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Abstract

The focus of this paper is on incompressible flows in three dimensions modeled by
least-squares finite element methods (LSFEM) and using a novel reformulation of
the Navier-Stokes equations. LSFEM are attractive because the resulting discrete
equations yield symmetric, positive definite systems of algebraic equations and the
functional provides both a local and global error measure. On the other hand, it
has been documented for existing reformulations that certain types of boundary
conditions and high-aspect ratio domains can yield very poor mass conservation. It
has also been documented that improved mass conservation with LSFEM can be
achieved by strengthening the coupling between the pressure and velocity. The new
reformulation presented here is demonstrated to provide both improved multigrid
convergence rates because it is differentially diagonally dominant and improved
mass conservation over existing methods because it increases the pressure-velocity
coupling along the inflow and outflow boundaries.
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1 Introduction

Least-squares finite element methods (LSFEM) are attractive because they are based on
a minimization principle and yield discrete linear systems that are symmetric and positive
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definite. These benefits hold even for problems like the Navier-Stokes equations, which yield
a saddle-point problem and indefinite linear systems for mixed finite element methods [3,4,8].
The Navier-Stokes equations are second-order equations, so a least-squares method based on
the original, primitive variables would yield an undesirable linear system with a condition
number that is proportional to h−4 [14]. To avoid this difficulty, the second-order equations
are typically reformulated as a system of first-order equations through the introduction of new
variables. Additional, equivalent equations can be added to the first-order system of equations
because the problem is cast as a least-squares minimization problem. For example, if the
original system of equations contains the equation ∇·v = 0, the equation ∇(∇·v) = 0 could
be included in the system of equations without contradiction, assuming that v is sufficiently
smooth. There is typically some flexibility in how the second-order equations are rewritten as
first-order equations and flexibility in which additional equations are added to the first-order
system [5,11,21]. This flexibility is often exploited to achieve a second advantage of LSFEM:
some reformulations of the original equation(s) allow the system variables to be essentially
decoupled so that the homogenous form is elliptic and continuous, providing significant
computational advantages [9]. A third advantage is that the functional provides a sharp a

priori error estimator [10].

Every approximate solution contains error, and the goal of numerical approximation is to
minimize that error, possibly under additional constraints. The Navier-Stokes equations rep-
resent conservation of momentum and conservation of mass for a region containing an in-
compressible, Newtonian fluid. For mixed finite element methods, conservation of mass is
enforced by the divergence-free constraint on the velocity field, which essentially uses pres-
sure as a Lagrange multiplier. As a result, most of the error in the numerical approximation
is in the conservation of momentum. In contrast, least-squares finite element methods dis-
tribute the error between the different terms in the functional, so the approximate solution
can emphasize conservation of mass or conservation of momentum by simply changing the
functional. When looking at an approximate solution, error in the conservation of mass is
typically more obvious than error in the conservation of momentum. As a result, one of
the often cited drawbacks of least-squares methods for the Navier-Stokes equations is that
some approximate solutions do not conserve mass at an acceptable level between the inflow
surface, Γi, and the outflow surface, Γo. Of course, by changing the functional, conservation
of mass can be improved at the expense of the other terms in the functional [25]. An addi-
tional expense of improving mass conservation is that the performance of standard multigrid
solvers (a popular choice for these elliptic operators [9,20]) may degrade.

Several methods exist for improving the accuracy of least-squares methods, and some of
these are summarized below.

• Refining the mesh (i.e., reducing h) reduces the total approximation error and, conse-
quently, the mass conservation error in an optimal manner [1,4,6].

• Because the solution to the Navier-Stokes equations is smooth away from the boundaries,
the use of higher-order finite elements (i.e., increasing p) can dramatically improve accu-
racy [24].

• The use of reduced integration can result in a collocation method and a zero residual for
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mass conservation [11,21], although this also results in the loss of positive definiteness of
the operator, which has a strong negative impact on a standard multigrid solver [14].

These methods change the space from which an approximate solution is sought, instead of
changing the functional. The goal in this paper is to examine how changing the first-order
system of equations (i.e., changing the functional) affects both the error in mass conservation
and the performance of the solver. Almost all the previous efforts to change the functional
to improve mass conservation have focused on adding a weight to the ∇ · v term (i.e., mass
conservation term) within the functional. This method improves mass conservation, but it can
also have a negative impact on the performance of linear system solvers, including standard
multigrid, as we show in the next section. One notable alternative to weighting the divergence
of velocity term was recently proposed by Pontanza [23]. He used a regularized divergence
free constraint (i.e., ∇·v = −ǫδp) to improve the coupling between the pressure and velocity
and demonstrated improved mass conservation. Also, we recently developed a new first-order
formulation of the Navier-Stokes equations that is related to the one developed in this paper
and also demonstrates improved mass conservation [18]. Because of the boundary conditions
used, however, the method was limited to problems where the velocity on the inflow and
outflow boundaries was near the steady flow profile, a limitation that is not present for the
method developed in this paper. Also, the operator associated with the first-order formulation
was not differentially diagonally dominant, a weakness that is overcome with the formulation
used here.

