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ON MASS-CONSERVING LEAST-SQUARES METHODS∗

J. J. HEYS† , E. LEE‡ , T. A. MANTEUFFEL‡ , AND S. F. MCCORMICK‡

Abstract. Least-squares variational methods have several practical and theoretical advantages
for solving elliptic partial differential equations, including symmetric positive definite discrete oper-
ators and a sharp error measure. One of the potential drawbacks, especially in three dimensions,
is that mass conservation is achieved only in a least-squares sense, and underresolved solutions are
especially vulnerable to poor conservation. For the stationary Navier–Stokes equations, which are
typically rewritten as a larger system of first-order equations, the loss of mass in the approximate
solution is strongly dependent upon the boundary conditions used. A new first-order system refor-
mulation of the Navier–Stokes equations is presented that admits a wider range of mass-conserving
boundary conditions. This new formulation is shown to provide both excellent mass conservation and
excellent algebraic multigrid performance for three different problems, a square channel, backward-
facing step, and branching tubes with two generations of bifurcations.

Key words. Navier–Stokes, conservation, finite elements, least squares, multigrid

AMS subject classifications. 76D05, 65F10, 65N55

DOI. 10.1137/050640928

1. Introduction. Least-squares variational principles have been repeatedly rec-
ognized as a new tool to solve elliptic partial differential equations [6]. For the Stokes
and Navier–Stokes equations in particular, a number of advantages are present [3, 4,
24], including the following:

• the weak formulations are associated with a minimization problem, resulting
in significant computational advantages;

• the finite element spaces for each variable may be chosen independently be-
cause the inf-sup (or LBB) stability condition does not apply; and

• the functional provides a sharp, local error measure at no additional compu-
tational cost.

However, these benefits do not come without some drawbacks. In our experience, the
following two are the most significant:

• when popular C0 finite elements are used, the number of dependent variables
typically increases over the original formulation (by a factor of 2 to 3 in many
cases); and

• a lack of conservation of mass resulting in “ugly” solutions.
The computational advantages associated with least-squares finite element methods
(LSFEM) are usually sufficient to overcome the first drawback, especially as problems
become larger due to the scalability of multigrid solvers [9], which are often used in
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conjunction with least-squares methods [12]. Further, in many cases, the additional
variables are physically important quantities that must be calculated at some point,
regardless of the discretization method being used. It is the second drawback, the
lack of conservation of mass, that is the focus of this paper.

Mass conservation between any inflow surface, Γi, and an outflow surface, Γo,
which are possibly connect with impermeable boundaries, is typically measured in
terms of the fractional change of mass flow, defined as∫

Γi
(n · v)dΓi −

∫
Γo

(n · v)dΓo∫
Γi

(n · v)dΓi
,

where v is the velocity of an incompressible fluid. The mass conservation can be
measured either globally over the entire domain or locally over smaller subdomains.
If the velocity is completely specified over all boundaries, it must be set to satisfy
the global mass-conservation constraint, and only local mass conservation will not
be exactly satisfied. Published computational results [16] and our own experience
show that when global mass conservation is enforced through boundary conditions,
LSFEM give approximate solutions with acceptable local mass conservation. However,
a common flow problem involves the velocity being completely specified only along
the inflow and wall regions but not completely specified along the outflow regions. In
this case, the error in global mass conservation is approximately the accumulation of
errors in local mass conservation between the inlet and outlet. It is these types of
flow problems, where the outlet velocity is not fully specified, that are the subject of
this paper. The goal is to improve global mass conservation while maintaining the
strengths of LSFEM, specifically the multigrid convergence rates. This is in contrast
to many of the existing methods to improve mass conservation, which result in slower
convergence rates for standard multigrid.

Mass conservation in Galerkin formulations of the Navier–Stokes equations is
enforced by the divergence-free constraint on the velocity field, which essentially uses
pressure as a Lagrange multiplier. With least-squares formulations, the objective is
to minimize, in a least-squares sense, the value of a functional. For example, the
stationary Navier–Stokes equations in dimensionless form are

−Re (v · ∇v) −∇ p + Δv = 0 in Ω,(1.1)

∇ · v = 0 in Ω,(1.2)

where p is the pressure normalized by viscosity, Re is the Reynolds number, and v =
(vx, vy, vz) is the dimensionless velocity. Equations (1.1) and (1.2) may be combined
in a least-squares sense into a single functional given by

G(v, p) := α‖ −Re (v · ∇v) −∇ p + Δv‖2
0,Ω + β‖∇ · v‖2

0,Ω .(1.3)

In practice, G(v, p) would never be minimized because it exhibits behavior similar
to a biharmonic, but it is shown to illustrate that there is always a balance between
equations. The first term in G represents conservation of momentum, and the sec-
ond represents conservation of mass. One of the potential strengths of least-squares
methods is that, by adjusting the values of constants α and β, the error can be dis-
tributed between mass and momentum conservation in a controlled manner. However,
changing the values of α and β almost always affects solver performance. For exam-
ple, making β larger (i.e., less error in conservation of mass) can result in faster or
slower multigrid convergence, depending on the Reynolds number, Re, and the actual
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Fig. 1.1. The test problem domain consisting of a brick with an aspect ratio of 4:1:1.

functional used (G is not a computationally practical functional and is rarely used).
The effects of weighting the functional are demonstrated later in this paper, but,
even though this can be beneficial in some situations, it should not be considered a
universal solution [8].

