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1. Introduction. First-order system LL∗ (FOSLL∗ ) was developed in an earlier paper [12]
as a numerical method for solving partial differential equations (PDEs) that do not exhibit the
regularity required by standard first-order system least squares (FOSLS [10, 11]). The purpose here
is to extend the class of problems to which the FOSLL∗ approach can be efficiently applied. While
we include a brief discussion of the context of this development below, the interested reader should
consult [12] for more background and historical perspective.

Standard FOSLS recasts the original problem as an expanded first-order system, Lu = f ,
to which a least-squares principle is then applied. The usual goal is to reformulate the original
problem as the minimization of a functional, ‖Lu − f‖2, whose bilinear part is equivalent to the
product H1 norm (i.e., the square root of the bilinear part is continuous and coercive in the norm
formed by summing the H1 norms applied to each dependent variable). This product H1-equivalence
means that the minimization process amounts to solving a weakly-coupled system of scalar elliptic
equations, which, in turn, implies that H1-conforming finite element spaces and multigrid solvers
can be used to full efficiency. Unfortunately, standard FOSLS is product H1-equivalent only under
sufficient smoothness assumptions on the original problem (e.g., the domain, coefficients, and data).
Inverse-norm versions of FOSLS could be used when the problem lacks sufficient smoothness, but
these methods tend to lose efficiency, especially for problems with widely-varying coefficients.

Our purpose here is to continue the development of a potentially more efficient alternative,
FOSLL∗ . As with FOSLS , the FOSLL∗ approach begins by recasting the original problem as an
expanded first-order system, Lu = f . Now, however, instead of applying a least-squares principle to
this primal problem, we introduce the dual normal equations, LL∗w = f , defined in terms of dual
variable w and adjoint L∗. Note that f = Lu so that LL∗w = Lu, which are the normal equations
for the dual problem, L∗w = u. The original problem can now be recast as one of minimizing the
functional, ‖L∗w − u‖2, which has the same minimizer as the functional ‖L∗w‖2 − 2 〈w , f〉.

If H1-conforming finite element spaces are used in a standard FOSLS formulation, then it must
fail when u is not in H1. For this choice of finite element spaces, the discrete approximation produced
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by FOSLS cannot converge to the solution, u. It will, instead, converge optimally to the minimizer
of ‖Lv − f‖2, that is, to v ∈ H1 that minimizes ‖L(u − v)‖. FOSLL∗ attempts to overcome this
limitation by recasting the primal problem in terms of a dual variable, w, such that L∗w = u. The
aim is to use L∗ to lift the smoothness of u so that w is in H1.

Consider the following scalar elliptic problem:

∇·(A∇p)− b · ∇p− cp = f in Ω,

p = 0 on ΓD,

n ·A∇p = 0 on ΓN ,

and define the flux variable u = ∇p (for a complete list of assumptions, see (2.1) – (2.3)). One
focus of the earlier paper [12] was to develop the FOSLL∗ methodology for problems of this type
with the reduced regularity that arises by allowing discontinuous A. In that paper, the goal of using
H1-conforming finite element spaces to approximate the flux variable, u, in the L2 norm and the
primal variable, p, in the H1 norm was achieved through a two-stage procedure. The two-stage
procedure described there is applicable only when c = 0 and when ΓD and ΓN each have at most
one component.

The aim of this paper is to expand the class of problems for which H1-conforming finite element
spaces and optimal multigrid solvers can be efficiently used. In section 2, we show that when c 6= 0,
the original FOSLL∗ formulation can be modified to achieve this goal, provided that the domain,
Ω, is sufficiently smooth. By this we mean that the boundary of Ω contains no reentrant corners or
corners at which ΓD and ΓN meet with an inner angle bigger than π/2. Such points are referred to as
irregular boundary points. These are precisely the conditions under which H(∇·)∩H(∇×) ⊂ (H1)2.

In section 3, we develop a new FOSLL∗ formulation that achieves the goal of allowing accurate
approximation using H1-conforming finite element spaces in the presence of irregular boundary
points. The key idea behind this new approach is to first expand the domain of the primal problem
in such a manner that the domain of the dual problem remains in a subspace of H1. Generally, at
this point the primal operator, L, is not bijective and the dual operator, L∗, is not surjective. The
next step is to apply additional boundary conditions to the slack variables in the primal equations
so that fewer boundary conditions are needed for the dual problem. The aim is that the primal
operator, L, becomes bijective and the dual operator becomes surjective. This process generally
means that the dual equations are not uniquely solvable. However, this is not an issue for the
FOSLL∗ formulation, since any one solution of the dual problem, say, w, yields the primal solution,
L∗w = u. This approach is limited to problems for which ΓD 6= ∅. The pure Neumann case remains
an open question. In section 3.2, we show that, in the case b = 0 and either c > 0 or c = 0,
the FOSLL∗ approximation is equivalent to a Galerkin formulation of the original boundary value
problem, (2.1)-(2.3).

The numerical results presented in Section 4 confirm the optimality of H1-conforming finite
element spaces and multigrid solvers for the new FOSLL∗ formulation. The loss of unique solution
for the dual problem is not an issue for the FOSLL∗ approximation in that we seek any dual solution
for which L∗w = u. However, the loss of uniqueness does affect the multigrid solution algorithm.
In section 4.2, we develop an additional modification that mitigates this effect. Section 5 contains
conclusions.

Alternatives to the approach we develop here are described in detail in [1] and include adding
H1 singular basis functions in standard Galerkin methods to enhance the rate of convergence (c.f.
[23],[14], [8] and [9]); the use of H(div)-conforming finite element spaces with mixed formulations
(see [7] ) or with FOSLS functionals that are based on H(div) (see [10], [20], and [21]); and including
H(∇·)∩H(∇×) singular functions in a FOSLS formulation ([1],[2]). Standard finite element spaces
can be used with FOSLS functionals that are weighted to eliminate the overall impact on accuracy
of the singular behavior of the flux ([14], [19], [24] ). Alternatives similar to the FOSLL∗ formulation
use FOSLS based on inverse norms ([3],[5], [6], [13]).
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We begin in the next section with a brief overview of the current theory underlying FOSLS and
FOSLL∗ as a way of exposing the need for modifications of the original FOSLL∗ approach.

2. General FOSLS and FOSLL∗ theory. This section summarizes the principles and theory
underlying the FOSLS and FOSLL∗ methods. For more detail and historical perspective, see [10,
11, 12, 4]. The main goal of this section is to clarify the need for modifying the FOSLL∗ method
introduced in [12].

2.1. Model problem. Let Ω be a bounded, open, simply connected domain in R2 with Lips-
chitz boundary, ∂Ω. Let

⋃M
i=1(ΓD,i ∪ ΓN,i) = ∂Ω be a partition of the boundary, interlaced so that

every pair (ΓD,i, ΓD,i+1) is separated by a Neumann boundary segment ΓN,i, and every Neumann
pair is similarly separated by a Dirichlet segment. The Neumann and Dirichlet boundaries of the
problem are defined by ΓN :=

⋃M
i=1 ΓN,i and ΓD :=

⋃M
i=1 ΓD,i, respectively. Let n be the outward

unit normal vector and t the counter-clockwise-oriented tangent vector on ∂Ω. We do not consider
the pure Neumann case here, so ΓD is assumed to have positive measure.