Our interest here is in 3-dimensional problems involving laminar, incompressible fluid flow
through a rigid conduit, such as air flow through the upper branches of the human airway.
For all problems, we assume the inlet velocity is fully specified, the velocity along walls is set
to zero, and, along the outlet, the tangential velocity and the normal gradient of the normal
velocity are set to zero. These are the only boundary conditions that are known, and any
other boundary conditions specified on, for example, vorticity, are derived from these known
conditions. The goal is to reformulate the Navier-Stokes equations as a first-order system of
equations in a novel manner to improve global mass conservation. Global mass conservation
is measured in terms of the fractional change of mass flow, defined as

∫

Γi
(n · v)dΓi −

∫

Γo
(n · v)dΓo

∫

Γi
(n · v)dΓi

, (1)

where v is the velocity of the incompressible fluid, Γi is the inlet surface, and Γo is the
outlet surface. Global mass conservation is (or at least should!) be satisfied automatically for
problems with the velocity specified on all boundaries. While this class of problems is not the
focus here, it should be stated that mass conservation can still be a difficulty for LSFEM,
but the methods presented can reduce (but not entirely prevent) the loss of mass. LSFEM
are currently in use in part because the resulting linear systems can be effectively solved
using standard multigrid solvers. Therefore, an additional goal is to improve (or at least
maintain!) multigrid performance relative to existing reformulations. In the next section,
existing reformulations are examined briefly and their performance on a representative test
problem is measured, thus providing a baseline for comparison with the new least-squares
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formulation.

2 Background

The Navier-Stokes equations for an incompressible, Newtonian fluid are

−
√

Re (v · ∇v) −∇ p + 1√
Re

∆v = 0 in Ω, (2)

∇ · v = 0 in Ω, (3)

where p is the non-dimensional pressure, Re is the Reynolds number, and v = (vx, vy, vz)
is the dimensionless velocity. This is an unusual scaling of the conservation of momentum
equation in that the Reynolds number appears on both the convective and viscous terms.
The most common way to reformulate (2) and (3) as a first-order system is to define the
vorticity, ω, which is equal to the curl of the velocity and leads to the first-order system

∇× v − ω = 0 in Ω,
√

Re(v · ∇)v + ∇p + 1√
Re
∇× ω = 0 in Ω,

∇ · v = 0 in Ω.

(4)

This first-order system can be augmented by the following consistent equation:

∇ · ω = 0 in Ω. (5)

Equations (4)-(5) may be combined in a least-squares sense into a single functional given by

Gω(ω,v, p) := ‖∇ × v − ω‖2
0,Ω + ‖

√
Re (v · ∇)v + ∇ p + 1√

Re
∇× ω‖2

0,Ω+

‖∇ · v‖2
0,Ω + ‖∇ · ω‖2

0,Ω.

(6)

The geometry, boundary conditions, and parameters for the first test problem are given in
table 1. The problem shares many of the characteristics of the real world problems that
we are interested in solving. These characteristics include a moderately high aspect ratio, a
fully specified inlet velocity, and an outlet velocity that is only partly specified. The Reynolds
number is also sufficiently low to ensure laminar flow, but not so low that it is in the Stokes
regime. Before the functional (6) can be minimized, the domain is subdivided into a finite
element mesh and a basis for the approximation is chosen. The brick-shaped domain is
divided into 32×8×8 hexahedral elements, and a triquadratic basis is used for all variables.
The algorithmic details for minimizing the functional are given the next section.
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Geometry brick: 0 ≤ x ≤ 5, 0 ≤ y ≤ 1, 0 ≤ z ≤ 0

Mesh 32 × 8 × 8 hexahedral elements

Basis triquadratics (all variables)

Inlet n · v = −y(1 − y)z(1 − z)

Boundary n × v = 0

Conditions n · ω = 0

Outlet n · ∇(v · n) = 0

Boundary n × v = 0

Conditions n · ω = 0

Wall n · v = 0

Boundary n × v = 0

Conditions n · ω = 0

Re 100

Table 1
Geometry, parameters, discretization, and boundary conditions used for the first test problem.

Fig. 1. Central cross-section of flow through the first test problem using the standard vorticity
formulation of the Navier-Stokes equations.

Figure 1 shows the central cross-section of the first test problem when the vorticity functional,
Gω, is minimized. Of the mass that enters the domain, 99.3% is lost before it leaves the
domain, which is clearly unacceptable. The standard method for improving mass conservation
is to multiply the ∇·v term in the functional by a constant, α, greater than 1.0. For example,
replacing equation (4) by 10 · ∇ · v = 0 results in the mass loss being reduced to 71%, and
using 100 · ∇ · v = 0 results in the mass loss being only 0.2%

To understand the effects of different first-order formulations on the rate of convergence of
a standard multigrid solver, it is useful to examine the weak form being used. Defining the
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following operators:

Lω =





















∇× 0 −I

α∇· 0 0
√

Re(v · ∇) ∇ 1√
Re
∇×

0 0 ∇·





















and u =















v

p

ω















allows the system of equations (4)-(5) to be rewritten as

Lω u = f.

