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Abstract.

We present a first-order system least-squares (FOSLS) method to approximate the solution to
the equations of geometrically nonlinear elasticity in two dimensions. With assumptions of regularity
on the problem, we show H1 equivalence of the norm induced by the FOSLS functional in the case of
pure displacement boundary conditions as well as local convergence of Newton’s method in a nested
iteration setting. Theoretical results hold for deformations satisfying a small-strain assumption, a
set we show to be largely coincident with the set of deformations allowed by the model. Numerical
results confirm optimal multigrid performance and finite element approximation rates of the discrete
functional with a total work bounded by about 25 fine-grid relaxation sweeps.

1. Introduction. The primary goal in the study of elasticity is to model the
deformation of an elastic body under applied forces, including both internal body
forces, such as gravity, and applied surface tractions. For simplicity, we consider forces
whose associated density per unit volume is independent of the deformation. Under
these applied forces, the elastic body is said to occupy the deformed configuration,
and, in the absence of forces, the reference configuration. With this in mind, we
may think of the central problem as one of finding the mapping from the reference
configuration to the deformed configuration. We refer to this mapping function as
the deformation and to the Jacobian of the map as the deformation gradient. Two
tensor-valued physical quantities are also of interest: strain and stress. The strain
tensor, a completely geometrical quantity, is purely a measure of deviation from the
reference configuration, while the stress tensor is directly related to the internal force
density across the deformed configuration. While the deformation itself is usually the
primary unknown in the study of elasticity, the resulting stress and strain are often
of interest as well. In this case, the solution methodology we describe in this paper
has a distinct advantage over more traditional approaches.

The partial differential equations that are commonly used to govern the deforma-
tion are composed of two main components: the equilibrium equation and a consti-
tutive equation. The equilibrium equation and associated boundary conditions relate
a balance of forces in the deformed configuration. But, since the deformed configu-
ration is unknown, the equation is mapped back to the reference configuration. The
necessity of this mapping introduces a source of nonlinearity into the equations of
elasticity.

The constitutive equation, or material law as it is sometimes called, relates the
stress to the strain, taking the material properties into account. In general, a material
law may be designed for a specific material in a specific range of deformations, as is
often the case in applications. There can be as many material laws as materials, but
the most general (and simple) material law is a two parameter linear relationship
between the stress and strain. When this approximation is valid for homogenous,
isotropic materials, we call them St. Venant-Kirchhoff materials. To understand the
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general behavior of the elasticity system, such materials are considered exclusively.

The model we have described here is both three-dimensional and nonlinear. In
this paper, we consider the plane strain model of two-dimensional elasticity, which
retains the same character as the full three-dimensional problem both physically and
mathematically. It is common to linearize this problem about the reference configu-
ration. However, inherent in the linearization of this naturally nonlinear model is the
additional assumption that the displacement is small. There are many applications
in which this is a valid assumption and the resulting solution remains sufficiently ac-
curate. For example, a structure whose displacement is magnitudes of order smaller
than the structure itself may be accurately modeled by this linear approximation.
However, when the small displacement assumption is unreasonable, the partial differ-
ential equations of linear elasticity should be used with caution. For this reason, we
choose to study a more realistic problem.

In [9–11, 13], the first-order system least-squares (FOSLS) method is applied to
the equations of linear elasticity. Results from these studies show that a least-squares
formulation can be effective for elasticity problems. This leads us to consider FOSLS
for the geometrically nonlinear model of elasticity that relaxes the small displacement
assumption while retaining a linear material law, thus widening the scope of problems
that can be effectively treated by least-squares methods. In this model, a linear stress-
strain relationship is assumed, but the full nonlinear strain-displacement relationship
is preserved. Such a formulation is accurate for the so-called “large displacement,
small strain” cases. While not necessarily the best model to use for a given material
or for configurations with large strain, this is a common model for elastic materials,
and certainly more accurate than linear elasticity. See [2] for further background in
elasticity theory.

Our general approach is to linearize the equations of elasticity about a current
approximation by Newton’s method, to reformulate the resulting linear problem as a
well-posed least-squares minimization problem, and to let its minimizer become the
new approximation. The reference configuration (i.e., zero displacement) is always
taken to be the initial approximation. Thus, the first Newton step reduces to the
equations of linear elasticity and subsequent steps are corrections thereof. Each New-
ton step is cast as an appropriate first-order system, and the associated least-squares
functional is minimized over an appropriate finite element subspace of H1(Ω). Such a
formulation requires the introduction of new unknowns to obtain a first-order system.
An intuitive choice for these new unknowns is the gradient of either the displacement
or the deformation. We focus on using the displacement gradient as the new depen-
dent variable. The stress and strain tensors are then just simple combinations of the
new dependent variable and can be computed in a post-processing stage with no loss
of accuracy.

Our approach also employs a two-stage solution process. The first stage solves for
the displacement gradients, while the second stage recovers the actual displacement
vector. This decoupling of the unknowns in stages is desirable for several reasons.
First, we may be primarily interested in the stress or strain, so we would not need
to compute the second stage at all. Second, if we are to take several Newton steps,
we potentially only need to retrieve the deformations after the first stage converges.
Third, this approach obviates the need to determine relative weights for the stages
if they are incorporated into a single functional. Finally, decoupling the variables is
somewhat more efficient than solving for them simultaneously.

We define the term H1 ellipticity to mean H1 equivalence with the norm induced
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by the homogenous FOSLS functional. The focus of much of this paper is on the
formulation and efficiency of the first-stage algorithm by establishing H1 ellipticity of
the FOSLS functional for a general linearization step. The second stage is essentially
a coupled Poisson problem that is ideally suited for FOSLS and already discussed in
some detail in [9, 13].

2. Notation. Throughout this paper, we refer to our Newton-FOSLS algorithm
as linearized elasticity (linearized about a current approximation) and to the first
Newton step as linear elasticity (linearized about the reference configuration). This
is not strictly standard convention, but one we find convenient in what follows.

Standard notation in most of the literature on elasticity denotes gradients of
vectors as square matrices. This convention allows for compact representation of many
tensor-valued quantities. We prefer mostly to use block column vectors for gradients so
that general linear operators on such quantities can be written as matrices. To capture
the best qualities of both conventions, we denote vector-valued functions in bold type
and the less frequent matrix-valued functions in bold type with an underline. For
example, I = (1, 0, 0, 1)t is used to denote the identity element when column vectors
are used, and I is the standard 2×2 identity matrix. We use matrix notation primarily
in the linearization of the problem and adhere to the vector notation for the linearized
problem. The notation should be clear by the context in which it is used.