The FOSLL∗ methodology has application in many contexts, including elliptic systems of partial
differential equations. However, in this paper, we restrict our considerations to the following reaction-
convection-diffusion boundary value problem (BVP):

∇·(A∇p)− b · ∇p− cp = f in Ω, (2.1)
p = 0 on ΓD, (2.2)

n ·A∇p = 0 on ΓN , (2.3)

where f ∈ L2(Ω), 0 ≤ c ∈ L∞(Ω), b ∈ L∞(Ω)∩H(∇·), and A(x) is a 2x2 matrix of L∞(Ω)-functions
that is uniformly symmetric positive definite, i.e., there exists λ1 ≥ λ0 > 0 such that

λ0ξ · ξ ≤ ξ ·A(x)ξ ≤ λ1ξ · ξ

for all ξ ∈ R2 and x ∈ Ω. We also assume that both (2.1)-(2.3) and the adjoint problem,

∇·(A∇p) +∇ · (bp)− cp = f in Ω, (2.4)
p = 0 on ΓD, (2.5)

n · (A∇p + bp) = 0 on ΓN , (2.6)

have unique solutions in H1(Ω).
We make use of to the following standard differential operators:

∇s = grad s =
(

∂xs
∂ys

)
, ∇·v = div

(
v1

v2

)
= ∂xv1 + ∂yv2,

∇⊥s = rot s =
(

∂ys
−∂xs

)
, ∇×v = curl

(
v1

v2

)
= −∂yv1 + ∂xv2.

We use 〈·, ·〉 and || · || to denote the respective L2 inner product and norm and D, R, and N for the
respective domain, range, and null space of an operator. We also use ||·||1 to denote the H1(Ω) norm:
||s||21 = ||s||2 + ||∇s||2. As usual, norms of vectors are meant to be taken componentwise, so that
||∇s|| = (|| ∂s

∂x ||2 + || ∂s
∂y ||2)1/2, for example.

2.2. FOSLS . We begin with a brief introduction to the main ideas of FOSLS as a way of
providing a foundation for the FOSLL∗ methodology. We describe how it works for domains without
irregular boundary points and show why it may fail for domains with irregular boundary points.

Standard FOSLS transforms BVP (2.1)-(2.3) into a first-order system to which an L2 norm
minimization principle is applied. This transformation can be done by introducing the gradient,
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u = ∇p, as an dependent variable and adding the curl constraint, ∇×u = 0 on Ω, and tangential
boundary condition, t · u = 0 on ΓD. The resulting first-order system then has the form

L0(u, p) = (0, f, 0)t in Ω, (2.7)
t · u = 0 on ΓD, (2.8)

n ·Au = 0 on ΓN , (2.9)
p = 0 on ΓD, (2.10)

where

L0(u, p) :=




I −∇
∇·A− b· −c
−∇× 0




(
u
p

)
=




u−∇p
∇·Au− b · u− cp
−∇×u


 . (2.11)

The least-squares functional to be minimized is

F0(v, t) =
∥∥L0(v, t)− (0, f, 0)t

∥∥2
.

Since we want this functional to exist for all (v, t) ∈ D(L0), we need

R(L0) ⊆
(
L2(Ω)

)4
. (2.12)

We are, thus, lead to choose

D(L0) = (HN (∇·A; Ω) ∩HD(∇×; Ω))×H1
D(Ω),

where, for a general 2x2 matrix B, we define

H1
J(Ω) :=

{
s ∈ H1(Ω) : s = 0 on ΓJ

}
,

HJ(∇·B; Ω) :=
{
w ∈ (L2(Ω))2 : ∇·(Bw) ∈ L2(Ω),n ·Bw = 0 on ΓJ

}
,

HJ(∇×B; Ω) :=
{
w ∈ (L2(Ω))2 : ∇×(Bw) ∈ L2(Ω), t ·Bn = 0 on ΓJ

}
,

for J ∈ {N, D}. Moreover, HJ(∇·; Ω) := HJ (∇·I; Ω) and HJ(∇×; Ω) := HJ(∇×I; Ω), where I is
the 2× 2 identity matrix. Clearly, D(L0) is a Hilbert space under the norm

‖(v, t)‖2L0
:= ‖v‖2 + ‖∇·Av‖2 + ‖∇×v‖2 + ‖t‖21 .

Since BVP (2.1)-(2.3) is well posed by assumption, we know that (2.7)-(2.10) has a unique solution
in D0. Thus, F0 has a unique minimizer in D0 with minimum value 0. We minimize functional F0

in the weak sense, i.e., we look for solutions of the corresponding variational problem:
Find (u, p) ∈ D0 such that

〈
L0(u, p)− (0, f, 0)t, L0(v, t)

〉
= 0 (2.13)

for all (v, t) ∈ D0.
A convenient choice for this FOSLS formulation is to discretize variational problem (2.13) using

H1-conforming finite element spaces, such as bilinears on quadrilaterals or linears on triangles. As
the mesh size of the discretization tends to zero, the use of H1-conforming finite element spaces
yields converging approximations of the solution provided that solution is in H1. This approach
requires

(u, p) ∈ (
H1(Ω)

)3
(2.14)
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for FOSLL∗ approximations using H1-conforming finite elements to converge to the solution of
primal problem (2.7)-(2.10). The requirement (2.14) is more restrictive than (2.12) and is, in
general, not fulfilled for problems with irregular boundary points or discontinuous coefficient
matrix A. In such cases, the FOSLS approximations, (uh, ph), do not converge to the solution of
(2.7)-(2.10), as the following example illustrates.

Example 2.1. Define the following L-shaped domain:

Ω =
{
x ∈ R2 : ‖x‖∞ < 1 and θ(x) ∈ (0, 3π/2)

}
, (2.15)

where θ = arcsin(y/x). Let A = I, c = 1, and b = (−y/10, 10x)t. The Neumann boundary consists
of three parts,

ΓN,1 = {(x, y) ∈ ∂Ω : x ∈ (0, 1), y = 1}, ΓN,2 = {(x, y) ∈ ∂Ω : y = −1}
ΓN,3 = {(x, y) ∈ ∂Ω : x = −1, y ∈ (0, 1)}.

The three remaining parts of ∂Ω form ΓD. This domain contains irregular boundary points at (0, 0),
(−1, 0), and (0, 1).

Let (r, θ) denote standard polar coordinates on R2 and let

p = δ(r)r2/3 sin(2θ/3). (2.16)

Then, p is a solution of BVP (2.1)-(2.3) when f = sin(2θ/3)r2/3(δ′′(r) + 7
3r δ′(r)) − b · ∇p − cp.

Here, δ(r) ∈ C2(Ω) is a cut-off function that satisfies δ(r) = 1 for r < 1/4 and δ(r) = 0 for r > 3/4.
Clearly, f ∈ L2(Ω), but u = ∇p is not in (Hα(Ω))2 for any α ≥ 2/3. Table 2.1 shows the results of
numerical experiments for this problem with error norms ||p− ph||0 and ||∇p− uh||0 for a sequence
of uniform meshes with decreasing meshsizes h and standard bilinear H1-conforming finite element
spaces. Standard FOSLS clearly fails for this example. A closer look at uh shows that the FOSLS
approximation is completely unaware of the singularities in the gradient at the reentrant corner of
Ω.

h 1/4 1/8 1/16 1/32 1/64 1/128 1/256
||p− ph||0 .1461 .1521 .1543 .1550 .1551 .1550 .1549
||∇p− uh||0 .8433 .8267 .8199 .8173 .8152 .8137 .8127

Table 2.1
Error norms for Example 2.1 on a sequence of uniform meshes with meshsizes h.

2.3. FOSLL∗ . The FOSLL∗ method was developed to overcome this difficulty with standard
FOSLS , while continuing to use standard H1-conforming finite element spaces in the discretization
process. Clearly, H1-conforming spaces cannot be used to approximate the nonsmooth primal solu-
tion, (u, p), so FOSLL∗ instead attempts to introduce a dual first-order system whose solution is in
H1.