The weak form, obtained using standard variational calculus techniques [1,4], is

< Lωu,Lωv >=< f,Lωv > ∀v ∈ V . (7)

Multiplying the left side by L∗
ω, the formal adjoint of Lω (formal in the sense that full

Dirichlet boundary conditions are assumed), allows the two operators on the left to be
combined together into the formal normal, L∗

ωLω, written with
√

Re replaced with 0 and
1√
Re

replaced with 1 for simplicity as















∇× −α∇ 0 0

0 0 −∇· 0

−I 0 ∇× −∇



































∇× 0 −I

α∇· 0 0

0 ∇ ∇×
0 0 ∇·





















=















(∇×∇×−α2∇∇·) 0 −∇×
0 −∇ · ∇ 0

−∇× 0 (I + ∇×∇×−∇∇·)















(8)

The goal is to obtain a formal normal that has differential diagonal dominance, by which
we mean that L∗

ωLω is diagonally dominant and the entries of the off-diagonal are of lower
differential order than those on the diagonal. This differential diagonal dominance holds for
the vorticity formulation, and, as a result, the performance of the algebraic multigrid (AMG)
preconditioned conjugate gradient (CG) solver, which is summarized in table 2, is acceptable
considering that a triquadratic nodal basis was used [7,19]. Solver performance is measure
using the average convergence factor, ρ, defined as

ρ ≈ m

√

√

√

√

‖res(m)‖2

‖res(0)‖2

, (9)

where res(m) is the residual (or defect) after the mth iteration. In other words, if ρ = 0.1,
then the residual is reduced on average by a factor of 10 each preconditioned CG iteration.

6



formulation α mass loss ρ

vorticity 1.0 99.3% 0.86

10.0 71% 0.91

100.0 0.2% 0.91

velocity-flux 1.0 76% 0.80

10.0 3.9% 0.82

100.0 0.04% 0.88

Table 2
Performance of existing first-order formulations of the Navier-Stokes equation on the first test
problem. Here, α is the weighting on the ∇·v term in the functional and ρ is the average convergence
factor for the AMG preconditioned CG solver.

A second reformulation of the Navier-Stokes equations that has been previously published
is the velocity-flux formulation, obtained by defining a new variable, V, that is equal to the
gradient of the velocity:

V −∇v = 0 in Ω,

−
√

Re(v · V) −∇p + 1√
Re
∇ · V = 0 in Ω,

∇ · v = 0 in Ω.

(10)

The first-order system of equations is typically augmented by the following consistent equa-
tions:

∇(tr(V)) = 0 in Ω,

∇× V = 0 in Ω,
(11)

where tr(V) = V11 + V22 + V33. This formulation has a formal normal that is diagonally
dominant, though not differentially so. This “algebraic” diagonal dominance does, however,
yield a number of theoretical and practical advantages, including optimal error estimates in
the H1 norm for each variable and optimal multigrid convergence estimates due to the fact
that it is coercive in H1 [2,6,9]. The corresponding functional for the velocity-flux formulation
is

Gv.f.(V,v, p) := ‖V −∇v‖2
0,Ω + ‖ −

√
Re (v · V) −∇ p + 1√

Re
∇ · V‖2

0,Ω+

‖∇ · v‖2
0,Ω + ‖∇(tr(V))‖2

0,Ω + ‖∇ × V‖2
0,Ω.

(12)

The use of the velocity-flux formulation on the first test problem is summarized in table 2.
The only change to the boundary conditions that is required is that the n · ω conditioners
are dropped in favor of tangential boundary conditions on V. Multigrid convergence factors
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for the velocity-flux formulation show improvement over those for the vorticity formulation.
Further, mass loss is also slightly improved, but still not acceptable without some weighting of
the ∇·v term. The one disadvantage of the velocity-flux formulation relative to the vorticity
formulation is that it requires 13 unknowns per node, compared to 7 unknowns per node for
the vorticity formulation. Therefore, the results shown in table 2 required 20 processors for
the velocity-flux formulation relative to 10 processors for the vorticity formulation. Of course,
it could be argued that the velocity-flux formulation would still produce a more accurate
answer on a coarser grid (and require fewer processors). In summary, neither of the existing
LSFEM for the Navier-Stokes equations provide an acceptable level of mass conservation
for the test problem used here unless a significant weight (α) is used on the ∇ · v term. Of
course, both methods would provide acceptable mass conservation with a smaller weighting
if a finer mesh (or a higher-order basis) had been used. Our goal in the next section is to
develop a new functional that provides a reduction in mass loss on these coarser grids without
a degradation in solver performance for this class of flow problems.