Vector u, block column vector U, and matrix V are represented componentwise
by

u =

(

u1

u2

)

, U =









U1

U2

U3

U4









, and V =

(

V11 V12

V21 V22

)

,

respectively. The gradient of scalar p and the block column and matrix gradients of
u are given by

∇p =

(

∂xp
∂yp

)

, ∇u =









∂xu1

∂yu1

∂xu2

∂yu2









, and ∇u =

(

∂xu1 ∂yu1

∂xu2 ∂yu2

)

,

respectively. Define the respective divergence, curl, and trace operators by

∇ · u = ∂xu1 + ∂yu2, ∇ ·U =

(

∂xU1 + ∂yU2

∂xU3 + ∂yU4

)

, ∇ ·V =

(

∂xV11 + ∂yV12

∂xV21 + ∂yV22

)

,

∇×U =

(

∂xU2 − ∂yU1

∂xU4 − ∂yU3

)

, ∇×V =

(

∂xV12 − ∂yV11

∂xV22 − ∂yV21

)

,

tr(U) = U1 + U4, and tr(V) = V11 + V22.

Also, denoting the formal adjoint of the curl operator by ∇⊥, we define

∇⊥p =

(

∂yp
−∂xp

)

and ∇⊥u =









∂yu1

−∂xu1

∂yu2

−∂xu2









.
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We extend the respective outward unit normal and counter-clockwise unit tangential
operators, n· and τ ·, componentwise to block column vectors and matrices in the
natural way:

n ·U =

(

nxU1 + nyU2

nxU3 + nyU4

)

, τ ·U =

(

τxU1 + τyU2

τxU3 + τyU4

)

,

n ·V =

(

nxV11 + nyV12

nxV21 + nyV22

)

, and τ ·V =

(

τxV11 + τyV12

τxV21 + τyV22

)

.

We also note that nx = τy and ny = −τx, and that n · ∇ = −τ · ∇⊥.
We use standard notation for Sobolev spaces Hk(Ω)d, corresponding inner prod-

uct (·, ·)k,Ω, and norm ‖ ·‖k,Ω, for k ≥ 0. We drop subscript Ω and superscript d when
the domain and dimension are clear by context. In the case that k is not an integer,
denote by bkc its integer part. The norm of a function, v(x) ∈ Hk(Ω)2, is given by

‖v‖2k = ‖v‖2bkc +
∑

|α|=bkc

∫

Ω

∫

Ω

|Dαv(x)−Dαv(y)|2
|x− y|2(1+k−bkc) dx dy.

The case of k = 0 corresponds to the Lebesgue measurable space, L2(Ω), in which
case we generally denote the norm and inner product by ‖ · ‖ and 〈·, ·〉, respectively.
Define the subspaces of L2(Ω) induced by the divergence and the curl of vector u by

H(div) = {u ∈ L2(Ω) : ‖∇ · u‖ <∞},
H(curl) = {u ∈ L2(Ω) : ‖∇ × u‖ <∞},

with norms

‖u‖2H(div) = ‖u‖2 + ‖∇ · u‖2,
‖u‖2H(curl) = ‖u‖2 + ‖∇ × u‖2.

Denote by Ck(Ω) the space of k times continuously differentiable functions on Ω,
an open set in R

2. The boundary of Ω, denoted by ∂Ω, is of class Ck if it satisfies the
conditions of a Lipschitz boundary (see [8]) and is the union of the graphs of a finite
number of Ck functions. We say that ∂Ω is a Ck,l boundary when it is Lipschitz and
is the graph of the union of a finite number of Hölder continuous Ck,l functions.

We also make use of the following general inequalities:

|a|2 + |b|2 ≤ |a + b|2 ≤ 2(|a|2 + |b|2). (2.1)

3. The Nonlinear Problem. Let Ω be a bounded open connected subset of
R

2 with boundary ∂Ω, which is partitioned into displacement, ΓD, and traction,
ΓT , segments (Γ̄D ∪ Γ̄T = ∂Ω and ΓD ∩ ΓT = ∅). For simplicity, we assume that
the displacements vanish on ΓD, as is often the case in practice. The geometrically
nonlinear elasticity equations may be written as











∇ · [(I +∇u)Σ] = f , in Ω,

n · [(I +∇u)Σ] = g, on ΓT ,

u = 0, on ΓD,

(3.1)
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where the material law,

Σ(E) = λtr(E)I + 2µE, (3.2)

is the the second Piola-Kirchhoff stress tensor and

E(∇u) =
1

2
(∇u +∇ut +∇ut∇u) (3.3)

is the Green-St. Venant strain tensor. This problem is often referred to as one for
a St. Venant-Kirchhoff material. Again, this describes materials in configurations in
which the “large displacement, small strain” assumption is valid.

We may also separate the linear and nonlinear parts of the first equation in (3.1),
and write it as

µ∆u + (λ + µ)∇∇ · u +∇ ·P3(∇u) = f , (3.4)

where ∆u = ∇ · ∇u is the vector Laplacian of u and P3(∇u) is the following matrix
of degree 3 polynomials of the components of ∇u:

P3(X) =
1

2
λ
(

tr(XtX)I + tr(X + Xt + XtX)X
)

+ µ
(

X2 + XtX + XXt + XXtX
)

.

The linear part of the left-side operator in (3.4) is simply the linear elasticity equations
and the nonlinear part can be thought of as a perturbation that begins to dominate
as ∇u becomes large compared to u.

The unknown, u, is the usual displacement vector. We assume that the Lamé
constants, λ and µ, are bounded by satisfying 0 < µ0 < µ < µ1 and 0 < λ0 < λ < λ1,
for appropriate positive bounds. Physically, this corresponds to an assumption of
compressibility of the material. The more difficult problem of incompressible materials
is considered for linear elasticity in [9–11, 13]. A complete study of the geometrically
nonlinear elasticity problem in a least-squares context in the incompressible limit
remains an open problem. Without loss of generality, we scale the problem so that
µ = 1 and let λ determine the level of compressibility. See Section 11 for examples of
Lamé constants for different materials.

The case where ΓT = ∅ corresponds to a pure displacement problem, ΓD = ∅ a
pure traction problem, and otherwise a mixed boundary condition problem.

4. Existence and Uniqueness of Solutions. In this section, we establish
existence and uniqueness results that confirm well-posedness of System (3.1). We
restrict ourselves here to the pure displacement problem on domains with sufficiently
smooth data and boundaries (see Remark 4.3 at the end of this section).