The focus in this paper is on stationary or steady-state Navier–Stokes equations,
although some general statements can be made about the extension to nonstationary
Navier–Stokes using implicit time stepping. The additional terms in the functional
due to the discrete approximation of the time derivative makes the diagonal of the
operator larger and, hence, it is usually more efficiently solved by a multigrid algo-
rithm. Further acceleration is realized by the fact that the previous time step solution
provides a good initial guess to the new time step. As a result, the methods proposed
in this paper are also good methods for solving the nonstationary problem if implicit
time stepping is desired.

1.1. Model problem and loss of mass conservation. We introduce a simple
test problem to illustrate the mass-conservation issue associated with existing least-
squares methods. The test problem was chosen to be as simple as possible while
still capturing the key mass-conservation issues. Initially, the Reynolds number is
set to zero because the important mass conservation issues exist in Stokes flow as
well as laminar Navier–Stokes flow. Later, results using nonzero Reynolds numbers
are given. While it is possible to demonstrate some of the mass-conservation issues
in two dimensions, Pontaza and Reddy [24] recently showed that using higher-order
finite elements largely alleviates the problems in two dimensions. Our own experiences
agree with this finding, but, as we show, moving to higher-order elements is not as
effective in addressing the mass-conservation issues in three dimensions. Therefore,
the domain for the test problem is the simple “brick” shown in Figure 1.1 with an
aspect ratio of 4:1:1. The long sides of the brick are walls upon which the no-slip
boundary condition is imposed. Along the inlet and outlet, the tangential velocity is
set to zero, and an additional boundary condition to be chosen later must also be set.

The functional, G, given by (1.3) has a higher regularity requirement and cannot
be used with practical C0 finite element spaces. Typically, the governing equations are
transformed into an equivalent system of first-order equations. A number of different
methods exist for generating a first-order system for the Navier–Stokes equations [3, 4].
One approach is based on defining a matrix of new variables, V, equal to the gradient
of the velocity vector. The first-order system for Navier–Stokes equations is then
written as

V −∇v = 0 in Ω,
−Re(v · V) −∇p + ∇ · V = 0 in Ω,
∇ · v = 0 in Ω.

(1.4)
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Fig. 1.2. Cross-section of flow through the brick domain using the velocity-flux formulation
of the Navier–Stokes equations. The pressure is set to 1 at the inlet and 0 at the outlet, and the
contour bars represent evenly spaced pressure lines.

Because V is the gradient of v and we are solving a minimization problem, we can
augment the first-order system of equations by the following consistent equations:

∇(tr(V)) = 0 in Ω,

∇× V = 0 in Ω,
(1.5)

where tr(V) = V11 + V22 + V33. This first-order formulation of the Navier–Stokes
equations is often called the “velocity-flux” formulation, and it has a number of theo-
retical and practical advantages, including optimal error estimates in the H1 norm for
each variable and optimal multigrid convergence estimates [7, 4]. The corresponding
functional for the velocity-flux formulation is

Gv.f.(V,v, p) := ‖V −∇v‖2
0,Ω + ‖ −Re (v · V) −∇ p + ∇ · V‖2

0,Ω(1.6)

+ ‖∇ · v‖2
0,Ω + ‖∇(tr(V))‖2

0,Ω + ‖∇ × V‖2
0,Ω.

To minimize the functional Gv.f. over the test domain shown in Figure 1.1, ad-
ditional boundary conditions must be defined along the inlet and outlet. A common
boundary condition is to set the normal stress on the normal face (i.e., the natural
boundary condition) equal to a constant. For this domain with no tangential velocity
at the inlet and outlet, setting the normal stress to a constant is equivalent to setting
the pressure to a constant. The results of setting the inlet pressure (i.e., the normal
stress) to 1 along the inlet and 0 along the outlet are shown in Figure 1.2. To generate
this result, a hexahedral (cubic) mesh of 32× 8× 8 elements was used (h = 1/8), the
Reynolds number was set to zero (i.e., Stokes flow), and a trilinear finite element basis
was used. Even though Figure 1.2 only shows the central cross-section of the brick,
it is clear that there is good mass conservation based on a visual inspection. In fact,
integrating the velocity field along the inlet and outlet (or any other cross-section or-
thogonal to the flow) shows perfect mass conservation up to 5 digits. The value of the
functional at the approximate solution is 4.0×10−3. If we look at the size of different
terms in the functional, the divergence term, ∇ · v, is very small at 5.8 × 10−9, and
the error is largely in the momentum term, −Re (v · V) −∇ p + ∇ · V, with a value
of 1.6 × 10−3.

At this point, the least-squares formulation appears to provide excellent mass
conservation. However, a change in the inlet boundary condition can have a dramatic
effect. For example, the result of replacing the natural inlet condition, p = 1, with an
essential one, in which the normal velocity is set to vx = y(1 − y)z(1 − z), is shown
in Figure 1.3. It is important to note that the inlet condition is not set to the steady
flow profile, but it is a valid boundary condition. The total value of the functional
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Fig. 1.3. Cross-section of flow through the brick domain using the velocity-flux formulation of
the Navier–Stokes equations. The normal velocity is set to vx = y(1 − y)z(1 − z) at the inlet and
the pressure to 0 at the outlet, and the contour bars represent evenly spaced pressure lines.

at the minimum is 6.0 × 10−3, and the divergence term in the functional (5 × 10−4),
representing conservation of mass, is now nearly the same size as the momentum term
(1 × 10−3). The total flow rate into the domain is 2.7 × 10−2 and the outflow rate
is 5.0 × 10−5, a 99.8% loss of mass. The key to understanding this mass loss is to
look at the pressure, which should be decreasing nearly linearly except for some small
entrance effects near the inlet. Instead, the functional is a minimum when both the
pressure and the flow rate are approximately zero for two-thirds of the domain lying
downstream. Clearly, the functional is approximately zero for the downstream portion
of the domain, which helps keep the functional small. The larger error at the entrance
is not sufficient to make the overall functional value large. Remember, this method
finds the solution that minimizes the functional over all possible solutions in the finite
element space. In other words, if we do not like the solution, we asked the method to
minimize a functional that does not capture our requirements for the solution.