3 New Formulation

It has recently been demonstrated that improving the coupling between the pressure and
velocity, especially through the use of boundary conditions, improves mass conservation
with LSFEM [18,23]. To achieve stronger coupling between pressure and velocity, the new
formulation uses the following identity:

(v · ∇)v =
1

2
∇|v|2 − v × (∇× v), (13)

and we define a new variable, r, by

r = ∇p +

√
Re

2
∇|v|2 = ∇

(
√

Re

2
|v|2 + p

)

, (14)

which is the gradient of the the total head (commonly referred to as the gradient of “pres-
sure” [1]) and includes both pressure and velocity. Our new first-order system reformulation
of the Navier-Stokes equations is as follows:

∇× v + ω = 0 in Ω,

∇ · v = 0 in Ω,

1√
Re
∇× ω − r +

√
Re(v × ω) = 0 in Ω,

∇ · ω = 0 in Ω,

∇× r = 0 in Ω,

∇ · r +
√

Re(ω · ω) + Re(v · r) = 0 in Ω .

(15)
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The first two equations in system (15) are the same as those previously used in the vorticity
formulation except that the vorticity is now defined as the negative curl of velocity. The third
equation is the momentum balance, rewritten in terms of r and the curl of vorticity. The
fourth equation is derived by taking the divergence of the first equation. The fifth equation
comes from taking the curl of equation (14), and the final equation is the result of taking
the divergence of the momentum balance, and simplifying as follows:

∇ · r =
√

Re(∇ · (v × ω))

=
√

Re(ω · ∇ × v − v · ∇ × ω)

=
√

Re(−ω · ω − v · (
√

Re r − Re(v × ω)))

= −
√

Re(ω · ω) − Re(v · r) − Re
√

Re(v · (v × ω))

= −
√

Re(ω · ω) − Re(v · r) .

(16)

The corresponding functional for the new formulation is

Gnew(ω,v, r) := ‖ω + ∇× v‖2
0,Ω + ‖∇ · v‖2

0,Ω+

‖ − r + 1√
Re
∇× ω +

√
Re(v × ω)‖2

0,Ω + ‖∇ · ω‖2
0,Ω+

‖∇ × r‖2
0,Ω + ‖∇ · r +

√
Re(ω · ω) + Re(v · r)‖2

0,Ω .

(17)

To further analyze this system of equations, it is useful to rewrite it using slack variables, α,
β, and δ, and moving subprincipal terms to the right-hand side:

∇× v −∇α = −ω

∇ · v = 0

1√
Re
∇× ω −∇β = r −

√
Re(v × ω)

∇ · ω = 0

∇× r −∇δ = 0

∇ · r = −
√

Re(ω · ω) − Re(v · r) .

(18)

Here, the slack variables are included to help analyze the new formulation, but the boundary
conditions are set so that they equal zero everywhere and, hence, are not necessary in the
computation. The system of equations given by (18) contains a block diagonal operator
with 3 blocks. Each block consists of a curl and divergence of a variable we are interested
in approximating. With the proper boundary conditions on each block (specifically, one
condition on the slack variable and one on the original variable in the normal direction or,
alternatively, conditions on the original variable in the two tangential directions), it is easy
to show that the functional associated with (18) and Re = 0 is continuous and coercive in
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the (H(div) ∩ H(curl)) × H1 norm for each block of variables. This result is obtained by
using a standard compactness argument.

The formal normal for the principle part (neglecting nonlinear terms) of the new formulation
is simply















∇× −∇
∇× −∇

∇× −∇

















































∇×
∇·

∇×
∇·

∇×
∇·



































=















−∆

−∆

−∆















, (19)

which has Laplacian operators, ∆ ≡ ∇·∇, along the diagonal. The new formulation thus has
a differentially diagonally dominant formal normal, even with the nonlinear terms included,
as desired. We can see here where the previous efforts to remove derivatives from the ∇ · r
term, described in (16), allow for this property. The structure of the operator for this new
formulation also creates the possibility of breaking the problem up into smaller subproblems.
If the Reynolds number is zero and normal boundary conditions on r are available, the lower
right part of the operator can be solved independent of v and ω. Then, once r is known,
the central block can be solved for ω, and finally the upper left block can be solved for v.
There are two potential difficulties with the approach. First, the boundary conditions that
we are proposing to use on r in the next section depend on the value of v or ω. Second,
in the case of a nonzero Reynolds number, the block strategy must be repeated multiple
times until convergence. However, this method, which we explore later, has the advantage
of a significant memory savings.

To solve the least-squares problem, the equations that are used in the functional (Gnew)
are first linearized so that the solution can be found using a Gauss-Newton approach. The
value of the nonlinear functional is calculated after each Gauss-Newton step to ensure that
the nonlinear functional is decreasing to a minimum. The least-squares weak form, equa-
tion (7), is converted into a linear system of equations by choosing a finite element basis. An
alternative approach is to linearize the weak form instead of linearizing the original equa-
tions [12,13], but we found better convergence by first linearizing the equations. All of the
simulations presented here utilized a triquadratic finite element basis for all of the variables.
The LSFEM allows the solution spaces for the variables to be chosen independently, and
there is no restrictive stability condition (i.e., inf-sup condition) to satisfy. As a result, all
variables in the reformulation of the Navier-Stokes equations can be approximated with the
same basis.