Let ∂ represent either first partial derivative, ∂x or ∂y, and suppose δ > 0 and
ε ≥ 0. The following lemma addresses smoothness of products of functions in H1+δ(Ω)
and H1+ε(Ω).

Lemma 4.1 Let Ω be a bounded Lipschitz domain in R
2. Then there exists a con-

stant, C, depending only on Ω, such that, for u ∈ H1+δ(Ω) and v ∈ H1+ε(Ω), the

product uv satisfies

‖uv‖1+ε ≤ C‖u‖1+δ‖v‖1+ε,

‖∂(uv)‖ε ≤ C‖u‖1+δ‖v‖1+ε.
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Proof. This is a consequence of the Sobolev imbedding theorem and a proof can
be seen in Chapter 1 of [7].

The following theorem establishes criteria for existence and uniqueness of solutions
to Problem (3.1).

Theorem 4.2 Let Ω be a domain in R
2 with boundary of class C2+m for some m > 0.

Then there exists a neighborhood, Qm
0 , of the origin in Hm(Ω) and a neighborhood,

U1+m
0 , of the origin in U1+m = {∇v : v ∈ H2+m(Ω),v = 0 on ∂Ω} ⊂ H1+m(Ω) such

that for each f ∈ Qm
0 , the boundary value problem

L(∇u) := ∇ · [(I +∇u)Σ(E(∇u))] = f (4.1)

has exactly one solution, ∇u∗, in U1+m
0 .

Proof. We observe that nonlinear operator L maps ∇u ∈ H1+m(Ω) into Hm(Ω)
by applying Lemma 4.1, and that L is differentiable between these spaces (in fact, all
derivatives of order ≥ 4 are zero).

Since L(0) = 0, we can then apply the implicit function theorem in a neighbor-
hood of the origin in U1+m × Hm(Ω). Thus, we now only need to check that the
derivative of L at the origin, L′(0), is bijective between U1+m and Hm(Ω) and has
continuous inverse.

But L′(0) is exactly the operator of linear elasticity. It is known that if ∂Ω
is a C2+m boundary and f ∈ Hm(Ω), then there is a unique weak solution to the
linear pure displacement problem, u ∈ H2+m(Ω) (see [2]). This immediatly implies
∇u ∈ H1+m(Ω). Thus, we have shown that continuous operator L′(0) is bijective.
Now since L′(0) is a continuous, bijective, linear map between two Banach spaces, by
the closed graph theorem, it must have a continuous inverse.

By the implicit function theorem there is, therefore, a neighborhood , Qm
0 , of the

origin in Hm(Ω) and a neighborhood, U1+m
0 , of the origin in U1+m such that there is

a unique solution, ∇u∗ ∈ U1+m
0 , for any function f ∈ Qm

0 .
Thus, the pure displacement problem with sufficiently smooth data and domain

is well-posed, and the solution, ∇u, remains small in the H1+m norm, with no direct
restriction on u itself. This is consistent with the small strains assumption in the
geometrically nonlinear elastic model.

Remark 4.3 We are ultimately interested in nonhomogenous problems on polygonal

domains, which are known to have solutions less smooth than described above. How-

ever, even for such problems, we may expect the regularity predicted in Theorem 4.2

away from abruptly changing material interfaces in the interior of Ω for sufficiently

smooth data f .

5. Least-Squares Formulation. We want to replace the nonlinear elasticity
problem with a series of linear problems, which we then reformulate as a first-order
system. Introducing the deformation, φ = x+u, the deformation gradient, Φ = ∇φ,
and the displacement gradient, U = ∇u, Problem (3.1) becomes one of finding the
zero of

F(U) = ∇ · [ 12λtr(U + Ut + UtU)(I + U) + (I + U)(U + Ut + UtU)]− f , (5.1)

subject to the constraint

∇×U = 0, (5.2)
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for U satisfying appropriate boundary conditions (recall also that we assume µ = 1).
The Fréchet derivative of F(U) in the direction of V is

F ′(U)[V] =

∇ · [λtr(U + 1
2U

tU)V + λtr(V + VtU)(I + U)

+ (I + U)(V + Vt + UtV + VtU) + V(U + Ut + UtU)].

(5.3)

Thus, Newton’s method for approximating the solution of (5.1) is given by iteratively
solving the linear problem

{

F ′(Un)[Un+1] = F ′(Un)[Un]−F(Un)

∇×Un+1 = 0
(5.4)

for Un+1, with initial approximation U0 = 0.
By switching to block-vector notation for the unknowns, we can rewrite linear

System (5.4) in terms of standard differential operators and matrix-vector multipli-
cations. To this end, let U = (U1, U2, U3, U4)

t represent the unknowns in any of the
Newton steps. With the relation Φ = I + U, we denote Φ = (Φ1,Φ2,Φ3,Φ4)

t =
(U1 + 1, U2, U3, U4 + 1)t and define the following linear operators:

M1(Φ) =









Φ2
1 Φ1Φ2 Φ1Φ3 Φ1Φ4

Φ2Φ1 Φ2
2 Φ2Φ3 Φ2Φ4

Φ3Φ1 Φ3Φ2 Φ2
3 Φ3Φ4

Φ4Φ1 Φ4Φ2 Φ4Φ3 Φ2
4









= ΦΦt,

M2(Φ) = (Φ2
1 + Φ2

2 + Φ2
3 + Φ2

4 − 2)I,

M3(Φ) =

0

B

B

@

3Φ
2

1 + Φ
2

2 + Φ
2

3 − 1 2Φ1Φ2 + Φ3Φ4 2Φ1Φ3 + Φ2Φ4 Φ2Φ3

2Φ1Φ2 + Φ3Φ4 Φ
2

1 + 3Φ
2

2 + Φ
2

4 − 1 Φ1Φ4 Φ1Φ3 + 2Φ2Φ4

2Φ1Φ3 + Φ2Φ4 Φ1Φ4 Φ
2

1 + 3Φ
2

3 + Φ
2

4 − 1 Φ1Φ2 + 2Φ3Φ4

Φ2Φ3 Φ1Φ3 + 2Φ2Φ4 Φ1Φ2 + 2Φ3Φ4 Φ
2

2 + Φ
2

3 + 3Φ
2

4 − 1

1

C

C

A

.

Using the relation Φ = I + U as a change of variables, define the system matrix, A,
as a function of U by

A(U) = λM1(I + U) + 1
2λM2(I + U) + M3(I + U).

