution (Dirac delta functions) within The advantage to solving the three parts in series.is
the regular grid. The advantages of the immersed boundarythat this method requires the smallest amount of computer
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memory, but it often requires multiple iterations per time
step to achieve acceptable continuity of traction due to the
oscillating convergence sometimes obserfi@dThe advan-
tages of coupling the blood flow and vessel wall equations . _ an )

include the assurance of continuity of interface tractions —AU— <_ + 1) VV-u=0in 2. (2) s
[6] and typically fewer iterations. The latter advantage may

stem from the Jacobian matrix containing terms coupling Blood is modeled using the Navier—Stokes equations: 196
the blood flow and vessel wall domains, thus helping pre-

©

3

whereL is a characteristic length scaling. Multiplying I% 1
yieIdS 194

illati i i av .
yent oscillations. However, this coupleq sygtem of equations —p(V-VV) = Vp + usAv = p= in 28, @R)
increases memory usage and potentially increases compu- ot
tational costs over solving the three parts in series. For .
g P V-v=0in £2g, (4) 19

the fully coupled method, the disadvantages include a large
memory requirement to store the complex Jacobian matrix
[17], while its advantages include potential quadratic con-
vergence near the solutigh7]. A comparison between the
three options is presented [8]. In this paper, all simula-
tions were performed using the second approach, that is
by solving the coupled blood flow and vessel wall equa-
tions followed by the solving of the remapping equations
separately.

The FOSLS methodology has previously been applied to

the individual pieces of the coupled model—Navier—Stokes \yheregy, andog are the total stress tensors for the vessel
flow, elasticity equations for the vessel wall, and elliptic gl and flowing blood, respectively, ands the outward unit zor
grid generation (EGG) for remapping the fluid domain. The- ormal vector on the deformed or physical domain interfaces
oretical results for the Stokes and linear elasticity equa- Egs.(3) and (4)can be rewritten in dimensionless form byos
tions yield optimal discretization error estimates in #€  gefining the following the dimensionless variables (indicateg

wherep is the densityp the pressureypg the viscosity, and 1
v = (v1, v2, v3) is the velocity. Eqs(3) and (4)are defined 200
for an Eulerian reference frame, which moves as the vessel
wall is displaced. The deformed fluid domain is also referred
'to as the physical domain. The traction matching condition
between the regions is 204

n-oy(u) =n-og(v) on I3, (5) 205

product norm and optimal algebraic convergeri2zg In by hat symbol (")) and number: an
addition, the FOSLS formulation of EGG, used to map

the deforming fluid domain to a reference domain, has . Vv . P ~ Wt LY,

been shown to be#l-elliptic, providing optimal muli- =y P72 =1 Re = s e

grid convergencg4]. The optimality of FOSLS for solv-
ing Coup|ed fluid—elastic equations in 2D has also been whereVis aVGlOCityscaling,anﬂeiS the Reyn0|d5 number. 213
demonstrated numericallig]. In summary, FOSLS pro-  Using the new variables, Eq&) and (4)can be rewritten as zu
vides optimal overall convergence properties for each of -

the three parts of the compliant blood flow system sep- —(v.V$) — Vp + Re L AV = B_Y in 2g, (6) us
arately, and it has been numerically demonstrated in 2D

for fluid—elastic problems. Our aim now is to demonstrate

the scalability of the approach on 3D compliant blood flow V-v=0in s, (7)o

problems. It is important to ensure that thémensional stresses are 27
matched between the fluid and elastic solid. However, the
dimensionless variables require the definition of the follows

2. Model equations and formulation mg dimensionless stresses: 220

The blood vessel wall is modeled as a compressible linear . R T A R ov
i id- oV = (Vll—|— (Vll) ) - <—> (V . 11)5" = —, (8) 221
elastic solid: wy YTy