The main idea can be motivated by looking at the simplest discrete analog, that is, a lin-
ear system of equations, Ax = b. Solving the corresponding least-squares problem of minimizing
‖Ax− b‖2`2 leads to the normal equations, AtAx = Atb, and the weak form, 〈Ax,Az〉 = 〈b, Az〉 for
all z. This is analogous to what FOSLS does at the PDE level. But another way to recast Ax = b as
a minimization problem is to recognize that if Ax = b has a solution, then so does AAty = b. Note
that this system for dual variable y is the normal equations for dual problem Aty = x, and that it
can be recast as the minimization of ‖Aty − x‖2`2 , which has the same minimizer as the functional
〈Aty, Aty〉 − 2 〈y, b〉. This leads to the weak form, 〈Aty, Atz〉 = 〈b, z〉 for all z. Note that x = Aty
yields the minimal norm solution of the original problem, Ax = b. This idea is formally applicable
at the PDE level since our primal problem surely has a solution.
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While simpler approaches are possible in some cases, a fairly general methodology for applying
FOSLL∗ is to attempt to reformulate the original BVP as a first-order primal problem whose associ-
ated operator, L1, and adjoint, L∗1, are bijective. This guarantees the existence of a unique solution
for the dual normal equations, L1L

∗
1w = f .

This bijectivity is achieved for BVP (2.1)-(2.3) by incorporating a scalar slack variable, q, into
the system and using the scaled gradient, ũ = A1/2∇p. (Here, we incorporate a slightly different
scaling than in (2.11) because it has computational advantages.) This is done in such a way that
(ũ, p, 0) solves the primal problem, which for BVP (2.1)-(2.3) is given by

L1(ũ, p, q) = (0, f, 0)t in Ω, (2.17)
t ·A−1/2ũ = 0 on ΓD, (2.18)
n ·A1/2ũ = 0 on ΓN , (2.19)

p = 0 on ΓD, (2.20)
q = 0 on ΓN , (2.21)

where

L1(ũ, p, q) :=




A−1/2 −∇ −∇⊥
∇·A1/2 − b ·A−1/2 −c 0

−∇×A−1/2 0 0







ũ
p
q


 (2.22)

=




A−1/2ũ−∇p−∇⊥q
∇·(A1/2ũ)− b ·A−1/2ũ− cp
−∇×(A−1/2ũ)


 .

The domain of L1 is

D(L1) =
(
HN (∇·A1/2; Ω) ∩HD(∇×A−1/2; Ω)

)
×H1

D(Ω)×H1
N (Ω),

which is a Hilbert space under the norm

‖(v, t, z)‖2L1
:= ‖v‖2 +

∥∥∥∇·(A1/2v)
∥∥∥

2

+
∥∥∥∇×(A−1/2v)

∥∥∥
2

+ ‖t‖21 + ‖z‖21 . (2.23)

The FOSLL∗ approach is to approximate the solution, (w, r, s), of the corresponding dual problem,

L∗1(w, r, s) = (ũ, p, q)t = (A1/2∇p, p, 0)t in Ω, (2.24)
t ·A−1/2w = 0 on ΓD, (2.25)
n ·A1/2w = 0 on ΓN , (2.26)

r = 0 on ΓD, (2.27)
s = 0 on ΓN , (2.28)

where the adjoint operator is defined by

L∗1(w, r, s) =




A−1/2 −A1/2∇−A−1/2b −A−1/2∇⊥
∇· −c 0
−∇× 0 0







w
r
s


 . (2.29)

The domain of L∗1 is

D(L∗1) = (HN (∇·; Ω) ∩HD(∇×; Ω))×H1
D(Ω)×H1

N (Ω).

which is a Hilbert space under the norm

‖(v, t, z)‖2L∗1 := ‖v‖2 + ‖∇·(v)‖2 + ‖∇×(v)‖2 + ‖t‖21 + ‖z‖21 . (2.30)
6



This formulation is similar to the FOSLL∗e formulation described in [12]. The difference is that,
in (2.29), the coefficient matrix, A, only appears outside of the differential operators. Note, also,
that this scaling yields A1/2∇r orthogonal to A−1/2∇⊥s, which produces better performance for
the multigrid solvers. A minor modification of the proof of Theorem 4.1 in [12] yields the following
result.

Theorem 2.2. Operators L1 and L∗1 are bijective from D(L1) and D(L∗1), respectively, onto
(L2(Ω))4. Further, L1 and L∗1 are coercive and continuous in the norms defined in (2.23) and (2.30),
respectively.

Proof: The proof requires the assumption that the adjoint problem (2.4)-(2.6) is well posed and
follows with minor modifications from the proof of Theorem 4.1 in [12], together with an application
of Lemma 2.1 in [12].

¤
Solving the dual problem is equivalent to minimizing the dual functional,

F∗1 (v, t, z) =
∥∥L∗1(v, t, z)− (ũ, p, q)t

∥∥2
, (2.31)

on D(L∗1). The associated weak form is as follows:
Find (w, r, s) ∈ D(L∗1) such that

〈L∗1(w, r, s), L∗1(v, t, z)〉 =
〈
(ũ, p, q)t, L∗1(v, t, z)

〉
, (2.32)

for all (v, t, z) ∈ D(L∗1).
The unknown solution, (ũ, p, q), is eliminated from the right side of (2.32) by rewriting the right

side as follows:
〈
(ũ, p, q)t, L∗1(v, t, z)

〉
=

〈
L1(ũ, p, q), (v, t, z)t

〉
=

〈
(0, f, 0)t, (v, t, z)t

〉
.

After discretizing this variational form and computing an approximation, (wh, rh, sh), for the dual
unknowns, an L2 approximation, (ũh, ph, qh), for the primal unknowns is computed easily by apply-
ing the adjoint: (ũh, ph, qh)t = L∗1(w

h, rh, sh).
This formulation of FOSLL∗ works well with H1-conforming finite element spaces if the violation

of the crucial regularity condition, (2.14), is due only to the discontinuities in A. This can be most
easily seen by noting that in (2.29) the coefficients are never differentiated. However, in the presence
of irregular boundary points, we may be left with the difficulty that

HN (∇·; Ω) ∩HD(∇×; Ω) 6⊂ (
H1(Ω)

)2
. (2.33)

For example, (2.33) holds if the boundary of Ω contains reentrant corners or points in ΓD ∩ ΓN

with an inner angle bigger than π/2 (c.f. [17]). If H1-conforming finite element spaces are used to
approximate the solution to (2.32), then the approximation will not, in general, converge to the
solution, but rather to the closest element in (H1)4 to the solution. In general, this error will not
have local support. In the next section, we introduce a modification to FOSLL∗ that overcomes this
difficulty.

We close this section by demonstrating numerically how the FOSLL∗ formulation described
above fails in the presence of irregular boundary points.

Example 2.3. We apply the FOSLL∗ method (2.32), using H1-conforming finite elements, to
the BVP from Example 2.1. Table 2.2 shows that the L2 norm of the errors of the approximations
for p and ũ stagnate as h decreases.

3. Improved FOSLL∗ . We begin here by introducing modifications to the standard FOSLL∗

formulation that overcome the shortcomings for problems with irregular boundary points. We then
describe how the method can be made more efficient for the special cases b = 0 and c = 0.
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h 1/4 1/8 1/16 1/32 1/64 1/128 1/256
||p− ph||0 .0482 .0259 .0231 .0230 .0229 .0228 .0228
||ũ− ũh||0 .6767 .3202 .1825 .1220 .1001 .0933 .0914

Table 2.2
Error norms for the standard FOSLL∗ approximations for Example 2.3 on a sequence of uniform meshes with

meshsizes h.