In this way, we may denote the linear operator in (5.4) as:

F ′(U)[V] = ∇ ·A(U)V,

where, again, block-vector notation is used for convenience.
Denoting An = A(Un) and Fn = F(Un), the Newton step for the (n+1)st iterate

U (dropping the subscript) may now be written as

{

∇ ·AnU = ∇ ·AnUn −Fn

∇×U = 0.
(5.5)
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We may apply an analogous linearization technique to the traction boundary
conditions by defining

T (U) = n · [ 12λtr(U + Ut + UtU)(I + U) + (I + U)(U + Ut + UtU)]− g

and letting Tn = T (Un). The corresponding Newton step for the traction boundaries
then becomes

n ·AnU = n ·AnUn − Tn, on ΓT . (5.6)

Since u = 0 on the displacement boundaries, we may enforce the derivative of u along
those boundaries to be zero:

τ ·U = 0, on ΓD.

Thus, we may completely decouple the unknowns in u from the unknowns in U. We
concentrate here on the first-stage solution of U, that is, solving the problem for U
and later recovering u, if necessary.

We take the initial approximation for Newton’s method to be the reference con-
figuration, U0 = 0; the system matrix for the first Newton step is

A0 =









λ + 2 0 0 λ
0 1 1 0
0 1 1 0
λ 0 0 λ + 2









;

and we can write ∇ · (A0U0)−F0 = f and n · (A0U0)−T0 = g. Thus, we may write
the first step of Newton’s method as



















∇ · (A0U) = f , in Ω,

∇×U = 0, in Ω,

τ ·U = 0, on ΓD,

n · (A0U) = g, on ΓT .

(5.7)

This is the form of the linear elasticity equations studied in [10, 13].
System (5.5) depends explicitly on the current approximation to the solution.

Specifically, matrix An deviates from A0 as Φ deviates from the identity (or, as U
deviates from 0). Much is known about the first Newton step because it is exactly the
linear elasticity case. For example, assuming sufficient smoothness of the solution, a
least-squares functional associated with System (5.7) can be shown to be H1 elliptic
with the aid of Korn’s inequality. In fact, this ellipticity property is even retained for a
modification of System (5.7) in the incompressible limit in [13]. Existence, uniqueness,
and optimal finite element approximation bounds immediately follow (see [10, 13]).
For the linearized problem, however, the literature reflects relatively little theory
in L2 based Sobolev spaces, and a thorough study of these equations in a least-
squares context has, to our knowledge, not been explored. We are thus led to develop
new theory that establishes well-posedness of, and a fast solution technique for, the
linearized equations.

6. Problem Modification. One goal of the least-squares methodology is to
develop a functional that is H1 elliptic whenever possible. It is well known that such
systems admit uniform and optimal H1 approximations when using standard finite
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elements for the discretization and standard multigrid solvers for the resulting linear
system (see [12]). For System (5.5), this poses a challenge because the system matrix,
An, is generally pointwise indefinite. In this section, we introduce a modification to
(5.5) that overcomes this difficulty, and we make a reasonable physical assumption
that guarantees positive-definiteness of the modified system matrix. To this end,
consider modifying An by adding to it a matrix of the form

B(c) =









0 0 0 c
0 0 −c 0
0 −c 0 0
c 0 0 0









,

where c is any fixed constant. It is easy to see that ∇ ·B(c)∇p = 0 for any function
p, so the solution to (5.5) is unaffected by replacing An with An + B(c). (We note,
however, that this modification cannot be applied to the traction boundary conditions
given in (5.6).) In [10, 13], this idea is applied with c = µ = 1 in conjunction with a
rotation of the unknowns so that the equations of linear elasticity in the incompressible
limit mirror the Stokes equations. We apply the same idea here, not to transform the
equations to a more well known form, but rather to shift the spectrum to be positive.
Indeed, in the linear case, the spectrum of A0, which is {0, 2, 2, 2λ+2}, can be shifted
by B(1) so that the spectrum of A0 + B(1) becomes {1, 1, 1, 2λ + 3}. Numerical
experiments on the spectrum of An indicate that a choice of c = 1 is also most
effective for shifting the spectrum to be positive for general deformations. We now
study this question analytically.

Matrix Ãn = An + B(1) seems to depend on the four linearly independent com-
ponents of Φn. However, under an appropriate change of variables, the eigenvalues
can be exactly expressed in terms of just two scalar functions over Ω:

σ = Φ2
1 + Φ2

2 + Φ2
3 + Φ2

4,

δ = Φ1Φ4 − Φ2Φ3.
(6.1)

In fact, the eigenvalues of Ãn are as follows:

Λ1 =
1

2
(λ + 2)σ − δ − λ,

Λ2 =
1

2
(λ + 2)σ + δ − λ− 2,

Λ3 = (λ +
3

2
)σ − (λ + 1)−

√

1

4
(λ + 3)2σ2 − (6λ + 9)δ2 + 2λδ + 1,

Λ4 = (λ +
3

2
)σ − (λ + 1) +

√

1

4
(λ + 3)2σ2 − (6λ + 9)δ2 + 2λδ + 1.

(6.2)

That the spectrum can be represented by only two independent quantities is surpris-
ing, but that the two quantities have such an obvious physical meaning is remarkable.
For example, δ, the determinant of the Jacobian of the mapping of the current ap-
proximation, is a local measure of change in volume: δ > 1 indicates areas under
tension and δ < 1 indicates areas under compression. Similarly, σ < 2 when there
is significant local compression. In general, we know that in the small strains regime
σ ≈ 2 and 0 < δ ≈ 1.

Since the model for the geometrically nonlinear elasticity equations assumes a de-
formed configuration with small strains, we may assume small strains of the solution.
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We show in Section 8 that, for an initial guess sufficiently close to the solution, each
iterate remains bounded near the solution and Newton’s method converges. Under
these constraints, we take each iterate to satisfy some small strain condition of the
form ‖E‖ � 1. We now choose the norm to enforce this condition.

Define the following Frobenius norm for tensor-valued quantities:

‖X‖2Fr = sup
Ω

∑

ij

(

Xij

)2
.

Thus, we may write ‖Φ‖Fr = ‖σ‖∞. We can also express the Frobenius norm of
the strain tensor exactly in terms of variables σ and δ. We now establish bounds on
the strain that guarantee that the modified system matrix is uniformly symmetric
positive definite.

Recall that the strain tensor is given by E(U) = 1
2 (U + Ut + UtU). Define

Sλ =

{

U : ‖U + Ut + UtU‖Fr <

√
2

λ + 3

}

as the set of all displacement gradients corresponding to deformations with “small
strains.” We may choose Qm

0 small enough to ensure that f ∈ Qm
0 guarantees U ∈ Sλ.