—pvAu— (A +uy)VV-u=0 in 2y, (1) and 22

, . A —1roa ATy = 9B
whereuy and are Lané constants and = (u1, uy, u3) is o = Re” (Vv +(VV)') — pdij = Y (9) s

the displacement. Ed1) is defined on the original, unde-
formed domain using a Lagrangian reference frame and canwheres;; is the Kronecker delta symbol. Therefore, E5) 2

be rewritten in dimensionless form by defining the following  can be replaced by -

the dimensionless variables (indicated by hat symbol (")):

%= x b= u n-oy()=n- <£> os(¥) on I3, (10) 226
L’ L’ 123%
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thus allowing the use of dimensionless variables with the  The first-order system for the EGG equations can be writ-

stress matching conditions. The use of a consistent lengthten ag4] 273
scaling,L, between the domains allows the use of a dimen- .

sionless position matching condition along the interface, ~J — Vx =0 in £, (18) on
f=E+1d on I, ay (T 7=0in 2 (19) s
Whereé corresponds to the no flow or undeformed coordi- VxJ=0in £, (20) =

nates. We drop hat symbol (") in what follows since only
dimensionless variables are considered.

Elliptic grid generation (EGG) is used to map the
deformed blood flow region (the physical domai?g) back
to the original, undeformed computational regigzg]. The
EGG equations are derived by requiring that the map be bijec-
tive and satisfy

wherex = (x(§, n, ¢), y(§, n, ¢), =&, n, ¢)) is the mapping =7
from the undeformed computational domain to the deformed
physical domain (seEig. 1), J the Jacobian of the mapping,zr
andJ~T is the inverse of the transpose of the Jacobian. Eg.
(19) is nonlinear and illustrates that compliant blood flowe:
problems are always nonlinear in character, either implicithy

or explicitly. 283
Axé =0 in 2g, (12) . Finally, the fir_st-ordersystgm for the Navier—Stokes equas
tions(6) and (7)is, after mapping, 285
where £ = (&(x, v, 2), n(x, y, 2), ¢(x, y, 2)) are the unde- .
formed computational coordinates. Etj2)is defined on the V—Vv=0In £, (21) 2o
unknown physical domain2g, but it can be inverted so that adl
the equation is defined on the computational dorf@jinThe 1, =T +—1 1 T _1
. . R V).V — v —(v-
solution to the EGG equations allows E¢8) and (7)to be TV V= (I VP = (v STY) e
rewritten so that they are defined on the original computa-  _ v in 25 (22) o
tional domain instead of the physical domain. ot ’ 250
Egs.(2), (6) and (7and the inverse (fL2) can be recast as
a first-order systems of equations by defining new variables. V tr(J V) = 0 in £2g, (23) 2o
For example, the vessel wall equation (i.e., linear elasticity) 1 )
requires defining a new3 3 matrix of variables/ = Uj; that (J77V)-v=0in £, (24) 2
representderivatives of the primary variables. Then, rewriting ~ _; )
Eq. (2) as a first-order system gives Re "V xV=0In £ (25) 2
U—vVu=0 in Qv. (13) In approximating the solution to this system, E(&3) and 2.

(24) can be strictly enforced or weighted more heavily tes

T A ) achieve aresult with less error in mass conservation and mese
—(V-U) ~ (M_V> Vir(U) =0 in Qv, (14) error in momentum conservation, which may or may not he
desirable. 208
VxU=0in 2y, (15) The dimensionless stress matching condifid between 2
the two regions can now be rewritten in terms of first-ordes
where tr{y) = U1+ Uz + Uza. For the first-order system, variables: 01

bold letters indicate a vector, capital letters indicate a second-
order tensor, and the shape of zero is implied by the left side. — A — V2
P e J . <U +UT+ — tr(U)a,»,-) —J . <—p )
24Y,

Eq. (15) is added to expose divergence-free errors and to Y .