1.2. Possible remedies. Several approaches can be taken to “fix” the conser-
vation of mass problem illustrated in the previous example (i.e., Figure 1.3), including
the following:

• reducing the mesh size, h;
• weighting the velocity-divergence term in the functional;
• using higher-order elements or some other finite element space (e.g., [10]);

and
• using a different first-order system of equations that is still equivalent to the

Navier–Stokes equations.
Other, more complex remedies can be used, including norms other than L2 norms or
using a FOSLL* approach [11], but only the approaches listed above are explored here.
Below, each of these options is individually explored using the previous test problem.
In most cases, mass conservation is improved at the cost of multigrid performance,
making the remedy unacceptable.

Reducing the mesh size has the advantage that it should improve mass conser-
vation and not make the problem worse. As the mesh size approaches zero, the
approximate solution approaches the true solution at the expected rate, which de-
pends on the finite element basis. However, because conservation of mass is currently
far from being acceptable, significant refinement is required before the approximation
becomes acceptable. For example, if the previous mesh (32 × 8 × 8) is refined to
(64 × 16 × 16), the loss of mass is only reduced from 99.8% to 98.8%.

As mentioned previously, weighting the divergence of velocity term in the func-
tional can also improve conservation [16]. If the divergence term in the velocity-flux
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formulation (i.e., Gv.f.) is weighted by 100, the mass loss is reduced from 99.8% to
0.7%. However, the multigrid convergence factor, defined as

ρ ≈ m

√
‖res(m)‖2

‖res(0)‖2
,(1.7)

where res(m) is the residual (or defect) after the mth V-cycle, is increased from
0.74, with a weight of 1.0, to 0.87, with a weight of 100.0. To put that change into
perspective, reducing the residual norm by a factor of 1.0× 10−8 requires 62 V-cycles
when the convergence factor is 0.74, and 132 V-cycles when the convergence factor is
0.87, a doubling of the total computational cost. Further, in our experience, larger
weights are required as the domain becomes more complex, especially domains with
high aspect ratios. Multigrid methods that perform well on this class of problems
exist, but require special elements and special relaxation techniques (cf. [2]). A similar
idea to weighting the divergence term is to enforce it through a Lagrange multiplier
strategy [13]. In this case, the operator is still symmetric, but the now indefinite
operator is not effectively solved using a standard multigrid method.

It has been shown by both Pontaza and Reddy [24] and Deang and Gunzburger [16]
that higher-order (or spectral) elements can produce very accurate results with least-
squares formulations. This has been shown extensively in two dimensions, but it has
not been demonstrated in three dimensions. Further, the computational costs asso-
ciated with least-squares formulations in three dimensions with high-order elements
can become prohibitive. For example, in the velocity-flux formulation there are 13
variables per node in three dimensions. Taking the tensor product of 3 eighth-order
nodal basis functions results in an element with 729 nodes. The cost of storing a
single element stiffness matrix with double precision variables approaches 1 gigabyte.
If eighth-order basis functions are too expensive to store, one may ask what is the
benefit of simply refining from trilinear elements to triquadratic elements. For the
test problem above with the essential condition on velocity along the inlet, the mass
loss is decreased from 99.8% to 64%, a significant improvement. However, even the
improved mass conservation is still not acceptable, and it came at a increased compu-
tational cost (e.g., if the one-dimensional polynomial order is p, then computational
costs scale as O(p6) if exact integration is used).

Related to the idea of using alternative finite element spaces is the idea of using
reduced integration methods [21, 26]. Often, the use of reduced integration results
in a collocation solution [6, 24]. The net effect of using reduced integration on most
problems, including the test problem, is excellent conservation of mass, loss of the
functional as an error measure because it is zero at the minimum, and poor multigrid
performance. For example, when using reduced integration on the brick test problem,
mass was conserved up to at least 5 digits of accuracy, but thousands of algebraic
multigrid V-cycles were required for marginal convergence. In this case, a direct
solver would have been much more effective, but our desire is to find a solution to
the mass conservation problem that maintains the optimal computational scalability
of standard multigrid.

The final approach we mention is to change the form of the functional (i.e., to
use a different first-order system of equations). This approach is attractive due to our
previous observation that if we do not like the approximate solution that minimizes
the functional, then we are using the wrong functional. The most popular first-order
system that is equivalent to the Navier–Stokes equations is the vorticity system, given
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Fig. 1.4. Cross-section of flow through the brick domain using the vorticity formulation of the
Navier–Stokes equations. The normal velocity is set to vx = y(1 − y)z(1 − z) at the inlet and the
pressure to 0 at the outlet, and the contour bars represent evenly spaced pressure lines.

by

ω + ∇× v = 0 in Ω,
−Re(v · ∇)v −∇p + ∇× ω = 0 in Ω,
∇ · v = 0 in Ω.