Thus, the condition of small strains follows from the assumptions in Theorem 4.2. We
explore the regime of small strains in more detail in Section 11.

Theorem 6.1 For all U ∈ Sλ, matrix Ã = A(U)+B(1) is uniformly positive definite

over Ω.

Proof. We directly compute positive lower bounds on each eigenvalue of Ã. For
convenience, we work with Φ = I + U, where U + Ut + UtU = ΦtΦ − I. Let
ε = ‖ΦtΦ− I‖Fr. By direct computation, we write

ε2 = (σ − 1)2 − 2δ2 + 1. (6.3)

We also have

σ ≥ 2δ (6.4)

because σ − 2δ = (Φ1 − Φ4)
2 + (Φ2 + Φ3)

2 ≥ 0. Using (6.4), we can also establish
upper and lower bounds on σ in terms of ε. Specifically, ε2 = (σ − 1)2 − 2δ2 + 1 ≥
(σ − 1)2 − 1

2σ2 − 1 = 1
2 (σ − 2)2, so

2−
√

2ε ≤ σ ≤ 2 +
√

2ε. (6.5)

Expressions for the eigenvalues of Ã are given in (6.2). Starting with Λ1 and using
(6.4) and (6.5), we obtain

Λ1 = 1
2 (λ + 2)(σ − 2)− δ + 2

≥ 1
2 (λ + 2)(σ − 2)− 1

2σ + 2

= 1
2 (λ + 1)σ − λ

≥ 1
2 (λ + 1)(2−

√
2ε)− λ

= 1−
√

2
2 (λ + 1)ε,
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which is strictly positive when ε <
√

2
λ+1 .

Again, using (6.4) and (6.5) along with (6.3), the second eigenvalue satisfies

Λ2 = 1
2 (λ + 2)(σ − 2) + δ

≥ 1
2 (λ + 2)(2δ − 2) + δ

= δ(λ + 3)− (λ + 2)

=

√
2

2
((σ − 1)2 + 1− ε2)

1
2 (λ + 3)− (λ + 2)

≥
√

2

2
((1−

√
2ε)2 + 1− ε2)

1
2 (λ + 3)− (λ + 2)

= ((1−
√

2ε + 1
2ε2)

1
2 (λ + 3)− (λ + 2),

which is strictly positive when f(ε) = 1
2ε2 −

√
2ε + 1 −

(

λ+2
λ+3

)2

> 0. Solving for the

roots of f(ε), we see that f(ε) is positive for ε <
√

2
λ+3 .

The third eigenvalue is more cumbersome to treat and requires a bit more care
than the first two. Write Λ3 = R −

√
Z, where R = (λ + 3

2 )σ − (λ + 1) and Z =
1
4 (λ + 3)2σ2 − (6λ + 9)δ2 + 2λδ + 1. It can be seen that Z must be nonnegative for
λ > 0 by writing

Z = 1
4 (λ + 3)2σ2 − (6λ + 9)δ2 + 2λδ + 1

= 1
4λ2σ2 + 1

4 (6λ + 9)(σ + 2δ)(σ − 2δ) + 2λδ + 1

> 0,

since σ ≥ 2δ. From the bound on Λ2 and (6.5), we know, for λ > 0, that

σ ≥ 2−
√

2ε > 2−
√

2

( √
2

λ + 3

)

>
4

3

and, thus, R > 0. Therefore, Λ3 is positive when R2 − Z is positive. But we may
write

R2 − Z = (λ + 3
2 )2σ2 − 2(λ + 1)(λ + 3

2 )σ + (λ + 1)2

− 1
4 (λ + 3)2σ2 + (6λ + 9)δ2 − 2λδ − 1

≥ (λ + 3
2 )2σ2 − 2(λ + 1)(λ + 3

2 )σ + (λ + 1)2

− 1
4 (λ + 3)2σ2 + (6λ + 9)δ2 − λσ − 1

= (λ + 3
2 )2σ2 − 2(λ + 1)(λ + 3

2 )σ + (λ + 1)2

− 1
4 (λ + 3)2σ2 + 1

2 (6λ + 9)((σ − 1)2 − ε2 + 1)− λσ − 1

= 1
4 (λ2 + 6λ + 6)(3σ − 2)(σ − 2) + (2λ + 3)(1− 3

2ε).

Since σ > 4
3 implies that the quadratic term in σ, (3σ − 2)(σ − 2), is monotonically

increasing, we can apply the lower bound in (6.5) to get

R2 − Z ≥ 1
4 (λ2 + 6λ + 6)(3σ − 2)(σ − 2) + (2λ + 3)(1− 3

2ε)

≥ 1
4 (λ2 + 6λ + 6)(−

√
2ε + 3

2ε2) + (2λ + 3)(1− 3
2ε)

= 3
2 (λ2 + 4λ + 3)ε2 −

√
2(λ2 + 6λ + 6)ε + 2λ + 3.
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Again, solving for the roots of this quadratic equation in ε, we see that R2 − Z is

positive when ε <
√

2
λ+3 .

Finally, the fourth eigenvalue, Λ4, is bounded below by Λ3 and the proof is
complete.

It is interesting to note that the bounds for the first three eigenvalues are of the
same order (the second and third are even the exact same bound). This suggests that
the modification to matrix An is optimally balanced with B(c) for c = 1.

The full, modified, linearized system may now be written as


















∇ · (ÃnU) = fn, in Ω,

∇×U = 0, in Ω,

τ ·U = 0, on ΓD,

n · (AnU) = gn, on ΓT ,

where fn = ∇ · (ÃnUn)−Fn and gn = n · (AnU)− Tn.
Define the L2 functional

G(U;Un, fn) = ‖∇ · (ÃnU)− fn‖2 + ‖∇ ×U‖2, (6.6)

and define, for any m > 0, the space

Vm = {V ∈ Hm(Ω)4 : n · (AnV) = gn on ΓT , τ ·V = 0 on ΓD}.
In the case of pure displacement boundary conditions (ΓN = ∅), we denote the space
by Vm

D .
The least-squares minimization problem for each Newton step is: given Un, fn

and gn, find U ∈ V1 such that

G(U;Un, fn) = inf
V∈V1

G(V;Un, fn).

7. Ellipticity. To use the L2 based functional in (6.6) on each Newton step,
we must assume that the previous iterate is in H1+δ(Ω) for some δ > 0 because
(6.6) is composed of derivatives of products of the unknown and the previous solution
and, in R

2, the space H1+δ(Ω) is closed under multiplication only for δ > 0 (see
Lemma 4.1). Thus, showing only H1 ellipticity of (6.6) is not sufficient to establish a
well-defined Newton iteration; we must show that each iterate remains in H1+δ(Ω).
In this section, we establish H1+k ellipticity of an Hk based functional for the cases
k = 0 and k = 1, and show that minimizing the L2 based functional is sufficient to
guarantee the required smoothness of each iterate. Our theoretical results hold only
for the pure displacement problem.