establish#-ellipticity [3]. It is important to note that Dirich-

let boundary conditions, given by x (Re ™IV + (Ret J—lv)T — p8ij) =0 on I, a0
u=g only, (16) (26) 204
are now supplemented with the additional, but consistent wheren is the outward unit normal vector on the undeformegs
tangential boundary condition: computational interface. The ! operator mapa to n, the e

vector normal to the deformed or physical interface. In many
7-U =0 on Iy, (17) cases, it is possible to computedirectly, which may be 20

desirable to prevent inaccuracies/int from contaminating s
wherer is the unit vectors tangential to the surface. Neumann the traction matching condition. 310
boundary conditions can be rewrittenmaé/ = b, wheren is The construction of the least-squares functional(s) from

the vector normal to the surface ahds the specified flux  the system of first-order equatiofs3)—(26)depend on the a2
[3]. The Neumann and Dirichlet conditions for the fluid and method chosen to solve the coupled fluid—elastic probles.
EGG equations are also modified in a consistent manner.  For the approach used in this paper, coupling the blood flaw
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as  and vessel wall equations while leaving the remapping equa-may be small and hidden in tH& norm, are large and thus:e:

a1  1iONS as a separate problem, the first functional is given by controllable in the functional norm. 363
2 T A 2 2 2
w G, U, v, V, p):=||U—Vullg o, + H(—V -U) — (M—V) v ir(U) + IV x Ullg,@, + 11V = VVI[g o,
0,2y

2

3.

a
53

1, —T — _ T _ av _ _ _
—I—HRe Yr T vy v— (U ps) —(v-J 1V)5 + |V tr(J 1V)||g,95+||(J 1V)~v||a_(2ﬂ+||Re v

O,.Qﬂ
A V2 ?
o — T
210 x VIi§ g, + |/ 0 (U +UT+ = tr(U)Sij> —J . (p_> (Re 2 J7V + (Re7LI7IV) — psiy) . (27
2aY, “v /2.5
=0 Where|| - [|3 ;, denotes thé, norm of the enclosed quantity Fig. 2 summarizes the many levels of iteration that take:
=1 over the region2. J is initially the identity matrix, but cal-  Place in solving compliant blood flow problems. s
=2 culated for later iterations by first minimizing the following o The outermost level consists of cycling between the funes
s functional: tional for blood flow and vessel wallz, and the EGG e
2 Gesa(X, J)i=||J — Vx||§ ot T tv). JII% 2 funcUonaI,GEQG for remapping tk_le bloo'd domain. Typl—ses
’ ’ cally, only a single outer iteration is required for each times
a5 +]|V x J| |(2),s2,s' (28) step, but a second iteration can be performed to check cen-
. . . . L . vergence. 37
= Thus, G is a nonlinear functional that is minimized first, o gince both functionals in the outer iteration are nonlinear;
27 followed by a minimization olGgge. These minimizations eachindividual functional is linearized and at least one itef-

=s may be repeated to check for convergence. The bound- ation is performed. Typically, one iteration is sufficient oz
=0 ary conditions, other than the traction matching condi-  small time steps (<0.05 s) and two iterations are sufficient
a0 tion, have been omitted frond and Gegg because they for larger time steps. 76
= can be imposed directly on the finite-element (approxima- 4 The inner most iterations solve the linear system using
=2 tion) space. Alternatively, these boundary conditions can be  an algebraic multigrid (AMG) preconditiongt,18] for s
= enforced weakly in a least-squares sense by adding addi- 3 conjugate gradient (CG) iteration. Under this AMG/CGe
= tional terms to the functional. This choice has been shown  method, a single V-cycle is used to calculate a precoss
= to have little effect on the final solution, especially as the  ditioner for a single CG iteration. Most of the compuss:
= mesh is refined, but it can affect the convergence rate of tational cost is associated with the V-cycle. Typicallys.

= the linear solver. The simulations in this paper used strictly  20-40 AMG/CG iterations provide a sufficiently accurates
s enforced boundary conditions unless noted otherwise. In approximation to the solution of each linear System_

@ G, L? norms are used for the domain afd’2 norms are

xo used for the boundary. In the numerical implementation,

su L? norms scaled by #/are used for the weak boundary 3. Results
42 terms.