All simulations, including those in the previous sections, were performed using the ParaFOS
code, written by the authors. The code imports hexahedral meshes from the Cubit mesh
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generation package (Sandia National Laboratory). The finite element meshes are then par-
titioned using the Metis graph partitioning library [22]. The software is designed to run
on distributed memory clusters using the MPI library for communication. The linear matrix
problem generated during each Gauss-Newton step is solved using the hypre library of solvers
(from the Center for Applied Scientific Computing, Lawrence Livermore National Labora-
tory, see [15]). Specifically, the BoomerAMG parallel algebraic multigrid solver is used as a
preconditioner for a conjugate gradient iteration. Most of the solver parameters used were
the default settings except for the strong threshold, which was set to zero, and the truncation
factor, which was set to 0.3.

3.1 Boundary Conditions

Three basic types of boundaries are present in the class of problems we are targeting with
this new formulation. First are inflow boundaries where the velocity is fully specified, with
the normal velocity generally being nonzero. Second are outflow boundaries where only the
tangential velocity and the normal derivative of the normal velocity are specified. Finally, a
no-slip condition is set along all the walls. The boundary conditions on velocity and vorticity
in the new formulation are identical to those set for the original vorticity formulation. For a
more complete discussion of possible boundary conditions on velocity and vorticity, see [1].
When enforcing boundary conditions with LSFEM, two mechanisms are available. First,
boundary conditions can be enforced strongly by requiring the finite element space to satisfy
the conditions. This is analogous to enforcing essential or Dirichlet boundary conditions with
the Galerkin finite element method. A second option is to include boundary conditions in
the functional so that the condition is satisfied weakly in a least-squares sense. For all the
results shown here, boundary conditions involving a derivative are set weakly, and all other
boundary conditions (i.e., Dirichlet conditions on velocity and vorticity) are set strongly.

The major change between the new formulation and the original vorticity formulation is the
introduction of a new variable, r, equal to the gradient of the total pressure. A number of
options are available with regard to boundary conditions on r. First, the simplest solution is
to not enforce any boundary conditions on r because the problem is well-posed with only the
velocity fully specified on all boundaries. Unfortunately, the convergence rate of a multigrid
solver can deteriorate significantly if boundary conditions are not present on this lower block
of the operator. A second option, available only for wall boundaries, is to set n · r = 0. This
is almost never physically accurate, but the error is small enough that this is a common
practice when solving the pressure Poisson equation [17]. The remaining two options involve

11



Inlet n · v = g

Boundary n × v = 0

Conditions n · ω = 0

n · r − n · 1√
Re

∇× ω = 0 or

n · r − n · 1√
Re

∇ · ∇v = 0

Outlet n · ∇(v · n) = 0

Boundary n × v = 0

Conditions n · ω = 0

n · r − n · 1√
Re

∇× ω = 0 or

n · r − n · 1√
Re

∇ · ∇v = 0

Wall n · v = 0

Boundary n × v = 0

Conditions n · ω = 0

n · r − n · 1√
Re

∇× ω = 0 or

n · r − n · 1√
Re

∇ · ∇v = 0

Table 3
Boundary conditions used for the new first-order formulation of the Navier-Stokes equations.

taking the inner product of the momentum equation with the normal vector as follows:

n · r = 1√
Re

(n · ∇ × ω) +
√

Re(n · (v × ω))

= 1√
Re

(n · ∇ × ω) +
√

Re(n × v) · ω)

= 1√
Re

(n · ∇ × ω)

= 1√
Re

(n · ∇ · ∇v) .

(20)

The final two relationships in (20) can be used as boundary conditions on r for surfaces where
the tangential velocity is zero, as summarized in table 3. A triquadratic or higher-order finite
element basis is required to use the boundary condition involving the second derivative of
velocity. If the tangential velocity is not zero, an additional term is required in the boundary
condition. It is important to note that neither boundary condition is sufficient to make the
operator H1-elliptic, but, as we show in the next section, it is enough provide good multigrid
performance and more accurate (but not perfect) mass conservation.
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inlet/outlet wall α mass loss ρ

n · ( 1√
Re

∇× ω) n · ( 1√
Re

∇× ω) 1.0 31% 0.75

10.0 2% 0.73

100.0 0.05% 0.84

n · ( 1√
Re

∇ · ∇v) n · ( 1√
Re

∇× ω) 1.0 26% 0.75

10.0 2% 0.74

100.0 0.03% 0.86

n · ( 1√
Re

∇ · ∇v) n · ( 1√
Re

∇ · ∇v) 1.0 26% 0.77

10.0 2% 0.77

100.0 0.03% 0.89

Table 4
Performance of the new formulation of the Navier-Stokes equation on the first test problem with
different boundary conditions on n · r. Here, α is the weighting on the ∇ · v term in the functional
and ρ is the convergence factor of the AMG preconditioned CG solver.