As a starting point of our improvements, we revert to the scaling used in (2.11). While the
scaling in (2.22) is preferable in practice, we use this simpler scaling for ease of exposition. All
results in this section can be easily generalized to the scaling in (2.22).

Thus, we define the unscaled gradient, u = ∇p, as a dependent variable. The primal problem has
the form L0(u, p, q) = (0, f, 0)t, where q is a slack variable as introduced in the previous subsection,

L0 =




I −∇ −∇⊥
(∇·A− b·) −c 0
−∇× 0 −d


 , (3.1)

and d is a nonnegative analytic function on Ω.
Following the development for standard FOSLL∗ , the domain of L0 is given by

D(L0) = (HN (∇·A; Ω) ∩HD(∇×; Ω))×H1
D(Ω)×H1

N (Ω).

Clearly, (∇p, p, 0) solves this problem when p is the solution of the BVP (2.1)-(2.3). The corre-
sponding dual problem is

L∗0(w, r, s) :=




I −(A∇+ b) −∇⊥
∇· −c 0
−∇× 0 −d







w
r
s


 =




u
p
q


 , (3.2)

on the adjoint domain

D(L∗0) = (HN (∇·; Ω) ∩HD(∇×; Ω))×H1
D(Ω)×H1

N (Ω).

Formulating the FOSLL∗ method using L∗0 reveals exactly the same difficulty as the formulation
using L∗1 in the last subsection. While discontinuous coefficients do not cause difficulties, irregular
boundary points do, because they imply HN (∇·; Ω) ∩HD(∇×; Ω) 6⊂ (

H1(Ω)
)2, which in turn implies

D(L∗1) 6⊂
(
H1(Ω)

)4.
The next step is to introduce a modified operator, L1, that is formally identical to L0 in (3.1),

but has a different domain. The aim is to expand the domain of L1 so that the domain of its adjoint
shrinks to a subspace of

(
H1(Ω)

)4. To see how this is done, note that the second and third entries
in the first row of L0 in (3.1) can be rewritten as follows:

[ −∇ −∇⊥ ]
=

[ −∂x −∂y

−∂y ∂x

]
=

[ −∇·
∇×

]
.

Thus, instead of asking the gradients of p and q to be in L2(Ω) individually, we may impose the
more general condition that the div and curl of the pair (p, q) be in L2(Ω). We are thus lead to
rewrite L0 as

L1 =




I
−∇·
∇×

(∇·A− b·)
−∇× −B


 , where B =

(
c 0
0 d

)
,
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so that

D(L1) = (HN (∇·A; Ω) ∩HD(∇×; Ω))×HDN (Ω),

where

HDN (Ω) := {(v1, v2) ∈ H(∇·; Ω) ∩H(∇×; Ω) : v1 = 0 on ΓD, v2 = 0 on ΓN} .

Integration by parts then shows that the domain of L∗1 is in
(
H1(Ω)

)4:

D(L∗1) =
(
HN (∇·; Ω) ∩HD(∇×; Ω) ∩ (

H1(Ω)
)2

)
×H1

D(Ω)×H1
N (Ω).

Unfortunately, this approach is not yet viable because the adjoint, L∗1, is in general no longer
surjective and we can no longer guarantee that (u, p, q) ∈ R(L∗1), as the following example shows.

Example 3.1. Let Ω be the L-shaped domain from (2.15) and set A = I and b = 0. Let d be
any positive analytic function and c ∈ L∞ with 0 < c < 1 a.e. We choose homogeneous Dirichlet
boundary conditions: ΓD = ∂Ω. Let ΓH be the union of the three horizontal edges and ΓV be
the union of the three vertical edges of Ω. Thus, imposing v1 = 0 on ΓD is equivalent to imposing
n · (v1, v2) = 0 on ΓH and t · (v1, v2) = 0 on ΓV , so

HDN (Ω) = HH(∇·; Ω) ∩HV (∇×; Ω)

holds for this example. The analysis of the div-curl operator in [11] shows that
[ −∇·
∇×

]
has a

non-trivial null space on HDN (Ω). (For example, let z = ∇φ, where ∆φ = 0, n · ∇φ = 0 on ΓH ,
φ = 0 on ΓV1 ∪ΓV2 and φ = 1 on ΓV3 .) Let z 6= 0 be such a null space element. Note that L1(0, z) =
(0,−cz1,−dz2)t is in

(
L2(Ω)

)4. Since L1 = L∗1 formally holds, Lemma 3.6 in [11] implies the
existence of a more regular pre-image, (v,w) ∈ D(L1)∩

(
H1(Ω)

)4 with L1(v,w) = (0,−cz1,−dz2)t.
Therefore, (v,w−z) is a non-trivial element of null space N (L1). Since (L∗1)∗ = L1, the closed range
theorem implies that R(L∗1) = N (L1)⊥, so R(L∗1) is not all of

(
L2(Ω)

)4 and L∗1 is not surjective.
To prove that, in general, U = (∇p, p, 0) 6∈ R(L∗1) so that the dual problem is not solvable,

assume otherwise: U ∈ R(L∗1) or, equivalently, U ⊥ N (L1) for all admissible p. Let (v,w) be an
element of N (L1), i.e.,

v +
[ −∇·
∇×

]
w = 0 (3.3)

[ ∇·
−∇×

]
v −

(
cw1

dw2

)
= 0. (3.4)

Now, U ⊥ (v,w) means 〈∇p,v〉 + 〈p, w1〉 = 0. Using the divergence theorem and (3.4), we thus
have (c− 1) 〈p, w1〉 = 0. Since 〈p, w1〉 must vanish for all admissible p, we must have w1 = 0. From
(3.3) and (3.4), we conclude that w2 ∈ H1(Ω) and

∆w2 − dw2 = 0.

The definition of D(L1) and equation (3.3) supply the boundary condition:

n · ∇w2 = −t · ∇⊥w2 = −t · v = 0 on ΓD = ∂Ω.

Therefore, w2 is a constant on Ω and (3.3)-(3.4) yield v = w = 0. Since N (L1) is nontrivial, our
assumption is wrong, and the dual problem is not, in general, solvable in D(L∗1).

9



Our numerical experience supports the difficulty expressed in this example: it seems that
(∇p, p, 0) is in R(L∗1) only for very special choice of A,b, c, d, and Ω, whenever ∂Ω contains ir-
regular boundary points.

Nevertheless, the modifications that lead from L0 to L1 take a step in the right direction because
we now have D(L∗1) ⊂

(
H1(Ω)

)4. This H1-inclusion property guarantees that a dual solution, when
it exists, can be easily approximated by standard H1 finite element spaces. As the final step, we
now modify the domain of the operators again to ensure solvability. The aim is to increase the
domain of the new dual operator, L∗, in order to make it surjective. This is done indirectly by
reducing the number of boundary conditions on the dual domain. We do this by enforcing more
boundary conditions on the domain of the primal operator, L. Of course, we are only allowed
to enforce additional boundary conditions on the primal problem that are fulfilled by the primal
solution, (u, p, q). The key is to identify these allowable conditions and choose those that induce the
appropriate D(L∗).

First, we introduce the new modified operator, L, then prove some useful lemmas, and finally
we present our main results, the surjectivity of the dual operator, L∗.

The two additional boundary conditions we enforce on the primal problem are
∫

ΓN,i

t · u ds = 0, i = 1, . . . ,M, (3.5)

q = 0 on ΓQ ⊂ ΓD. (3.6)

These additional conditions are allowable because the primal solution, (u, p, q), satisfies them:
∫

ΓN,i

t · u ds =
∫

ΓN,i

t · ∇p ds =
∫

ΓN,i

dp

ds
ds = 0, i = 1, . . . ,M,

and q = 0 on ∂Ω. For theoretical purposes, we impose condition (3.6) only on a subset, ΓQ ⊂ ΓD,
that does not contain any irregular boundary points in its closure but has positive measure. See
remark 3.2 below for motivation.