33 The equations thatare used in the functionad(dGecc) The scalings and dimensionless numbers used for all sim-
24 are first linearized so that the solution can be found using a yations, unless noted otherwise, are summarizdéie 1 =
us  Gauss—Newton approach. The value of the nonlinear func-These values are calculated based on the assumptions af a

= tional is calculated after each Gauss—Newton step to ensureinematic viscosityy, for blood of 4x 10-6 m?/s, a Young's s
wr  thatthe nonlinear functional is decreasing to a minimum. The

xus  functional for the linearized equations is minimized over the .,

384

385

Iterations (remapping the fixed domain):

a9 finite-element spaces by setting the derivative to zero in the

. . - . | Blood Flow and Vessel Wall |—> Remesh
0 weak sense for each linearized step. A finite-element basis is I::I
1 thenchosen sothatthe weak form generates a matrix problem *

a2 All of the simulations presented in Secti@ruse a trilinear

. . . I Iterations (Gauss-N n s| g
= finite-element basis for all of the variables. The FOSLS for- " !¢t (Cam i enion 5ep)
=+ mulation allows the solution spaces for the variables to be | Lipearicett Frneonel
35 chosen independently, with no restrictive stability condition $

s 10 satisfy. As a result, both the pressure and velocity in the

7 Navier—Stokes equations can be approximated with a trilinear AMG/CG:

s basis. Functional& and Gegg measure the first derivative | 1 V(1,1)-Cyele per CG iteration. |
a0 Of the error in the primary variables (i.e., velocity, pressure,
w0 and displacement), .unl'ke the_error II’.1 the Sense.- There_' Fig. 2. Summary of the different levels of iteration for modeling compliant
1 fore, error characterized by ‘wiggles’ in the solution, which  blood flow.
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Fig. 3. Maximum dimensionless inlet speed (left) and dimensionless outlet pressure (right) over a single, 1 s cardiac cycle.
Table 1 blood flow at the inlet, and the maximum velocity along the:

Scalings and dimensionless parameters used in the model for compliantimet is varied using a half-sine waing. 3. In this way, 42
blood flow. Any changes to these values are explicitly noted s - . . -
the velocity is initially zero, increases in a sine wave profiles

Length scaling/. (m) 0.01 to a maximum at 0.25 s, decreases back to zero at 0.5's, and

Velocity scaling, (m/s) 0.5 remains zero until 1.0's, at which point a new pulse is b

Reynolds numbeRe 1250 . R ' P PUISE IS begua.

Larmé ratio. 2 24 Other smooth inlet velocity profiles that we tried exhibiteats
2y . -

Traction matching scaling%z 74 10-2 numencal pgrforma_nce similar to what we report below. A+

Time step scalingY 50 no-slip condition is imposed along the vessel wall, and the

tangential velocity is also set to zero at both the inlet and
outlet. The pressure at the outlet is based on a dimensian-
modulus of 1x 10° Pa for the vessel wall, and a Poisson’s less pressure equal to zero at the beginning of each pulse.
ratio of 0.48 for the vessel wall. These parameters are chosenlhe pressure rises to 25 in a quarter sine wave pattern atae
to represent typical conditions found in the major vesi&ils beginning of the pulse, and then it linearly returns to zero at
Our goal in this paper is not to present a new, more accu- the end of the pulse~{g. 3). Both the inlet velocity profile s
rate model of blood flow in one particular location, but to and the outlet pressure profile are qualitatively based on the
present a methodology for modeling compliant blood flow in  profile data in Perktold and Rappitsfi#]. 426
a computationally scalable manner. Therefore, simplicityand  The numerical performance of the FOSLS formulation;
generality are the objective in choosing parameters, boundaryand the AMG/CG solver is summarized Table 2 In this s
conditions, and geometries in this section. All calculations table, the problem size is varied over an order of magnitude,
were performed on a modest 700 MHz Itanium processor yet the CPU time is nearly proportional to the number af
using up to 8 GB memory. unknowns. This is clearly seen in the bottom two lines that
The first test problem is flow through a simple straight show adoubling of the number of unknowns and a doubling of
tube of length 5.0 and internal diameter 1.0 along the entire the CPUtime, i.e., optimal scalability. The convergence factog
axis at rest (no flow). The vessel wall has a thickness of 0.1 is the ratio of the value of the residual after the AMG/CG cycle.
(2 mm in dimensional terms), and the ends of the vessel wall to the value before the cycle. Asble 2shows, the residual s
are assumed to be fixed. A no-stress condition is imposed onfor the coupled functional, blood flow and vessel wall, iss
the outer normal surface of the vessel, based on the assumpedecreased by a factor of 0.90 every AMG/CG iteration. The
tion that the surrounding tissue applies negligible force. The convergence factors for the EGG functional were much lowes
imposing of other, more complicated boundary conditions on (approximately 0.4). 439
the outer tube surface is trivial and does notimpactthe numer-  The final value of the functional is a sharp measure of the
ical performance. A parabolic velocity profile is used for the error in the solution as measured in tH&-norm. Lines 2