4 Results

The same test problem used in section 2 to examine the performance of the vorticity and
velocity-flux formulations can also be used to test the new formulation. As discussed in the
previous section, however, there are two possible boundary conditions that can be used on
the variable r. Table 4 summarizes the performance of the new formulation using the two
different boundary conditions. The first section of the table shows the results when using
n ·r = n ·( 1√

Re
∇×ω) on both the wall and inlet/outlet surfaces. The results show acceptable

mass conservation (98%) when the weighting on ∇ · v term, α, is equal to 10.0. Recall that,
with the original vorticity formulation, setting α equal to 10.0 still resulted in only 29% of
the mass being conserved. Also, the average convergence factor of the linear solver, AMG
preconditioned CG, is slightly better than either of the previous formulations. Considering
that a triquadratic basis is being used here, the convergence rate is surprisingly good [19].
When the inlet and outlet boundary conditions on r are changed to n · r = n · ( 1√

Re
∇ ·∇v),

there is only a small impact on the performance of the new formulation. Similarly, when
the n · ( 1√

Re
∇ · ∇v) form of the boundary condition is used on all boundaries, both the

convergence factors and mass conservation are only slightly changed. It should be noted
that normally, weak Dirichlet boundary conditions are scaled by 1/h so that the L2-norm
resembles an H1/2-norm. For this second-order derivative term on velocity, a scaling of h3

was used on the L2-norm so that it resembles an H1/2-norm on velocity, but a scaling of h1

also led to convergence.

The results of these test indicate that setting a boundary condition of n · r = n · ( 1√
Re
∇×ω)

or n · r = n · ( 1√
Re
∇·∇v) on the inlet/outlet and walls as well as weighting the ∇·v term by

10 leads to an efficient algorithm. Figure 2 shows the velocity for the central cross-section of
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Fig. 2. Central cross-section of flow through the first test problem using the new formulation of the
Navier-Stokes equations with α = 10 and n · r = n · ( 1√

Re
∇× ω) along all boundaries.

the test problem using α = 10.0 and n · r = n · ( 1√
Re
∇× ω). This method is used for all the

additional test problems, unless otherwise noted.

The second problem is similar to the first except that a cylindrical obstruction with a diame-
ter of 0.4 is placed in the path of the flow. A cross-section of the 3-dimensional, all-hexahedral
mesh is shown in figure 3a. The mesh is regular in the dimension normal to the figure, and it
consists of 1960 elements, about three quarters of that of the first test problem. The bound-
ary conditions are identical to those of the first test problem, with the obstruction being
treated as a wall or no-slip boundary and n · r = n · ( 1√

Re
∇ × ω) set as the r boundary

condition on all boundaries. The Reynolds number is also unchanged at 100. Using a tri-
quadratic finite element basis and α = 10, the global mass loss was 2%. Using the same
basis and value for α, the traditional vorticity formulation had a mass loss of 45% and the
velocity-flux formulation had a mass loss of 29%. The velocity vectors along the central-cross
section are shown in figure 3b for the solution using the new formulation. The unstructured
mesh and curved boundary did have an impact on the performance of the linear solver for
this problem. Solving on 8 distributed processors resulted in an average convergence factor
of 0.83 for the iterations of the AMG preconditioned CG solver. The average convergence
factor can be decreased slightly to 0.81 by solving the problem on only 6 distributed proces-
sors, but this required 1.2 GB of memory per processor, and we are normally limited to 1
GB per processor. The reason for the slight improvement in convergence factor is that the
BoomerAMG preconditioner uses a hybrid Gauss-Seidel/Jacobi smoother. Basically, Gauss-
Seidel is used on each independent processor and Jacobi is used for the boundary between
processors. Also, the special coarse-grid selection algorithms used along processor boundaries
can impact the convergence factors [16].

The final test problem starts as a cylindrical tube followed by a series of downstream bi-
furcations. An all hexahedral mesh of the domain, which consists of 420 elements, is shown
in figure 4a. Incompressible flow at a Reynolds number of 100 was modeled in this domain
using boundary conditions identical to those of the previous test problems except that the
normal velocity along the inlet was set to be a paraboloid with a maximum value of 1.0. This
is the steady flow profile in a cylindrical tube, so the profile remains unchanged until the flow
approaches the bifurcation. Figure 4b shows the velocity vectors using the new formulation
and a weighting of 10.0 on the ∇ · v term in the functional. Considering the coarse mesh
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(a)

(b)

Fig. 3. (a) A cross-section of the finite element mesh for the second test problem. The domain is
5× 1× 1 and the cylindrical obstruction has a diameter of 0.4. (b) Velocity vectors for the central
cross-section using a triquadratic basis and α = 10.

used and irregular geometry, it is somewhat surprising that the same weight as previous test
problems was required and not a larger weight. Quantitatively, the global mass loss in the
solution shown in figure 4b, between the inlet and outlet is 3%. This is much better that the
traditional vorticity functional (equation 6), which had a global mass loss of 81%, and the
velocity-flux function (equation 12), which had a global mass loss of 42%, even though both
had a weighting of 10 on the ∇ · v term. For the previous test problems, the convergence
factor of the AMG preconditioned CG solver varied little between the 3 or 4 Gauss-Newton
steps required to converge to a solution. For this problem, however, the convergence factor
varied between 0.7 and 0.9 for the 4 iterations. Further, the first iteration was the second
fastest at 0.73, and the final iteration was the fastest at 0.7. The second and third steps were
slower at 0.84 and 0.9, respectively. This is uncharacteristic since we normally observe only
small changes in the average convergence factor, and, even if we do observe changes, they
are typically a decrease in the converge factor and an acceleration of the solution process.
We do not have an explanation for this unusual behavior.