(1.8)

Because ω, the vorticity, is the negative curl of v and we are solving a minimization
problem, we can augment this first-order system by the following consistent equation:

∇ · ω = 0 in Ω.(1.9)

The corresponding functional for the vorticity formulation is

Gω(ω,v, p) := ‖ω + ∇× v‖2
0,Ω + ‖ −Re (v · ∇)v −∇ p + ∇× ω‖2

0,Ω(1.10)

+ ‖∇ · v‖2
0,Ω + ‖∇ · ω‖2

0,Ω.

One advantage of this formulation is that it contains only 7 dependent variables in
three dimensions, almost half the number of the velocity-flux formulation; however,
since it is not a fully H1-coercive system [6], optimal multigrid convergence cannot
be proven. Nevertheless, since the focus here is on mass conservation, we examine
the effects of this formulation on mass loss through the brick domain using the same
boundary conditions as Figure 1.2 (i.e., vx = y(1 − y)z(1 − z) along the inlet). The
results are summarized by the cross-section shown in Figure 1.4, and they demonstrate
extensive mass loss similar to the velocity-flux formulation. In this case, the mass
loss is 99.9%, even worse than the 99.8% previously observed, and the multigrid
convergence factor was significantly worse, requiring approximately twice the number
of V-cycles. The final value of the functional, Gω, was 2.7 × 10−3, but most of the
error was in the divergence-of-velocity term (1.1 × 10−3). Clearly, the two first-order
systems for the stationary Navier–Stokes equations commonly found in the literature
do not provide acceptable mass conservation for this set of boundary conditions in
three dimensions.

In summary, even though some of the remedies tested improved mass conserva-
tion, they did so at the cost of multigrid performance. Since the goal is to improve
mass conservation without an appreciable decline in multigrid performance, none of
these remedies is acceptable. The only solution shown to improve mass conservation
without a decline in multigrid performance is setting boundary conditions on pressure
for both the inlet and outlet. This observation first provoked an effort to find a new
formulation that allows pressure boundary conditions to be set in a more flexible way.



1682 HEYS, LEE, MANTEUFFEL, AND MCCORMICK

During this effort, we developed a formulation that not only allowed new boundary
conditions to be set that incorporated pressure, but the new formulation also achieves
better computational performance (i.e., multigrid convergence rates) at the same. In
this way, it satisfies our goal of improving mass conservation while maintaining the
strengths of the LSFEM methodology.

2. New formulation. Before defining the new formulation, we need the identity

∇× (v · ∇)v = (v · ∇)ω − (ω · ∇)v,(2.1)

and we define a new variable r as

r = ∇p + Re(v · ∇)v .(2.2)

The new variable is equal to the pressure gradient plus the convective term. We now
introduce the following first-order system to replace the Navier–Stokes equations:

∇× v + ω = 0 in Ω,
∇ · v = 0 in Ω,
∇× ω − r = 0 in Ω,
∇ · ω = 0 in Ω,
∇× r −Re(v · ∇ω − ω · ∇v) = 0 in Ω,
∇ · r = 0 in Ω.

(2.3)

The first two equations in system (2.3) are the same as those previously used in the
vorticity formulation. The third equation is the momentum balance, rewritten in
terms of r and the curl of vorticity. The fourth equation is derived by taking the
divergence of the first equation. The fifth equation comes from taking the curl of
(2.2), and the final equation is the result of taking the divergence of the momentum
balance. The corresponding functional for the new formulation is

Gnew(ω,v, r) := ‖ω + ∇× v‖2
0,Ω + ‖∇ · v‖2

0,Ω(2.4)

+ ‖r + ∇× ω‖2
0,Ω + ‖∇ · ω‖2

0,Ω

+ ‖∇ × r −Re(v · ∇ω − ω · ∇v)‖2
0,Ω + ‖∇ · r‖2

0,Ω .

To further analyze this system of equations, it is useful to rewrite the system
using slack variables, α, β, and δ, and moving subprincipal terms to the right-hand
side, giving:

∇× v −∇α = −ω,
∇ · v = 0,

∇× ω −∇β = r,
∇ · ω = 0,

∇× r −∇δ = Re(v · ∇ω − ω · ∇v),
∇ · r = 0.

(2.5)

Here, the slack variables are included to help analyze the new formulation, but the
boundary conditions are set so that the slack variables, α, β, and δ, are equal to
zero everywhere and, hence, are not necessary in the computation. The system of
equations given by (2.5) contain a block diagonal operator with three blocks. Each
block consists of a curl and divergence of a variable we are interested in approximating.
With the proper boundary conditions on each block (specifically, one condition on the
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slack variable and one on the original variable in the normal direction or, alternatively,
conditions on the original variable in the two tangential directions), it is easy to show
that the functional associated with (2.5) and Re = 0 is continuous and coercive in the
(H(div) ∩H(curl)) ×H1 norm for each block of variables. The results are obtained
by using a standard compactness argument. For the lowest block, containing the curl
and divergence of r, boundary conditions are typically set on n · r, where n is the
normal vector, and on slack variable δ. For the central block, boundary conditions are
set on the normal vorticity and on slack variable β. For the upper block, boundary
conditions only need to be set on the normal velocity and α because the tangential
velocity is related to the normal vorticity, but, in practice, boundary conditions are
set on two or all three of the velocity components.

If the Reynolds number is set to zero, the system of equations (2.5) can be solved
by inverting the individual blocks of the matrix. First, the bottom block is inverted
to calculate r, then r is used on the right-hand side of the central block, which is
inverted to calculate ω. Finally, ω is used to calculate the velocity, v. In this way,
storage costs can be reduced by requiring only that the blocks of the operator be
stored. Further, these div/curl blocks are solved very efficiently by multigrid solvers.
If the Reynolds number is not equal to zero, the block strategy can still be used, but
an initial guess for v and ω is required followed by multiple iterations. In practice,
we assemble the full operator because it is efficiently handled by multigrid and makes
the implementation more straightforward.