For clarity, we use the following conventions: δ ∈ (0, 1]; ε ≥ 0; and k a nonegative
integer (our results require the cases k = 0 and k = 1).

In Theorem 6.1, matrix Ã = A(U)+B(1) is uniformly symmetric positive definite
over Ω when the strain of U is sufficiently small, that is, for U ∈ Sλ. In this section,
we assume this property holds and consider the solution of a general Newton step of
the pure displacement problem by minimizing the more general Hk based functional

Gk(U;Un, fn) = ‖∇ · (ÃnU)− fn‖2k + ‖∇ ×U‖2k. (7.1)

Its associated minimization problem is: for either k = 0 or k = 1, given Un ∈ H1+δ(Ω)
and fn ∈ Hk(Ω), find U ∈ V1+k

D such that

Gk(U;Un, fn) = inf
V∈V1+k

D

Gk(V;Un, fn). (7.2)
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By Lemma 4.1, it is clear that U ∈ H1+k(Ω) and Un ∈ H1+δ(Ω) are sufficient to
ensure that ∇ · (ÃnU) ∈ Hk(Ω).

The following series of lemmas leads to establishing equivalence of Gk(U;Un,0)
1/2

to the H1+k norm.

Lemma 7.1 Let Ω be a simply connected domain in R
2 and suppose V ∈ L2(Ω)4.

Then ∇ ·V = 0 and
∫

∂Ω
n ·V = 0 if and only if there exists a function r ∈ H1(Ω)2

such that V = ∇⊥r. Furthermore, r ∈ H1(Ω)2 is unique up to an additive constant

vector in R
2.

Proof. The result follows by applying Theorem 3.1 in Chapter I of [7] to each
block component of V.

Lemma 7.2 Let Ω be a simply connected domain in R
2. Every V ∈ L2(Ω)4 has the

orthogonal decomposition V = ∇p+∇⊥q for p ∈ H1(Ω)2,q ∈ H1
0 (Ω)2. Furthermore,

q is unique in H1
0 (Ω)2 and p is unique in H1(Ω)2 up to an additive constant vector

in R
2.

Proof. The result follows by applying Theorem 3.2 in Chapter I of [7] to each
block component of V.

Lemma 7.3 Assume that U ∈ Sλ and denote Ã = A + B, with A = A(U) and

B = B(1) as defined in Section 6. Also assume that AZ and BZ are in L2(Ω)4. If

Z ∈ V1
D satisfies the system

{

∇ · ÃZ = 0, in Ω,

∇× Z = 0, in Ω,
(7.3)

then it must be the trivial solution, Z = 0.

Proof. By Lemma 7.2, Z = ∇p +∇⊥q for p ∈ H1(Ω)2,q ∈ H1
0 (Ω)2. The second

equation in (7.3) implies

0 = ∇× Z = ∇×∇p +∇×∇⊥q = −∆q,

and, since q ∈ H1(Ω)20, we must have q = 0. Thus, Z = ∇p.
Now, using Green’s Formula with 1 = (1, 1)t, we get

0 = 〈∇ ·AZ,1〉+ 〈AZ,∇1〉 =

∫

∂Ω

n ·AZ.

Applying Lemma 7.1 to AZ yields AZ = ∇⊥r for r ∈ H1(Ω)2. Since 0 = τ ·Z = τ ·∇p
on ∂Ω, we know that p = p0 is constant on ∂Ω. We thus have

〈AZ,Z〉 = 〈∇⊥r,∇p〉

= 〈−∇ · ∇⊥r,p〉+
∫

∂Ω

(n · ∇⊥r)p

=

∫

∂Ω

(n · ∇⊥r)p

= p0

∫

∂Ω

n ·AZ

= 0.
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Since Z = ∇p, we may then write BZ = ∇⊥s, where s =

(

p2

−p1

)

. Thus,

〈BZ,Z〉 = 〈∇⊥s,∇p〉

= 〈s,∇×∇p〉 −
∫

∂Ω

(τ · ∇p)s

= −
∫

∂Ω

(τ · ∇p0)s

= 0,

which implies 〈ÃZ,Z〉 = 0. Since U ∈ Sλ, matrix Ã is positive definite, and we must
have Z = 0.

Now consider the following elliptic boundary value problem:

∇ ·M∇p = f in Ω, (7.4)

satisfying either p = 0 or n ·M∇p = 0 on ∂Ω. The following lemma from [3] gives
regularity bounds for Problem (7.4).

Theorem 7.4 Let Ω be a bounded open subset of R
2 with C1+k,1 boundary. Let M

be uniformly symmetric positive definite over Ω with coefficients in Ck,1(Ω̄). Then for

f ∈ Hk(Ω), Problem (7.4) has a unique solution, p ∈ H2+k(Ω), satisfying

‖p‖2+k ≤ C‖f‖k, (7.5)

for some positive constant C and any nonnegative integer k.

Proof. See Chapter 2 of [3].

Lemma 7.5 Assume a solution to nonlinear Problem (5.1): U∗ ∈ V3+δ
D ∩Sλ. Assume

also that Ω satisfies the assumptions of Theorem 7.4. Let Ã∗ = A(U∗) + B(1). Then

there exists a positive constant, c∗, independent of U, such that

‖U‖1+k ≤ c∗(‖∇ · Ã∗U‖k + ‖∇ ×U‖k)

for all U ∈ V1+k
D , with either k = 0 or k = 1.

Proof. Consider the skew-symmetric orthogonal matrix

Q =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









. (7.6)

The following relations are easily derived:

∇× = ∇ ·Q,

∇· = ∇×Qt,

∇⊥ = Q∇,

∇ = Qt∇⊥,

n· = −τ ·Q,

τ · = n ·Qt.

(7.7)
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Since Ã∗ is uniformly positive definite over Ω, there are constants, λ1, λ2 > 0, such
that

λ1ξ
tξ ≤ ξtÃ∗ξ ≤ λ2ξ

tξ (7.8)

and

1

λ2
ξtξ ≤ ξtÃ−1

∗ ξ ≤ 1

λ1
ξtξ (7.9)

for any ξ ∈ R
4. Define

C = QtÃ−1
∗ Q,

and note that

ξtξ = ξtQtQξ = (Qξ)t(Qξ)

and

ξtCξ = ξtQtÃ−1
∗ Qξ = (Qξ)tÃ−1

∗ (Qξ).