The new operator, L, has the same form as L1, but differs again by its domain. We define the
form of L blockwise:

T =
[ ∇·A− b·

−∇×
]

, B =
[

c 0
0 d

]
, (3.7)

S =
[ −∂x −∂y

−∂y ∂x

]
=

[ −∇·
∇×

]
(3.8)

L =
[

I S
T −B

]
. (3.9)

The corresponding domains include the following additional boundary conditions:

D(T ) =
{
v ∈ HN (∇·A; Ω) ∩HD(∇×; Ω) :

∫
ΓN,i

t · v ds = 0, 1 ≤ i ≤ M
}

, (3.10)

D(S) = {(t, z) ∈ HDN (Ω) : z = 0 on ΓQ} , (3.11)
D(L) = D(T )×D(S). (3.12)

These domains are Hilbert spaces under the div-curl norms,

||v||2S := ||v||2 + ||∇·v||2 + ||∇×v||2, (3.13)
||v||2T := ||v||2 + ||∇·(Av)||2 + ||∇×v||2, (3.14)

||(v,w)||2L := ||v||2T + ||w||2S . (3.15)
10



Integration by parts leads to the adjoint operators,

T ∗ =
[ −(A∇+ b) −∇⊥ ]

, (3.16)

S∗ =
[

∂x ∂y

∂y −∂x

]
=

[ ∇ ∇⊥ ]
, (3.17)

L∗ =
[

I T ∗

S∗ −B

]
, (3.18)

and the domains,

D(S∗) =
{
v ∈ (

H1(Ω)
)2

: n · v = 0 on ΓN and t · v = 0 on ΓD \ ΓQ

}
, (3.19)

D(T ∗) =
{

(t, z) ∈ (
H1(Ω)

)2
: t = 0 on ΓD and z ≡ ci on ΓN,i

}
, (3.20)

where 1 ≤ i ≤ M , and ci are arbitrary constants, and

D(L∗) = D(S∗)×D(T ∗). (3.21)

Remark 3.2. We do not allow the closure of ΓQ ⊂ ΓD to contain irregular boundary points
because we would expect singular functions in H(∇×; Ω) ∩H(∇·; Ω) to arise at these points. These
singular functions would no longer be in D(S), but they would be in D(S∗). In practice, there seems
to be no difficulty with allowing ΓQ to touch irregular boundary points.

For the remainder of this section, we adopt the assumptions on BVP (2.1)-(2.3) made in
subsection 2.1 and let d be any nonnegative analytic function. We now prove coercivity of the
primal operator, L. To this end, we need two auxiliary results.

Lemma 3.3. L is injective.
Proof: Assume that there exists a (v,w) ∈ D(L) such that

L(v,w) =
[

I S
T −B

](
v
w

)
=

(
0
0

)
.

Then Sw ∈ D(T ), which, together with w ∈ D(S), implies that

t · Sw = −n · ∇w2 = 0 on ΓQ, (3.22)

n ·ASw = −n ·A(∇w1 +∇⊥w2) = 0 on ΓN . (3.23)

Now choose any open set, O ⊂ Ω, such that O ∩ ΓQ has positive measure and ∂O contains no
irregular points of ∂Ω. On O we have w ∈ (H1)2. If we only look at the set O, eliminating v yields
the following equation for w:

−TSw −Bw = −
[ ∇·A− b·

−∇×
] [ −∇ −∇⊥ ]

w −
[

c 0
0 d

]
w

=
[

(∇·A∇− b · ∇ − c) (∇·A∇⊥ − b · ∇⊥)
0 ∆− d

]
w = 0. (3.24)

Consider the second equation together with the boundary conditions to get

∆w2 − dw2 = 0 in O,

w2 = 0 on ∂O ∩ ΓQ,

n · ∇w2 = 0 on ∂O ∩ ΓQ.
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According to the unique continuation theorem (c.f. Holmgren and Hörmander [18]), we must have
w2 = 0 in O. Since every point of Ω is in some O of this type, we conclude that w2 = 0 in Ω. Since
Sw ∈ (L2)2, then w2 = 0 implies that w1 ∈ H1(Ω). Equations (3.23) and (3.24) now yield

(∇·A∇− b · ∇ − c)w1 = 0 in Ω,

w1 = 0 on ΓD,

n ·A∇w1 = 0 on ΓN .

The well-posedness of BVP (2.1)-(2.3) implies that w1 = 0 and, therefore, v = 0. Hence, N (L) = {0}
and the lemma follows.

¤
Lemma 3.4. S is injective.
Proof: Assume that there is a w ∈ D(S) such that

Sw =
[ −∇·
∇×

]
w = 0.

Since Ω is simply connected, the curl-free condition here implies that w = ∇φ for some φ ∈ H1(Ω),
with φ determined uniquely up to a constant (c.f.[16]). The div-free condition implies that φ is
harmonic. The boundary conditions on D(S) imply that ∇φ = 0 on ΓQ, so

n · ∇φ = 0 on ΓQ.

But t · ∇φ = 0 is also true on ΓQ. Thus, φ is constant on ΓQ and, without loss of generality, we
may assume

φ = 0 on ΓQ.

Applying the unique continuation theorem (c.f. Hörmander and Holmgren [18]) yields φ = 0, which
completes the proof.

¤
We are now able to establish coercivity of L.

Theorem 3.5. Operators S, T , and L are coercive in the norms (3.13), (3.14) and (3.15),
respectively.

Proof: We begin by proving coercivity of S and T . For S, it suffices to prove a Poincaré
inequality of the form:

There exists constant C > 0 such that

‖w‖2 ≤ C
(
‖∇·w‖2 + ‖∇×w‖2

)
(3.25)

for all w ∈ D(S).
To establish (3.25), we assume that no such inequality exists, that is, that there exists {w(i)}i=1,∞ ∈
D(S) such that, for all i > 0,

||∇·w(i)||2 + ||∇×w(i)||2 = 1, (3.26)

||w(i)||2 ≥ i. (3.27)

Now, every w(i) ∈ D(S) can be written as

w(i) = z(i) +
K∑

j=1

βijφ
(j),

12



where z(i) ∈ D(S) ∩ (
H1(Ω)

)2 and {φ(j)}j=1,K is a basis of the finite-dimensional orthogonal com-
plement of D(S) ∩ (

H1(Ω)
)2 in D(S). Here, we take orthogonality in the HDN (Ω) sense, which is

an inner product because S is injective. That is, we require
〈
∇·φ(j),∇·z

〉
+

〈
∇×φ(j),∇×z

〉
= 0

for every z ∈ D(S) ∩ (
H1(Ω)

)2. Then, (3.26) becomes

||∇·z(i)||2 + ||∇×z(i)||2 + ||∇·
K∑

j=1

βijφ
(j)||2 + ||∇×

K∑

j=1

βijφ
(j)||2 = 1. (3.28)

Since z(i) ∈ (
H1(Ω)

)2, we know that there exist constants, C0, C1 > 0, such that, for all i > 0,

||z(i)||2 ≤ C0

(
||∇z(i)||2

)
≤ C1

(
||∇·z(i)||2 + ||∇×z(i)||2

)
≤ C1, (3.29)

where the second inequality can be found in [17] and the last inequality follows from (3.28). In
several places in this proof, we make use of the general inequality

||α + β||2 ≤ 2(||α||2 + ||β||2). (3.30)

Now, to satisfy (3.27), we combine it with (3.28) and (3.29), using inequality (3.30), to see that we
must have

||
K∑

j=1

βijφ
(j)||2 ≥ i

2
− C1 (3.31)

for all i > 0. We now define P,N ∈ R(K×K) as

P := (pkl) =
〈
φ(k), φ(l)

〉

N := (nkl) =
〈
∇·φ(k),∇·φ(l)

〉
+

〈
∇×φ(k),∇×φ(l)

〉
.