The boundary conditions for the new formulation are similar to those typically
used for the traditional vorticity formulation except for those on r. An excellent
description and classification of possible boundary conditions on v and ω can be
found in the work of Bochev [3]. Fully specifying the velocity along all boundaries
is sufficient to obtain a well-posed problem having a unique solution. However, the
inclusion of boundary conditions on n·ω and n·r results in the operator being coercive
in H1 and optimal multigrid performance on the linear system. Before the boundary
conditions are described in detail, it is important to note that all boundary conditions
can be imposed either strongly on the finite element space or weakly by including the
boundary conditions in the least-squares functional. This flexibility is useful since
we want to strongly impose some boundary conditions, like the no-slip condition on
velocity, while others are typically imposed weakly.

Along the walls or the no-slip boundaries, all velocity components are set to zero,
the normal vorticity is set to zero, and n · r is set to zero (see Table 2.1). The last
boundary condition, which is set on r, can be explained by the equation

n · r = n · ∇p + n · (Re(v · ∇)v) = n · Δv,(2.6)

where Δv ≡ (∇ · ∇)v. Therefore, setting n · r to zero along the wall can be viewed
physically in two different ways. First, it is equivalent to setting the second derivative
of the normal velocity in the normal direction to zero (i.e., the normal velocity must
be zero near the wall as well as at the wall). Second, since the normal velocity is zero
at the wall, it is equivalent to setting the normal derivative on pressure to zero, and
this is consistent with the basic assumptions of Prandtl’s boundary layer theory [28].

Inflow and outflow boundary conditions are a well-known difficulty in computa-
tional fluid dynamics [18]. For the new formulation, boundary conditions are typically
set on two or three of the velocity components (see Table 2.1), although it is possible
to set a condition on just the normal velocity. A condition should be set only on the
normal vorticity because fully specifying the vorticity usually results in a problem
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Table 2.1

Boundary conditions used for the the new formulation. τ1 and τ2 are the two tangential vectors

along the inlet and c is an unknown constant that approximates ∂2vn
∂n2 .

Boundary Condition Enforcement
Wall v = 0 strong

n · ω = 0 weak
n · r = 0 weak

Inflow n · v = g strong
n × v = 0 strong
n · ω = 0 weak

n · r = ∂2vn

∂τ2
1

+ ∂2vn

∂τ2
2

+ c weak

Outflow n × ω = 0 strong
n · ω = 0 weak
n × r = 0 weak

that is not well posed [3]. The final boundary condition to be set is on r. In the
test problem, for example, a boundary condition setting the pressure equal to zero
was used. An equivalent boundary condition here would be to set the value of r in
the tangential direction(s) to zero, assuming that the tangential velocity is zero. If a
steady flow boundary condition is desired, then n · r is set to n · Δv, which is fully
known since the second derivative in the normal direction is zero under steady flow
conditions. The most difficult boundary condition to handle is when the velocity is
fully specified, but the velocity profile is not equal to the steady profile, i.e., n ·Δv is
not fully known. Clearly, we know the second derivatives of the normal velocity in the
tangential directions, but the second derivative in the normal direction of the normal
velocity is not known and it is generally nonzero. One possible mechanism for solving
for this unknown is to (1) assume the unknown is zero, (2) impose the boundary con-
dition weakly, (3) solve the minimization problem, (4) check the value of the unknown
quantity, and (5) repeat using the new value until convergence. This method has po-
tentially slow convergence, and we have developed an alternative approach. Recalling
that one of our primary goals is global mass conservation, we propose setting the
second derivative of n · v in the normal direction equal to an unknown constant and
solving for the constant using the constraint of global mass conservation.

Solving for the unknown constant in the n · r boundary condition can be accom-
plished easily if the Reynolds number is zero. In this case, two different guesses of the
value of the constant are made, and the problem is solved with each guess. Unless
one of the guesses is exact, the inflow rate will not exactly equal the outflow rate.
However, based on the different mass conservation results, linear interpolation can
be used to determine the correct value of the unknown constant, and a linear com-
bination of the two solutions gives the final solution. For the case of the nonlinear
Navier–Stokes equations, the same basic procedure of guessing different values of the
constant may be used. In this case, however, more than two solutions may be required
to get acceptably close to global conservation. This process often does not add any
additional computational cost, in the case of a nonzero Reynolds number, because
multiple iterations are already required by the nonlinear operator.

To solve the least-squares problem, the equations that are used in the functional
(Gnew) are first linearized so that the solution can be found using a Gauss–Newton
approach. The value of the nonlinear functional is calculated after each Gauss–Newton
step to ensure that the nonlinear functional is decreasing to a minimum. A line search
in the direction of the Gauss–Newton step could be used to ensure that the nonlinear
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functional decreases at each step. However, for all the problems that we tested, no
line search was necessary. The functional for the linearized equations is minimized
using standard techniques from the calculus of variations to obtain the weak form
(e.g., [5, 3]). A finite element basis is then chosen so that the weak form generates
a matrix problem. An alternative approach is to linearize the weak form instead
of linearizing the original equations [14, 15], but we found better convergence by
first linearizing the equations. All of the simulations presented in the results section
utilized a trilinear finite element basis for all of the variables unless otherwise noted.
The FOSLS formulation allows the solution spaces for the variables to be chosen
independently, and there is no restrictive stability condition (i.e., inf-sup condition)
to satisfy. As a result, both the pressure and velocity in the Navier–Stokes equations
can be approximated with the same basis.