Table 2

Numerical performance of the FOSLS finite-element formulation using a AMG/CG solver for the straight tube problem

Average mesh spacing (cm) Number of unknowns CPU time per step (min) Convergence factor Total functional
0.17 1.07x 10° 17 0.89 7.63<10°3

0.13 2.08x 10 35 0.87 7.61x 1078

0.085 7.04¢ 10° 126 0.90 2.50¢ 1073

0.067 1.3% 1P 258 0.90 2.1k 1073
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Fig. 4. Velocity profile and vessel wall for the central cross-section of the
straight tube test problem at peak velocity.

and 4 represent refinements of lines 1 and 3, respectively, in

the axial direction only. Thus, line 3 represents a full refine-

ment, i.e., halving the mesh spacing, of line 1, and line 4

represents full refinement of line 2. Refinement in the axial

direction does not significantly reduce the error compared to

refinement in the radial and circumferential directions. For

the coarsest mesh, axial refinement reduced the error by less

than 1% (compare lines 1 and 2), but refinement of that meShFig-_ 5 Displace_me_nt of the vessel wall at_ peak velocity with the _at rest

only in the radial and circumferential directions reduced the 395”'0” shown in light gray and the overlying dark gray representing the

. . isplaced position.

error by a factor of 3 (compare lines 2 and 3). It is com-

mon in blood flow modeling to take advantage of this fact by e

using less refinement in the axial directid®]. However, a —_——— —

full refinement of the mesh, i.e., halving the mesh spacing, ——— ——— ——

results in a functional decrease of a factor of more than3. —— —— ————
The velocity profile for this test problem is shown forthe —=——— = - P =

central cross-section iRig. 4. The flow is laminar, and we

did not observe any tra_nSitionS to turbUIenC_e through the flow Fig. 6. A cross-section of streamlines for flow down a vessel with a sine

cycle. The vessel wall is only shown on a single plane along shaped obstruction at the peak flow rate. A recirculation forms downstream

the axis for clarity. The displacement of the vessel wall at the of the obstruction.

center of the tube is shown Fig. 5 where the light gray is

the at rest position and the overlying dark gray represents theregards to the value of the functional, which is a measure af

displacement at peak velocity. The wall displacement (com- error in the problem. Clearly, the minimum functional valueo

pliance) was small (approximately 8—10%) for this particular is not as small using the trilinear basis. The functional value

test, consistent with the results of Perktold e{Hb]. (error) is still going to zero as the mesh is refined, but the use
The second test problem is similar to the first, a tube of of a higher-order basis could result in less error with littl@s

length 5. However, this tube has a sine wave shape obstrucincrease in computational cosfsig. 6 shows the stream- 4

tion and thickening of the vessel wall at the midpoint in the lines for flow down the tube with an obstruction. The highs

axial direction. The tube diameter at the center of the obstruc- Reynolds number results in a recirculation downstream of

tion is 0.6 compared to an unobstructed diameter of 1.0, andthe obstructionFig. 7 shows the displacement of the wall ats-

the obstruction length is one fifth of the tube length. The peak velocity for the tube with obstruction. Again, the vesseb

mesh sizes and outer dimensions were otherwise identicalwall displacement (approximately 8—12%) is consistent with

to the first problemTable 3summarizes the computational the results of others. 490

performance of the FOSLS approach on this test problem. The final test problem is a single tube, which has a com:

The solution times were slightly slower than the previous plete semi-circular curve (radius of curvature of 2.667) fols:

example, due to the slightly higher convergence factors, butlowed by a straight section. Near the beginning of the straigki

they still demonstrate optimal scalability for the method. section is a parabolic shaped obstruction that reduces the tube

The biggest difference compared to the first example is with diameter to 0.5 from 1.0. This represents a diseased statesof

—

Table 3

Numerical performance of the FOSLS finite-element formulation using a AMG/CG solver for the straight tube with obstruction problem

Average mesh spacing (cm) Number of unknowns CPU time per step (min) Convergence factor Total functional
0.17 1.07x 10° 18 0.90 75.1

0.13 2.08x 10° 36 0.91 66.4

0.085 7.04¢ 10° 129 0.92 55.3

0.067 1.39¢ 10° 262 0.92 38.6
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— S — in a linear system with half a million degrees of freedom. Ass
a result, only two different meshes, corresponding00.1  sor
and 0.05 were solved. For this most limited of ranges, the
solver still seemed to display optimal scaling, and the CP&J

— G —— time per time step was approximately 8 h for the finest grigh
(4 million degrees of freedom). The results showed a small

Fig. 7. A cross-section showing vessel wall displacement for the straight recirculation downstream of the obstruction only for the innes.

tube with obstruction at the peak flow rate. The light gray is the at rest wall part of the curveFig. 8). Three streamlines in a single plane:s

position and the darker gray is the deformed vessel wall. are also shown iffig. 8to illustrate how inertia causes higheku
flows along the outer curve region of aorta for this particuss

the aorta corresponding to one of the more common types of|ar cross-section. Streamlines in other cross-sections behave
congenital heart disease termed ‘coarctation of the a@ita’ differently. 517

The tube length is 15 so that changing the length scaling,

to 1.5cm results in a geometry that approximates the aorta.

The boundary conditions are the same as before, with the4  conclusions
maximum inlet velocity being defined by a half sine wave,

and the outlet pressure being defined as showign3. For As larger and more complex mathematical models of the
this larger problem, it is not possible to test a large range \a5cylature system are developed, the need for scalable algo-
of mesh sizes on a single processor computer. Basically, therjihms to solve these models will also increase. Even if coras

coarsest mesh that accurately represents the geometry reSU'ﬁJtational power doubles in 18 months time, only a scalable
algorithm can allow a corresponding doubling in the probless
size. In this paper, we demonstrated numerically the ability
of a FOSLS problem formulation (in conjunction with anes
AMG/CG) to enable a scalable model of blood flow throughs
a compliant vessel wall. In addition to optimal scalabilitys..
the algorithm also provides a sharp error measure itfthe s
norm. The technique provides a great deal of flexibility ige
that 530

518

o the finite-element spaces for each variable may be chosen
independently, 532

e the fluid (blood) and structure (vessel wall) equations may
be coupled and solved together or decoupled and solved

iteratively, and 535
ag o implicit time stepping is probably stable regardless of times
! N step size. sa7

24.6 = The fact that implicit time stepping is used results igs
: a method that is not well suited for situations in whichs
: extremely small time steps must be taken. Further, the use
2441 of a lower order basis can result in slow convergence to the
2 actual solution with refinement for some problems. While the
) focus in this paper was on a very general model and simple
geometries, future work will apply the techniques described
in this paper to patient specific geometries and more physia-
logically accurate models. 546
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