4.1 Block Solver

The differentially diagonally dominate structure of the operator shown in equation (18)
suggests the possibility of dividing the problem into three parts that can be solved separately.
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(a) (b)

Fig. 4. (a) The finite element mesh for the third test problem composed of 420 hexahedral ele-
ments.(b) Velocity vectors for the central cross-section using a triquadratic basis and α = 10.

Given an initial guess for the unknowns (v, ω, and r) and appropriate boundary conditions
(e.g., table 3), the lower left block may be solved by minimizing the functional

G1(r) := ‖∇ × r‖2
0,Ω

+‖∇ · r +
√

Re(r · r) + Re(v · r)‖2
0,Ω .

(21)

The second step is to solve the middle block (using the new value for r) by minimizing

G2(ω) := ‖ − r + 1√
Re
∇× ω +

√
Re(v × ω)‖2

0,Ω + ‖∇ · ω‖2
0,Ω , (22)

and the final step is solving for the velocity in the upper block (using the new values for r

and ω) by minimizing

G3(v) := ‖ω + ∇× v‖2
0,Ω + ‖∇ · v‖2

0,Ω . (23)

For the Re = 0 case, the functionals, G1-G3, are uncoupled in a way that the problem may be
solved by minimizing each functional just once in the order described. If Re 6= 0, an iterative
solution strategy is required, and the convergence rate to the overall solution determines
whether or not this is a practical method.

We tested the block solver approach on the first test problem (see table 1) with an additional
boundary condition of n · r = 1√

Re
(n · ∇× ω) on all boundaries. Convergence to the approx-

imate solution was defined as each functional changing by less than 10−3. However, with
Re = 100, the block method failed to converge to an approximate solution. Convergence,
instead, was achieved through the use of a Reynolds number continuation strategy. First,
the problem was solved with Re = 1, then Re = 10, and finally Re = 100. A total of 3
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Fig. 5. Velocity vectors for the central cross-section using a triquadratic basis and the block solver
approach on the first test problem.

iterations through the functionals, G1 - G3, were used for the Re = 1 and Re = 10 cases,
and 4 iterations were required for the Re = 100 case. The overall efficiency was helped by
the fact that the convergence factor on each subproblem was 0.3-0.5, and the memory re-
quirements were 1/3 that of solving the full problem. The global mass conservation, however,
was not very good because 30% of the mass was lost with a weighting of 10 on the ∇ · v
term. When the boundary condition on r was changed to n · r = 1√

Re
(n · ∇ · ∇v) on all

boundaries, the mass loss decreased to only 5%, as shown in figure 5. It is not clear why the
mass loss is higher when using the block solver approach, but the solution when minimizing
3 separate functionals is different than minimizing a single combined functional. However,
the two methods must give the same solution as h → 0. In summary, the poor robustness
of this solution method prevents it from competing with the full functional method at this
time. On the other hand, if the convergence and robustness could be improved by some other
means (e.g., grid continuation), it could become a very efficient method. The block solver
could also be used as a preconditioner for the full functional, but we have not explored this
possibility.

5 Discussion

The new formulation results in an improvement in both convergence rate and mass conser-
vation accuracy relative to the original vorticity formulation. Of course, the new formulation
also has 9 unknowns per node compared to the vorticity formulation, which has 7 unknowns
per node. This difference translates into approximately 65% more nonzero entries in the ma-
trix, but the new formulation is still more computationally efficient because it requires only
half the number of AMG preconditioned CG iterations and gives better mass conservation
with the same weight on the ∇·v term. Compared to the velocity-flux formulation, the new
method gives similar mass conservation and similar convergence rates for the linear problem,
but it has significantly fewer unknowns per node (9 vs. 13), resulting in less than half as
many non-zeros in the matrix.

The improved convergence rate of the new formulation is a result of the operator being
differentially diagonally dominate and consisting of basically three independent Laplacian

17



operators. However, the reason for the improved mass conservation is less obvious. One
important clue comes from the observation that with any of the formulations shown here,
excellent mass conservation (≪ 1% error) can be achieved by enforcing inflow and outflow
boundary conditions on the pressure instead of on the normal velocity. Without a boundary
condition on the pressure, the coupling between the pressure and the velocity is insufficient
on coarse grids and the pressure tends to be relatively constant. The importance of strong
coupling between the pressure and velocity in LSFEM formulations has also been stressed
by others [23]. With the new formulation, the variable r represents the ‘pressure’ gradient,
and we are able to achieve stronger coupling between the pressure and velocity through this
variable by essentially adding a pressure Poisson equation and consistent Neumann boundary
conditions. The pressure Poisson equation is essentially a restatement of conservation of mass
in terms of pressure, and, as a result, the new formulation yields improved mass conservation
relative to existing formulations for a given scaling on the ∇ · v term.