All simulations, including those in the introduction section, were performed using
the ParaFOS code, written by the authors. The code imports hexahedral meshes
from the Cubit mesh generation package (Sandia National Laboratory). The finite
element meshes are then partitioned using the Metis graph partitioning library [23].
The software is designed to run on distributed memory clusters using the MPI library
for communication. The linear matrix problem generated during each Gauss–Newton
step is solved using the hypre library of solvers ([17], Center for Applied Scientific
Computing, Lawrence Livermore National Laboratory). Specifically, the Boomer-
AMG parallel algebraic multigrid (AMG) solver is used as a preconditioner for a
conjugate gradient solver. Most of the solver parameters used were the default set-
tings except for the coarse grid selection algorithm, which was set to the parallel
modified independent set algorithm. This algorithm was chosen because it chooses
coarse grids with fewer nodes, thus reducing storage requirements.

3. Results. The brick test problem with all components of the inlet velocity
specified (vx = y(1 − y)z(1 − z), vy = 0, vz = 0) is complicated because the value of

n · Δv is not completely known over the inlet. Specifically, the value of ∂2vx

∂x2 , which
we refer to as C1, is unknown. While this value may be a function of (y, z) along the
inlet, we assume it is a constant and solve for it using the constraint of global mass
conservation. Since the Reynolds number is also set to zero, this constant is equal to
the deviation of the normal pressure gradient from the steady flow value. In other
words, if the inlet velocity profile was the steady velocity profile, the pressure gradient
would be a constant (i.e., a linear pressure drop), and the value of C1 would be zero.
The appropriateness of our assumption that C1 is a constant and not a function of
(x, y) is going to depend upon how close the specified inlet velocity profile is to the
steady velocity profile. If the specified profile is close in some regions and deviates
greatly in other regions, the assumption will not be appropriate. If the specified profile
is close to the steady profile, the assumption is not a considerable source of error. A
more detailed analysis of the error resulting from this assumption is the subject of
a future paper. For now, we just show numerically that setting C1 to a constant is
acceptable for the chosen test problems.

We begin by setting C1 = 0 and minimizing the functional, Gnew, over the brick-
shaped domain. Clearly, C1 �= 0 and the result is that the inflow rate is 2.7×10−2 and
the outflow rate is 1.9× 10−2. It is well known from computational and experimental
fluid dynamics that the pressure drop in the normal direction at the inlet must be
larger than the steady-state pressure drop due to entrance effects. In other words,
C1 > 0 due to the extra pressure drop to rearrange the flow profile into the steady-
state profile. For the second run, we set C1 = 1 and minimize the functional again.
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Fig. 3.1. Central cross-section of flow through the brick domain using the new formulation of
the Navier–Stokes equations. The normal velocity is set to vx = y(1 − y)z(1 − z) at the inlet and
the pressure to 0 at the outlet. Velocity vectors are shown in (a) and the pressure gradient is shown
in (b).

The inflow rate remains unchanged at 2.7 × 10−2 (this essential boundary condition
was strongly enforced), but now the outflow rate is 4.8 × 10−2. Instead of losing
mass, we are now “creating” mass. The true value for C1 can be determined by
linear interpolation to be 0.28 to give discrete mass conservation. To get the final
solution shown in Figure 3.1, we can either use the appropriate linear combination of
previous solutions or simply resolve the problem using C1 = 0.28. Both the global
and local conservation of mass using the final value of C1 are excellent as mass is
conserved exactly to the 5 digits calculated for any cross-section. Further, the average
AMG convergence factor is also excellent at 0.3, indicating that only 15 V-cycles are
required to reduce the residual by a factor of 1×10−8. A comparison of the 3 different
functionals, Gv.f., Gω, and Gnew, is given in Table 3.1. The new formulation provides
excellent global mass conservation and significantly better computational performance
while maintaining computational scalability. It is not appropriate to compare the
minimums of the different functionals, and they are only given for reference. Under
steady flow conditions, the pressure drop in the normal direction is 1.0 and, now, for
this inlet flow profile, the pressure drop at the center of the entrance is approximately
1.28. Figure 3.1(b) shows the pressure gradient throughout the domain. Note that it
is constant at the outlet, but there are some entrance effects near the inlet.

Similar results can be achieved for problems with nonzero Reynolds number.
Repeating the previous problem with Re = 40 results in C1 = 0.46 being required
for global mass conservation. In this case, the average AMG convergence factor
deteriorates slightly to between 0.36 and 0.5, depending on the Gauss–Newton step,
but it remains much improved over the factors of the other two formulations, which
are between 0.9 and 0.95. As the Reynolds number becomes larger and larger, the
entrance effects extend further downstream. For laminar flow into a round pipe, the
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Table 3.1

Comparison of the different functionals for solving Stokes flow through the brick-shaped domain
with the velocity fully specified along the inlet.

Method Mesh Mass loss Functional Avg. C.F. CPU time

Velocity-flux 32 × 8 × 8 99.8% 6 × 10−3 0.74 60 sec.
Vorticity 32 × 8 × 8 99.9% 2.7 × 10−3 0.88 16 sec.

New 16 × 4 × 4 < 0.01% 2.3 × 10−1 0.25 1.6 sec.
New 32 × 8 × 8 < 0.01% 9.6 × 10−2 0.3 15 sec.
New 64 × 16 × 16 < 0.01% 3.0 × 10−2 0.36 150 sec.