Because the {φ(j)}j=1,K are linearly independent and S has no null space (see Lemma 3.4), P and
N must be symmetric positive definite matrices. Now, define the vectors

b(i) := (βi1, βi2, . . . , βiK)t.

Equations (3.28) and (3.31) imply

b(i) · Pb(i)

b(i) ·Nb(i)
≥ i

2
− C1,

which contradicts positive definiteness of N . Therefore, (3.25) holds and S is coercive in the norm
defined by (3.13).

To prove coercivity of T , note that, by inequality (3.30), there exists constant C2 > 0 (dependent
only on ||b||) such that

||v||2T ≤ ||v||2 + 2||∇·(Av)− b · v||2 + ||∇×v||2 + 2||b · v||2
≤ C2

(||Tv||2 + ||v||2)

for all v ∈ D(T ). Since T is injective (c.f. [11]) and D(T ) is compactly embedded in
(
L2(Ω)

)2, a
standard compactness argument establishes coercivity of T .
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By coercivity of T and S and the inequality (3.30), there exist constants C3, C4 > 0 (depending
only on ||b||, ||c||, and ||d||) such that, for all (v,w) ∈ D(L),

||(v,w)||2L = ||v||2T + ||w||2S ≤ C3

(||Tv||2 + ||Sw||2)

≤ C4

(||Tv −Bw||2 + ||v + Sw||2 + ||v||2 + ||w||2) .

Since L is injective (see lemma 3.3) and D(L) is compactly embedded in
(
L2(Ω)

)4, again we appeal
to a standard compactness argument and establish coercivity of L.

¤
The main result of this section is the following theorem, which confirms the existence of a dual
solution. It is a simple consequence of theorem 3.5.

Theorem 3.6. L∗ : D(L∗) → (
L2(Ω)

)4 is surjective.
Proof: It is clear that (L∗)∗ = L. Thus, both L and L∗ are closed and we may use the closed

range theorem. Since L is coercive (see Theorem 3.5), thenR(L) is closed. The closed range theorem
implies that R(L∗) is closed. Thus, we know that R(L∗) = N (L)⊥. Since N (L) is empty, then L∗
is surjective.

¤

3.1. The case c = 0. This is the case that was examined in [12]. In this paper we remove the
requirement that ΓD and ΓN have at most one component. When c = 0, it is useful to choose d = 0
because the second and third rows of L0 in (3.1) only involve u. This allows us to write the primal
problem, LU = F , in two-stages:

Tu =
(

f
0

)
, (3.32)

∇p = u. (3.33)

Since T is injective by itself (see the proof of theorem 3.5), problem (3.32) alone is sufficient to
determine u. We can, thus, begin by solving this so-called first stage equation. The second stage,
equation (3.33), can be then be solved for p if needed.

Discontinuous coefficients in A and irregular boundary points on ∂Ω imply u 6∈ (
H1(Ω)

)2, so we
use a FOSLL∗ formulation to solve (3.32). To accommodate the possibility of multiply connected
boundary components, (3.32) is posed on domain D(T ) defined in (3.10). Note, then, that the dual
problem for the first stage reads T ∗w = u and takes the variational form

〈T ∗w, T ∗v〉 =
〈
(f, 0)t,v

〉
, for all v ∈ D(T ∗). (3.34)

Theorem 3.7. Operator T ∗ : D(T ∗) → (
L2(Ω)

)2 is surjective.
Proof: Coercivity of T was proved for Theorem 3.5 and, by arguments similar to those in

Theorem 3.6, we can then prove surjectivity of T ∗.
¤

This theorem establishes existence of a solution for the first stage (3.32). Note that recovery of
the solution, p, of the original BVP, (2.1)-(2.3), can then be done by applying a standard FOSLS
scheme for the second stage equation, (3.33), i.e., by minimizing ||∇p− u||, where u = T ∗w is the
approximation obtained in the first stage. This minimization is done in an appropriate subspace
of H1

D(Ω) and leads to an H1 approximation of p, which is clearly more desirable than the L2

approximations for p obtained by the general FOSLL∗ approach for c 6= 0.

Remark 3.8. A closer look at the dual problem for the first stage, T ∗w = u, shows that the
second component of the dual variable, w2, is only determined up to a constant. Therefore, without
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loss of generality, we can restrict the space in which we are looking for w to

{
w ∈ (

H1(Ω)
)2

: w1 = 0 on ΓD,

w2 = 0 on ΓN,1, w2 ≡ ci on ΓN,i, 2 ≤ i ≤ M
}
.

Thus, for the case c = 0, standard FOSLL∗ , as proposed in [12], works well enough, unless ΓD or
ΓN is not simply connected.

Remark 3.9. A scaled version of the first stage (3.32) that solves for the scaled flux, ũ = A1/2∇p
(see (3.36)), yields a dual problem with better computational performance when used in conjunction
with multigrid solvers.

3.2. The case b = 0. For b = 0, we consider two cases: c > 0 and c = 0. (We exclude the
case that c is neither 0 nor strictly positive.) We show in both cases that a scaled form of FOSLL∗

reduces to the standard Galerkin formulation of (2.1)-(2.3).
Consider first the case c > 0. We can rescale the primal problem by using the scaled primal

unknowns, (ũ, p̃, q̃) = (A1/2∇p, c1/2p, c1/2q). The primal operator is then simply a scaled version of
L1 used in standard FOSLL∗ . The primal problem takes the form

L̃1(ũ, p̃, q̃) = (0, f, 0)t in Ω,

t ·A−1/2ũ = 0 on ΓD,

n ·A1/2ũ = 0 on ΓN ,

p̃ = 0 on ΓD,

q̃ = 0 on ΓN ,

where

L̃1(ũ, p̃, q̃) :=




A−1/2 −∇c−1/2 −∇⊥c−1/2

∇·A1/2 −c1/2 0
−∇×A−1/2 0 0







ũ
p̃
q̃




=




A−1/2ũ−∇c−1/2p̃−∇⊥c−1/2q̃
∇·(A1/2ũ)− c1/2p̃
−∇×(A−1/2ũ)


 .

The domain of this operator is

D(L̃1) =
(
HN (∇·A1/2; Ω) ∩HD(∇×A−1/2; Ω)

)
×H1

D(c−1/2; Ω)×H1
N (c−1/2; Ω),

where φ ∈ H1
J (c−1/2; Ω) if and only if c−1/2φ ∈ H1

J(Ω). Thus, the dual problem takes the form

L̃∗1(w, r, s) = (ũ, p̃, q̃)t = (A1/2∇p, c1/2p, 0)t in Ω (3.35)

on

D(L̃∗1) = (HN (∇·; Ω) ∩HD(∇×; Ω))×H1
D(Ω)×H1

N (Ω),

where the adjoint operator has the form

L̃∗1(w, r, s) =




A−1/2 −A1/2∇ −A−1/2∇⊥
c−1/2∇· −c1/2 0
−c−1/2∇× 0 0







w
r
s


 .
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Remarkably, this specially scaled problem has a dual solution in
(
H1(Ω)

)4, namely,

(w, r, s) = (0,−p, 0).