Now, it can easily be seen that C is symmetric and uniformly positive definite over Ω:

1

λ2
ξtξ ≤ ξtCξ ≤ 1

λ1
ξtξ. (7.10)

We also note that

∇× Ã−1
∗ ∇⊥ = ∇ ·QÃ−1

∗ Q∇ = −∇ · C∇.

With U∗ ∈ V3+δ
D and U ∈ V1+δ

D , we have that ∇ · Ã∗U ∈ Hk(Ω) for either k = 0 or

k = 1, and, by Theorem 7.4 for any U ∈ V1+k
D , there is a unique p ∈ H2+k(Ω) that

satisfies
{

∇ · Ã∗∇p = ∇ · Ã∗U, in Ω,

p = 0, on ∂Ω,
(7.11)

and q ∈ H2+k(Ω) that satisfies
{

−∇ · C∇q = ∇×U, in Ω,

n · C∇q = 0, on ∂Ω,
(7.12)

and
∫

Ω
q dx = 0. Now define Z = U−∇p− Ã−1

∗ ∇⊥q. Note that Z ∈ H1+k(Ω) and,
on ∂Ω, that

τ · Z = τ ·U− τ · ∇p− τ · Ã−1
∗ ∇⊥q

= −τ ·QCQt∇⊥q

= n · C∇q

= 0.

Thus, Z ∈ V1+k
D . We further see that

∇ · Ã∗Z = ∇ · Ã∗U−∇ · Ã∗∇p−∇ · Ã∗Ã
−1
∗ ∇⊥q

= 0
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and

∇× Z = ∇×U−∇×∇p−∇× Ã−1
∗ ∇⊥q

= ∇×U +∇ · C∇q

= 0.

By Lemma 7.3, we therefore conclude that Z = 0. Since U∗ ∈ H3+δ ⊆ C2(Ω̄) ⊆
Ck,1(Ω̄), for either k = 0 or k = 1, we may apply Theorem 7.4 to Problems (7.11)
and (7.12). Combining these bounds with the triangle inequality and (7.9), we may
write

‖U‖1+k ≤ ‖∇p‖1+k + ‖Ã−1
∗ ∇⊥q‖1+k

≤ ‖p‖2+k + 1/λ1‖q‖2+k

≤ C(‖∇ · Ã∗U‖k + ‖∇ ×U‖k).

Application of Inequality (2.1) completes the proof.
Recall that we cast the solution of nonlinear Problem (3.1) as the zero of F(U),

where F ′(U)[V] is given in Equation (5.3). We consider the boundedness of the
second Fréchet derivative of F(U) in directions V and W in the following lemma.

Lemma 7.6 For all U,V ∈ H1+δ(Ω) and W ∈ H1+ε(Ω), there exists a positive

constant, c2, such that

‖F ′′(U)[V,W]‖ε ≤ c2‖U‖1+δ‖V‖1+δ‖W‖1+ε. (7.13)

Proof. Writing the second Fréchet derivative of F in the directions V and W as

F ′′(U)[V,W] =

∇ ·
[

λtr(WtV)(I + U) + λtr(Vt(I + U))W + λtr(Wt(I + U))V

+ (I + U)(WtV + VtW) + V(W + Wt + W tU + UtW)

+W(V + Vt + V tU + UtV)
]

,

we see that each component may be written as a linear combination of terms of the
form ∂(WiVjUk) or ∂(WiVj), i, j, k = 1, 2, 3, 4, where ∂, again, represents either ∂x or
∂y. The lemma then follows by the triangle inequality and applying Lemma 4.1 to
each term once or twice.

Define the H1+δ neighborhood of the solution by

Br = {U ∈ H1+δ(Ω) : ‖U−U∗‖1+δ < r}.

We now are able to state the main result of this section.

Theorem 7.7 Assume Ω has C4+δ boundary and that f ∈ H2+δ(Ω) is small enough

to guarantee that Problem (5.1) has solution U∗ ∈ H3+δ(Ω) ∩ Sλ by Theorem 4.2.

Then there exists some r > 0 and constants c0, c1 > 0, depending only on f and Ω,

such that, for all Un ∈ V1+δ
D ∩ Br,

c0‖U‖21+k ≤ Gk(U;Un,0) ≤ c1‖U‖21+k (7.14)

for every U ∈ V1+k
D , with either k = 0 or k = 1.
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Proof. The upper bound follows from the triangle inequality and Lemma 4.1.
With Un ∈ H1+δ(Ω), Lemma 4.1 guarantees that AU, BU ∈ H1+ε(Ω) when U ∈
H1+ε(Ω). By Theorem 4.2 with m = 2 + δ, there is a solution to Problem (5.1),
U∗ ∈ H3+δ(Ω) ∩ Sλ. By assumption, Ω satisfies the requirements of Theorem 7.4 for
both k = 0 and k = 1 (in fact, for k ≤ 3). Thus, by Lemma 7.5, we know there exists
a positive constant, c∗, independent of U, such that

‖U‖1+k ≤ c∗(‖∇ · Ã(U∗)U‖k + ‖∇ ×U‖k) (7.15)

for all U ∈ V1+k
D . We now need only to extend this result to the operator linearized

about Un rather than U∗. Recall that we may denote F ′(Un)[U] = ∇·A(Un)U and
F ′(U∗)[U] = ∇ ·A(U∗)U. By the mean value theorem, we may write

F ′(Un)[U]−F ′(U∗)[U] = F ′′(Û)[U,Un −U∗] (7.16)

for some Û = θUn + (1− θ)U∗ with θ ∈ [0, 1]. Since Un ∈ Br, Û can be bounded in
the H1+δ norm in the following way:

‖Û‖1+δ = ‖θUn + (1− θ)U∗‖1+δ

≤ ‖θ(Un −U∗)‖1+δ + ‖U∗‖1+δ

≤ r + ‖U∗‖1+δ.

(7.17)

So, by (7.16), the triangle inequality, (7.13), and (7.15), we have

‖∇ · Ã(Un)U‖k + ‖∇ ×U‖k
= ‖F ′(Un)[U]‖k + ‖∇ ×U‖k
= ‖F ′(U∗)[U] + F ′′(Û)[U,Un −U∗]‖k + ‖∇ ×U‖k
≥ ‖F ′(U∗)[U]‖k − ‖F ′′(Û)[U,Un −U∗]‖k + ‖∇ ×U‖k
≥ ‖∇ ·A(U∗)U‖k + ‖∇ ×U‖k − c2‖Û‖1+δ‖U‖1+k‖Un −U∗‖1+δ

≥ c−1
∗ ‖U‖1+k − c2r(r + ‖U∗‖1+δ)‖U‖1+k

= (c−1
∗ − c2r(r + ‖U∗‖1+δ))‖U‖1+k

≥ C‖U‖1+k,

(7.18)

where C is guaranteed to be positive for r sufficiently small. Application of Inequal-
ity (2.1) completes the proof.