Fig. 3.2. Central cross-section of flow through the brick domain (5 × 1 × 1) with a cylindrical
obstruction with a diameter of 0.4. The normal velocity is set to vx = y(1 − y)z(1 − z) at the inlet,
and the nodal velocity vectors are shown.

accepted correlation [27] is L ≈ 0.06 · Re · d, where d is the diameter and L is the
length of the entrance effects. The current assumption of steady flow at the outlet
is probably appropriate since the inlet profile is close to the steady profile, but the
assumption will break down at higher Reynolds numbers.

An obstruction can be included in this first test problem by removing a cylindrical
portion of the domain. The results for Re = 100 and an obstruction with a diameter
of 0.4 are shown in Figure 3.2. The boundary conditions along the walls of the
obstruction are the same as those along the outer walls of the domain (i.e., v = 0,
n · ω = 0, and n · r = 0), and, in this case, a triquadratic finite element basis is
used to more accurately capture the cylindrical geometry. Interestingly, to achieve
global mass conservation C1 is set to 0.20, a smaller value than the unobstructed
case, but this is likely due to the more accurate triquadratic basis. The finite element
mesh for this problem contains 1290 hexahedral elements and is unstructured, which
contributes to some of the deterioration in the average AMG convergence factor to
0.74. For this problem, the domain was extended to a dimensionless length of 5 to
ensure that the outlet profile is the steady profile.

The geometry and boundary conditions for the second test problem are somewhat
similar to the first. In this case, however, the domain is longer, having an aspect ratio
of 8:1:1, and there is a 0.5:0.5:1 notch removed from the lower half of the inlet. In
other words, this is the classic flow over a backward-facing step in three dimensions.
The inlet velocity is once again set to a tensor product of one-dimensional parabolas,
vx = y(0.5 − y)(0.5 + z)(0.5 − z), vy = 0, vz = 0, and the tangential velocity is set to
zero along the outlet. Along the inlet, n · r = −2(0.5 + z)(0.5− z)− 2y(0.5− y)−C2,
where C2 is a constant that is set so that global conservation of mass is achieved, and
τ · r is set to zero along the outlet. Finally, the no-slip boundary conditions along
the wall are set the same as before, with the notable exception of the condition on
n · r = n · Δv, which is not set to zero near the reentrant corner of the step. This is
because the physical assumption that allowed us to set this to zero along a smooth wall
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Fig. 3.3. Central cross-section of flow through the backward-facing step domain using the new
formulation of the Navier–Stokes equations at Re = 50. The finite element mesh are shown in (a)
and streamlines are shown in (b).

no longer holds. In this problem, there is a boundary layer separation at the corner,
and there is an infinite number of normal vectors at the corner. Numerical experiments
were performed on different methods for removing this boundary condition from the
corner. First, the n ·r condition, which is typically enforced weakly, can be completely
removed from the functional along the two walls that contact at the corner. Second,
the n · r term can be multiplied by a weight function that is zero at the corner and
one at some radius away from the corner [19]. A typical weight function has the
form w(r) = (r/R)n, where r is the distance from the corner, R is the radius of
the weight function (typically O(0.1)), and n is the polynomial order of the weight
function (typically 3 or 4). Acceptable (and indistinguishable) results were obtained
with either method as long as the radius of the weight function was sufficiently large.

The finite element mesh used for the backward-facing step geometry is shown in
Figure 3.3(a). The mesh is unstructured and consists of 6510 elements. A triquadratic
finite element basis was used to improve the accuracy of the method. An analysis of
the accuracy of LSFEM for the two-dimensional backward-facing step problem can
be found in Röhrle [25] and for the three-dimensional problem in Jiang et al. [22]. A
Reynolds number of 50 was used to obtain the streamlines in a central cross-section
of the approximate solution shown in Figure 3.3(b). At this low Reynolds number,
only a small recirculation is found downstream of the step; this is consistent with the
two-dimensional experimental results of Armaly et al. [1]. The global conservation
of mass was exact, since it was enforced by setting C2, and the behavior of the
pressure field was also consistent with experimental predictions in that the pressure
gradient in the flow direction was greater for the small channel, upstream from the
step, than for the larger channel downstream from the step. The AMG convergence
factor was 0.49 for a trilinear basis and 0.72 for a triquadratic basis. Both factors are
acceptable considering the higher-order finite element basis, the partitioning of the
problem among 16 processors, and absence of a boundary condition on r along the
step.
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Fig. 3.4. Central cross-section of flow through the backward-facing step domain using the
functional Gnew,b at Re = 200. Only the upstream half of the total domain is shown for clarity.

For greater values of Re, it is potentially helpful to rescale the momentum equa-
tion by dividing by Re, giving a new functional

Gnew,b(ω,v, r) := ‖ω + ∇× v‖2
0,Ω + ‖∇ · v‖2

0,Ω(3.1)

+ ‖r +
1

Re
∇× ω‖2

0,Ω + ‖∇ · ω‖2
0,Ω

+ ‖∇ × r − (v · ∇ω − ω · ∇v)‖2
0,Ω + ‖∇ · r‖2

0,Ω ,

in which the diffusive term becomes small instead of the convective term becoming
large and dominating the other terms in the functional. Figure 3.4 shows stream-
lines in the upstream half of the domain for flow over the backward-facing step at a
Reynolds number of 200. Interestingly, when triquartic elements were used, excellent
conservation (> 99% of mass was conserved) is achieved even though the boundary
conditions on n · r were not set along the inflow. Consequently, in this case, we did
not have to solve for the value of an unknown constant. Unfortunately, the lack of
a boundary condition on r means that the operator is no longer elliptic, and the
convergence rate of the linear solver is slower. The excellent conservation without a
boundary condition on r along the inlet and outlet is not observed if a trilinear basis
is used or if the Reynolds number is small (i.e., less than approximately 100 in this
case). Regardless, this is an encouraging result because the requirement of an inflow
boundary condition on n · r is one of the few drawbacks of the new formulation.