Knowing that w and s vanish in this special case, dual problem (3.35) takes the following variational
form:

Find p ∈ H1
D(Ω) such that

〈A∇p,∇t〉+ 〈cp, t〉 = −〈f, t〉

for all t ∈ H1
D(Ω).

This is precisely the variational form of the Galerkin approach for BVP (2.1)-(2.3) with b = 0.
In other words, FOSLL∗ yields the same H1 approximation, ph, as the Galerkin approach.

Next, consider the case b = 0 and c = 0. A scaled two-stage approach leads to the following
first stage primal problem:

[ ∇·A1/2

−∇×A−1/2

]
ũ =

(
f
0

)
(3.36)

on HN (∇·A1/2; Ω) ∩HD(∇×A−1/2; Ω). The corresponding dual problem is

−A1/2∇w1 −A−1/2∇⊥w2 = ũ = A1/2∇p

on H1
D(Ω)×H1

N (Ω), which obviously has the solution w = (−p, 0). Knowing that w2 vanishes leads
to the following variational form:

Find p ∈ H1
D(Ω) such that

〈A∇p,∇t〉 = −〈f, t〉

for all t ∈ H1
D(Ω).

This, again, is precisely the variational form of the Galerkin approach for BVP (2.1)-(2.3) when
b = 0 and c = 0. Thus, FOSLL∗ and Galerkin again yield the same H1 approximation, ph.

4. Numerical Results. Here we report on various numerical results and discuss some imple-
mentation issues for the methods proposed in the previous section. All problems in this section were
computed with FOSPACK [22]. The linear solver used for the discretized equations was a conju-
gate gradient iteration (PCG), preconditioned by algebraic multigrid (AMG) using one standard
W(1,1)-cycle based on point Gauss-Seidel relaxation. In all cases, the PCG/AMG iterations were
applied until the residual norm of the linear system was reduced by a factor of at least 10−10. While
this criterion is unnecessarily strong, and is not recommended in practice, it was used to eliminate
algebraic error from the analysis of the convergence of the finite element approximations.

First, we show how the improved FOSLL∗ method performs on the problem proposed in Exam-
ples 2.1 and 2.3. One of our improvements was the introduction of ΓQ ⊂ ΓD, an additional Dirichlet
boundary for the slack variable. For our numerical tests, we chose the domain described in Example
2.1 and

ΓQ = {(x, y) ∈ ΓD : x ∈ (0.5, 1) and y = 0}. (4.1)

Example 4.1. We apply the improved FOSLL∗ method to the BVP from Examples 2.1 and 2.3.
We, thus, use the constructs defined in (3.7)-(3.21), with ΓQ as in (4.1) and d = 1. The L2 norms
of the errors are shown in Table 4.1. Since the primal solution is in (Hα(Ω))4 only for α < 2/3,
the optimal asymptotic bounds on these errors is in general proportional to h2/3. We compute the

16



h 1/4 1/8 1/16 1/32 1/64 1/128 1/256
||p− ph||0 .0475 .0189 .0113 .0075 .0047 .0027 .0016

β 1.328 .738 .606 .674 .767 .809
||u− uh||0 .6674 .3051 .1573 .0810 .0421 .0222 .0120

β 1.129 .956 .958 .946 .923 .892
ρ 0.20 0.31 0.46 0.65 0.77 0.83 0.87

Table 4.1
Error norms, approximate order of discretization convergence, β, and asymptotic AMG convergence factors, ρ,

for the improved FOSLL∗ approximations for Example 4.1 on a sequence of uniform meshes with meshsizes h.

approximate order of convergence by computing β such that (1/2)β is equal to the ratio of errors on
consecutive grids. The table suggests that the improved FOSLL∗ approach does indeed achieve these
optimal bounds, while the FOSLS and standard FOSLL∗ methods do not converge at all (cf. Tables
2.1 and 2.2).

For the improved FOSLL∗ method, the four components of the dual solution, (wh, rh, sh), on
the h = 1/32 mesh are shown in Figure 4.1. By simply computing (uh, ph, qh)t = L∗(wh, rh, sh),
we obtained L2 approximations for the primal variables, as shown in Figures 4.2. As these figures
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Fig. 4.1. Approximations of the dual variables for Example 4.1 on a uniform mesh with h = 1/32.

and tables show, the improved FOSLL∗ method yields converging L2 approximations for the primal
variables, u and p.

Unfortunately, convergence of ‖p − ph‖0 tends to drop to a suboptimal rate if ΓQ is chosen to
be too small, especially when there are irregular points inside the Neumann boundary. Therefore,
one has to take care in choosing ΓQ sufficiently large. On the other hand, choosing such a large
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Fig. 4.2. Approximations ph and uh of primal variables p and u = ∇p as well as second-stage approximation
ph
+ of p on a uniform mesh with h = 1/32 for Example 4.1.

ΓQ with a fixed length seems to inhibit optimal AMG performance: the average per-step residual
error reduction factor, which we call ρ, seems to depend on the meshsize, h. In fact, 1− ρ seems to
be proportional to hα for some positive α. For Example 4.1, the multigrid reduction factor given
in Table 4.1 suggests that 1 − ρ is proportional to h3/4. This difficulty seems to come from the
null space of L∗ as defined in (3.7)-(3.21). This null space is non-trivial since there are no boundary
conditions for the first two components of D(L∗) on ΓQ. One remedy could be to use linear solvers
that can deal with non-trivial null spaces, such as the MINRES algorithm (cf. [15]). Another remedy
is discussed in the next subsection.

Remark 4.2. For c = 0, the primal problem can be decomposed as shown in (3.32)-(3.33).
Problem (3.32) can be solved by a FOSLL∗ method. Since this problem only involves the operator
T , no ΓQ is needed. Furthermore, the dual problem of this first stage has a full set of boundary
conditions, namely, w1 = 0 on ΓD, w2 = 0 on ΓN,1, and w2 ≡ const on ΓN,i, 2 ≤ i ≤ M . This
full set of boundary conditions leads to optimal multigrid convergence for c = 0. To demonstrate
this, we tested this approach on Example 4.1 with c = 0. Table 4.2 shows the approximation errors
and the multigrid convergence factors for both stages. Here, second-stage equation (3.33) is solved
by FOSLS , since we know p ∈ H1(Ω) and can therefore obtain H1 approximations for p. Both FE
and multigrid convergence show optimal behavior.

4.1. Restoring optimal multigrid convergence. A heuristic approach for restoring optimal
multigrid convergence (i.e., ρ ¿ 1) is to choose different boundaries Γh

Q on different meshes so that
|Γh

Q| = O (h). The motivation for this is that such a choice for Γh
Q should control the dimension of

the null space of the discrete operator since only a bounded number of elements could then intersect
Γh

Q. These null space components that AMG cannot seem to eliminate by itself would then hopefully
18



h 1/4 1/8 1/16 1/32 1/64 1/128 1/256
||u− uh||0 .4588 .2036 .1046 .0539 .0281 .0149 .0081

β 1.1718 .961 .956 .941 .916 .882
ρ 0.12 0.10 0.054 0.041 0.032 0.040 0.040

||p− ph||0 4.41E-2 1.21E-2 3.34E-3 1.02E-3 3.34E-4 1.19E-4 4.63E-5
β 1.856 1.868 1.710 1.614 1.482 1.367
ρ 0.022 0.032 0.032 0.031 0.040 0.031 0.031

Table 4.2
Error norms and multigrid convergence for the approximations for Example 4.1 for c = 0 on a sequence of

uniform meshes with meshsizes h. Upper half: First stage, using the improved FOSLL∗ method. Lower half: Second
stage, using FOSLS method.

be attenuated by a fixed number of conjugate gradient steps.
The new difficulty that this choice introduces is that operators S∗ and L∗ lose surjectivity in

the limit h → 0. This, in turn, impairs finite element convergence as h decreases. Fortunately, this
difficulty does not effect coercivity of T nor, as our observations show, convergence of ‖uh − u‖.
Convergence of ||ph−p|| does degrade, however, but this can be remedied by appealing to the relation
∇p = u. That is, we can simply replace ph by a new approximation, denoted ph

+, that approximately
solves ∇ph

+ = uh, where uh is the approximation for u obtained by the improved FOSLL∗ method
with variable Γh

Q. This post processing step is exactly the same as in (3.33), so we refer to it as the
second stage. Since convergence of ‖uh − u‖ is still optimal for Γh

Q, then convergence of ‖ph
+ − p‖

should be optimal as well. Our implementation solves this second stage by the FOSLS approach
of finding ph

+ = arg min ‖∇z − uh‖0 where z is chosen from the same H1-conforming finite element
space that was used to approximate the dual solution.