Acknowledgement

This work was sponsored by the Department of Energy under grant numbers DE-FC02-
01ER25479 and DE-FG02-03ER25574, Lawrence Livermore National Laboratory under con-
tract number B541045, Sandia National Laboratory under contract number 15268, the Na-
tional Science Foundation under grant numbers DMS-0410318, and the Flight Attendant
Medical Research Institute.

18



References

[1] P. Bochev, Analysis of least-squares finite element methods for the navier-stokes equations,
SIAM J. Numer. Anal. 34 (5) (1997) 1817–1844.

[2] P. Bochev, Z. Cai, T. Manteuffel, S. McCormick, Analysis of velocity-flux first-order system
least-squares principles for the Navier-Stokes equations: part 1, SIAM J. Numer. Anal. 35
(1998) 990–1009.

[3] P. Bochev, Z. Cai, T. Manteuffel, S. McCormick, Analysis of velocity-flux least-squares
principles for the navier-stokes equations: Part i, SIAM J. Numer. Anal. 35 (3) (1998) 990–1009.

[4] P. Bochev, M. Gunzburger, Accuracy of least-squares methods for the navier-stokes equations,
Computers Fluids 22 (4/5) (1993) 549–563.

[5] P. Bochev, M. Gunzburger, Finite element methods of least-squares type, SIAM Rev. 40 (4)
(1998) 789–837.

[6] P. Bochev, T. Manteuffel, S. McCormick, Analysis of velocity-flux least-squares principles for
the navier-stokes equations: Part ii, SIAM J. Numer. Anal. 36 (4) (1999) 1125–1144.

[7] A. Brandt, S. McCormick, J. Ruge, Algebraic Multigrid (AMG) for Sparse Matrix Equations,
Cambridge University Press, Cambridge, UK, 1984, pp. 257–284.

[8] S. Brenner, L. Scott, The Mathematical Theory of Finite Element Methods, Second Edition,
Springer-Verlag, New York, 2000.

[9] Z. Cai, T. Manteuffel, S. McCormick, First-order system least squares for the Stokes equations,
with application to linear elasticity, SIAM J. Numer. Anal. 34 (5) (1997) 1727–1741.

[10] Z. Cai, T. A. Mantueffel, S. F. McCormick, First-order system least squares for second-order
partial differential equations: Part ii, SIAM J. Numer. Anal. 34 (2) (1997) 425–545.

[11] C. Chang, J. Nelson, Least-squares finite element method for the stokes problem with zero
residual of mass conservation, SIAM J. Numer. Anal. 34 (2) (1997) 480–489.

[12] A. Codd, T. Manteuffel, S. McCormick, Multilevel first-order system least squares for nonlinear
partial differential equations, SIAM J. Numer. Anal. 41 (6) (2003) 2197–2209.

[13] A. Codd, T. Manteuffel, S. McCormick, J. W. Ruge, Multilevel first-order system least squares
for elliptic grid generation, SIAM J. Numer. Anal. 41 (6) (2003) 2210–2232.

[14] J. Deang, M. Gunzburger, Issues related to least-squares finite element methods for the stokes
equations, SIAM J. Sci. Comp. 20 (3) (1998) 878–906.

[15] R. Falgout, U. Yang, hypre: A library of high performance preconditioners, Lecture Notes
Comput. Sci. 2331 (2002) 632–641.

[16] R. Falgout, U. Yang, Pursuing scalability for hypre’s conceptual interfaces, ACM Trans. Math.
Software 31 (3) (2005) 326–350.

[17] P. Gresho, R. Sani, Incompressible Flow and the Finite Element Method, Advection-Diffusion
and Isothermal Laminar Flow, 1998.

19



[18] J. Heys, E. Lee, T. Manteuffel, S. McCormick, On mass-conserving least-squares methods,
SIAM J. Sci. Comp. 28 (2006) 1675–1693.

[19] J. Heys, T. Manteuffel, S. McCormick, L. Olson, Algebraic multigrid for higher-order finite
elements, J. Comput. Phys 204 (2) (2005) 520–532.

[20] J. Heys, T. Manteuffel, S. McCormick, J. Ruge, First-order systems least squares (FOSLS) for
coupled fluid-elastic problems, J. Comput. Phys 195 (2) (2004) 560–575.

[21] B. Jiang, The Least-Squares Finite Element Method, Springer, Berlin, 1998.

[22] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput.

[23] J. Pontaza, A least-squares finite element formulation for unsteady incompressible flows with
improved velocity-pressure coupling, J. Comput. Phys. 217 (2) (2006) 563–588.

[24] J. Pontaza, J. Reddy, Space-time coupled spectral/hp least-squares finite element formulations
for the incompressible navier-stokes equations, J. Comput. Phys. 197 (2004) 418–459.

[25] M. Proot, M. Gerritsma, Mass- and momentum conservation of the least-squares spectral
element method for the stokes problem, Journal of Scientific Computing 27 (1-3) (2006) 389–
401.

20