The final test problem is flow with Re = 40 through a series of bifurcations, as
shown in Figure 3.5. The inlet is the single tube at the top, and the flow into the
initial tube is the steady flow profile, which has a known analytic form. Boundary
conditions along the inlet are very straightforward as a result of the steady profile.
Velocity is set to vx = 0, vy = 0, and vz = −1 + (x2 + y2), normal vorticity is set

to zero, and n · r = ∂2vz

∂x2 + ∂2vz

∂y2 = 4. Because we wish to accurately capture the
inflow boundary condition on velocity, a triquartic finite element basis is used for this
problem. The no-slip conditions, specified previously, are set along the walls. The
main inlet tube branches into two tubes, and each of these tubes branch, giving a total
of four outlet surfaces. The outflow boundary condition is, as always in computational
fluid dynamics, difficult to determine. We begin by setting the tangential velocity to
zero, which implies that the normal vorticity is also zero. Another potential boundary
condition is setting the pressure to a constant by setting τ · r = 0. However, better
accuracy is usually found by setting a boundary condition on n · r. If the flow is
steady (i.e., fully developed), then n ·r = constant, and the value of the constant can
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Fig. 3.5. The hexahedral mesh used for the bifurcating flow domain. The inlet is the single
tube at the top, and the four tubes at the bottom contain the outflow surfaces.

be determined based on the geometry and setting the inflow rate equal to the outflow
rate. However, because the tubes are not exact cylinders due to the bifurcations, it is
unlikely that the outflow is fully developed. A third possibility is to assume that the

flow has not developed fully (i.e., ∂2vn

∂n2 �= 0), but well enough that it is a paraboloid
at the outlet, albeit an unsteady one due to small changes in tube geometry. In this
case, n · r is equal to an unknown constant, C3. We solve for this unknown constant
using the constraint that mass be conserved globally.

Figure 3.6 shows streamlines for the central cross-section of the bifurcating tubes
domain. Also shown in the inset images are velocity vectors for specific branches.
Because the triquartic finite element basis was based on Chebyshev–Lobatto node
positions, which have been previously shown to work well with AMG solvers [20],
the nodes are not evenly distributed but are somewhat clustered near the corners of
elements. The global conservation of mass is approximately exact because C3 was
set to enforce this condition, but it is useful to examine the pressure gradient to
determine the accuracy of the solution. For laminar flow in a straight, cylindrical
tube, the relationship between the pressure gradient, flow rate (Q), and tube radius
(R) is given by [27]

∂p

∂n
∝ Q

R4
.(3.2)

If the flow rate into the domain is Q, the flow rate through each of the outlets is
approximately Q/4 due to symmetry. Further, for this geometry, the radius of the
inlet is R, and the radius of each outlet tube is R/2. Combining these relationships
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Fig. 3.6. The central cross-section of the bifurcating tube domain showing streamlines through
the bifurcations. The inset images show velocity vectors for the nearby tubes. The inlet is the single
tube at the top, and the four tubes at the bottom contain the outflow surfaces.

and using (3.2) results in the prediction that the normal pressure gradient at the outlet
is roughly 4 times the normal pressure gradient at the inlet. Since the normal pressure
gradient at the inlet is equal to 4, we expect that the normal pressure gradient at the
outlet is roughly 16, but probably slightly higher due to the multiple bifurcations and
entrance effects. For the result shown in Figure 3.6, the normal pressure gradient
at the outlet was 17.4, indicating good agreement with our straight tube heuristic.
Further, the approximation just presented can be used to obtain a good initial guess
for the value of C3.

Conclusions. Poor mass conservation can be observed when reformulating the
Navier–Stokes equations as a first-order system using either the velocity-flux or vortic-
ity formulations. The problem occurs primarily when the pressure (or normal stress)
is not specified on both ends of the domain. To help address this problem, we are
proposing a new first-order system of equations that allows boundary conditions to be
set on the pressure gradient. In many cases, it is easier to specify boundary conditions
on the pressure gradient because much of the information can be obtained from the
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boundary conditions on velocity. Further, when using the new formulation in con-
junction with AMG, significant computational improvements can also be observed.
In this way, the new formulation achieves the objective of improved mass conserva-
tion on coarse grids while maintaining AMG convergence rates. The new formulation
achieves only local mass conservation asymptotically as the mesh size goes to zero,
like other least-squares formulations, but overall conservation is much improved for
coarser meshes due to the boundary condition on n ·r. For each of the three test prob-
lems presented here—the square channel, the backward-facing step, and the series of
bifurcations—excellent mass conservation was possible for both Stokes flow and low to
moderate Reynolds numbers. Traditionally, high Reynolds number flows have been
a strength of least-squares methods because of their excellent stability properties.
However, high Reynolds numbers also imply that flow through the outflow boundary
is unlikely to be steady, a difficult condition to handle with the new formulation.
However, we are confident that as experience is gained with the new formulation, the
proper boundary conditions can be found for a much wider set of problems.
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