Example 4.3. Using the same problem as in Example 4.1, we make a different choice for ΓQ:

Γh
Q = {(x, y) ∈ ΓD : x ∈ (1− 4h, 1), y = 0},

for which |Γh
Q| = 4h. In Table 4.3, we list the L2 errors associated with uh, ph, and ph

+. We also
include the multigrid convergence factors, ρ, for the solution of the discretized dual problem and the
computational cost of the second stage as a percentage of the computational cost of the solution of the
discretized dual problem. The results show that our approach leads to optimal multigrid convergence
and a very accurate approximation for p at very small additional cost. Approximations ph

+ and ph

for this problem on a mesh with h = 1/32 are shown in Figure 4.2.
Remark 4.4. The second stage yields an H1 approximation to p, while ph is in general in

L2 \H1. This desirable feature of this new approach utilizes the higher regularity of p in an efficient
way. The approximation is not only in a smoother space, but also more accurate. Thus, the second
stage is generally an effective tool to improve convergence of FOSLL∗ , not only just for the case of
variable Γh

Q.

4.2. Dependence of A and b. Here we report on examples that demonstrate how FOSLL∗

depends on A and b.
Example 4.5. In a first experiment, we slightly changed Example 4.3 by setting A = σI, with

σ = 1 for x + y < 0 and σ = σ0 otherwise. The results are displayed in Table 4.4 and show that the
AMG solver works well, even in the presence of huge jumps in the coefficients. It is remarkable that
the AMG convergence factors are getting better for very fine meshes, where 1/h starts to dominate
the convection and the jumping coefficients. For this example, we used the scaling mentioned in
Remark 3.9.

As a second experiment, we fixed σ0 = 1 and varied the convection, b. The results of this
experiment are shown in Table 4.5. Note again the relative insensitivity of the order of discretization
error, now with respect to the size of b. AMG performance does degrade with increasing size of b,
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h 1/4 1/8 1/16 1/32 1/64 1/128 1/256
||p− ph||0 .0475 .0194 .0125 .0093 .0071 .0055 .0043

β 1.29 .639 .430 .385 .372 365
||u− uh||0 .6674 .3051 .1573 .0810 .0420 .0221 .0120

β 1.13 .956 .958 .946 .924 .892
ρ 0.19 0.23 0.17 0.13 0.10 0.08 0.09

||p− ph
+||0 4.35E-2 1.20E-2 3.36E-3 1.09E-3 3.95E-4 1.64E-4 7.56E-5

β 1.857 1.837 1.625 1.464 1.271 1.113
||u−∇ph

+||0 .4640 .2078 .1071 .0555 .0290 .0155 .0084
β 1.159 .955 .950 .934 .908 .874
ρ 0.022 0.032 0.032 0.031 0.040 0.031 0.031

stage2 3.1% 3.4% 3.7% 4.0% 5.0% 4.2% 4.5 %
Table 4.3

Upper half: Error norms, approximate order of discretization convergence, β, and multigrid convergence factors,
ρ, for the improved FOSLL∗ approximations for Example 4.1 on a sequence of uniform meshes with meshsizes h and
Γh

Q ∈ O (h). Lower half: Error norms for the second-stage approximation, approximate order of discretization
convergence, β, and work of the second stage as a percentage of the work of the FOSLL∗ method above.

but this reflects the usual behavior of standard multigrid solvers for convection dominated problems.
Again, as the meshsize tends to 0, the discretized differential operators dominate the convection and
cause a steady improvement of the AMG convergence rates.

h
σ0 1/4 1/8 1/16 1/32 1/64 1/128 1/256
100 ||u− uh||0 .6674 .3051 .1573 .0810 .0420 .0221 .0120

β 1.13 .956 .958 .946 .924 .892
ρ 0.19 0.23 0.17 0.13 0.10 0.08 0.09

103 ||u− uh||0 .6732 .3277 .1672 .0882 .0483 .0276 .0166
β 1.04 .971 .923 .869 .805 .734
ρ 0.38 0.47 0.53 0.49 0.40 0.31 0.23

106 ||u− uh||0 .6738 .3280 .1674 .0883 .0484 .0277 .0166
β 1.04 .971 .923 .869 .805 .734
ρ 0.22 0.24 0.37 0.47 0.62 0.76 0.77

Table 4.4
Error norms and AMG convergence factors for the approximations from Example 4.5 for varying σ0 on a

sequence of uniform meshes with meshsizes h.

5. Conclusions. In this paper we have developed new FOSLL∗ formulations that allow the use
of H1-conforming finite element spaces and optimal multigrid solvers for constructing L2 approxi-
mations of the primal variables on an extended class of scalar elliptic equations. This class includes
problems with reaction terms, domains with Dirichlet and Neumann boundaries with multiple com-
ponents, and irregular boundary points. The extension was accomplished by redefining the boundary
conditions associated with the slack variables in the primal problem. Specifically, for domains with
ΓD 6= ∅, the slack variable, q, was given additional boundary conditions on ΓQ ⊂ ΓD. Our theory
establishes the surjectivity of the adjoint operator, L∗, as long as ΓQ containes no irregular points.
However, numerical results show that the multilevel solution techniques work better, and the finite
element approximations are no worse, if ΓQ is chosen to touch irregular boundary points and to
shrink along with the mesh spacing, h. The case of pure Neumann boundary conditions remains an
open problem.

The improved FOSLL∗ approach yields an L2 approximation to the primal flux variable that
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h
bt 1/16 1/32 1/64 1/128 1/256

(−y
10 , 10x) ||u− uh||0 .1573 .0810 .0420 .0221 .0119

β .958 .946 .924 .892
ρ 0.17 0.13 0.10 0.08 0.09

10(−y
10 , 10x) ||u− uh||0 .3356 .1862 .0968 .0492 .0250

β 0.850 0.944 0.978 0.979
ρ 0.57 0.60 0.58 0.45 0.31

100(−y
10 , 10x) ||u− uh||0 .4687 .3371 .2230 .1342 .0737

β 0.476 0.596 0.732 0.864
ρ 0.65 0.76 0.83 0.84 0.84

Table 4.5
Error norms, approximate order of discretization convergence, β, and AMG convergence factors for the approx-

imations from Example 4.5 for varying b on a sequence of uniform meshes with meshsizes h.

achieves the optimal theoretical convergence rate. A post processing step was shown to yield optimal
H1 approximation to the original scalar variable, p, at a small additional cost.

We also showed that the FOSLL∗ formulation produces the same approximation as a Galerkin
formulation of the original second-order boundary value problem, (2.1)-(2.3), in the absence of first
order terms (b = 0) and either no reaction term (c = 0) or strictly positive reaction term (c > 0).

The efficiency of the improved FOSLL∗ formulations was illustrated by a series of numerical
examples.
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