Corollary 7.8 Assume that Ω, f , U∗ and Un ∈ V1+δ
D ∩ Br satisfy the assumptions

of Theorem 7.7. Then, for some r sufficiently small, the unique U that satisfies

G0(U;Un, fn) = inf
V∈V1

D

G0(V;Un, fn) (7.19)

also satisfies

G1(U;Un, fn) = inf
V∈V2

D

G1(V;Un, fn). (7.20)

Proof. From the Riesz representation theorem and Theorem 7.7 with k = 0, we
have a unique minimizer, U, of the L2 based functional in (7.19) in H1(Ω). Similarly,
for k = 1, we also have a unique minimizer, U′, of the H1 based functional in (7.20)



18 MANTEUFFEL, MCCORMICK, SCHMIDT AND WESTPHAL

in H2(Ω). Since these functionals both have zero minimum, U′ must also minimize
the functional in (7.19). Thus, U = U′ ∈ H2(Ω).

Therefore, we are able to conclude that, under sufficient smoothness requirements,
minimizing the L2 based functional is sufficient to guarantee that each Newton iterate,
U = Un+1, remains in H1+δ(Ω).

8. Convergence of Newton’s Method. We now consider the sequence of iter-
ates arising from the minimization of each linearized functional under the assumptions
of Theorem 7.7. This section details the theory and assumptions for the convergence
of Newton’s method. As in Theorem 7.7, we assume the solution to the previous
Newton step to be in Br. Here, we show convergence of the iterates in the H1+δ norm
and that each iterate remains in Br.

Consider the Taylor expansion of F(U∗) about the current approximation Un:

0 = F(U∗) = F(Un) + F ′(Un)[U∗ −Un] +
1

2
F ′′(Ũ)[U∗ −Un,U∗ −Un], (8.1)

for Ũ = ωUn + (1− ω)U∗ with ω ∈ [0, 1]. As in Equation (7.17), if Un ∈ Br, then Ũ
satisfies

‖Ũ‖1+δ ≤ r + ‖U∗‖1+δ. (8.2)

Recall that we may write the Newton iterate, U, as the solution to Problem (7.2)
and, thus,

F ′(Un)[U−Un] = −F(Un), (8.3)

with ∇×U = ∇×Un = ∇×U∗ = 0.
By interpolation in Sobolev norms (see Chapter 7 of [4]), the bounds in (7.18)

can be extended from k = 0 and k = 1 to include any δ ∈ (0, 1). Applying (8.1),
(8.3), (7.13) and (8.2) and recalling that Un ∈ Br, we get

‖U∗ −U‖1+δ ≤
1√
c0
‖F ′(Un)[U∗ −U]‖δ + ‖∇ × (U∗ −U)‖δ

=
1√
c0
‖F ′(Un)[U∗ −Un]−F ′(Un)[U−Un]‖δ

=
1

2
√

c0
‖F ′′(Ũ)[U∗ −Un,U∗ −Un]‖δ

≤ c2

2
√

c0
‖Ũ‖1+δ‖U∗ −Un‖1+δ‖U∗ −Un‖1+δ

≤ c2

2
√

c0
(r + ‖U∗‖1+δ)r‖U∗ −Un‖1+δ

:= c3 r ‖U∗ −Un‖1+δ

(8.4)

which proves that Newton’s method converges for r sufficiently small. Again noting
that Un ∈ Br, we further note that

‖U∗ −U‖1+δ ≤ c3r‖U∗ −Un‖1+δ

≤ c3r
2.

To verify that U ∈ Br, we only need to show that c3r
2 < r. Substituting the definition

of c3, we see that this is satisfied for

r <
1

2
(
√

‖U∗‖21+δ + η − ‖U∗‖1+δ) <
η

4‖U∗‖1+δ

,
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where η =
8
√

c0

c2
. This shows that, for guaranteed convergence, larger solutions require

better initial guesses than smaller solutions (as measured in the H1+δ norm). We now
consider the issue of finding an appropriate “good” initial guess.

9. Multilevel Solution. As described above, the solution to nonlinear Sys-
tem (3.1) is generally comprised of several Newton iterations. The first few iterations
are crude approximations to the true solution of the nonlinear problem. It is therefore
appropriate to represent the early approximations on a mesh with fewer degrees of
freedom. As the Newton iterates remove more of the error due to the nonlinearity,
the approximations can be represented on increasingly finer meshes. In other words,
we wish to eliminate as much of the nonlinear error as possible on coarse grids where
it is less expensive.

The approach in [1] uses this multilevel nested iteration Newton idea with a
FOSLS finite element discretization and a multigrid solver to achieve a robust solu-
tion strategy for a certain class of nonlinear problems. Under particular assumptions
on the form of the nonlinearity, the finite element spaces used, the smoothness of
the solution, and the ellipticity of the linearized equations, convergence to the so-
lution is established with accuracy comparable to discretization error on the finest
level at a cost proportional to the degrees of freedom on the finest level. We briefly
summarize this Nested Iteration-Newton-FOSLS-Multigrid (NI-Newton-FOSLS-MG)
algorithm and detail the additional assumptions we must make for application to the
geometrically nonlinear elasticity system.

Define the hierarchy of discrete nested subspaces,

Vh0 ⊂ Vh1 ... ⊂ VhJ ⊂ V1+δ
D . (9.1)

The following algorithm describes the NI-Newton-FOSLS-MG method:
1. Begin with a zero approximation, U0, on coarsest level Vh0 .
2. Linearize the equations about the current approximation and form the dis-

crete least-squares minimization problem.
3. Apply m multigrid cycles to the resulting matrix equations.
4. Repeat steps 2 and 3 n times on the current level.
5. Interpolate the current approximation to the next finer level, Vhi .
6. Repeat steps 2-5 until desired accuracy is achieved.

To apply the results of [1] to the nonlinear elasticity system, we must make the
following series of assumptions.
A1: Assume the existence of a solution, U∗ ∈ H2+δ(Ω), to Problem (3.1). For our
problem, this is justified in Section 4. Theorem 4.2 with m = 1 + δ requires that the
boundary of Ω be C3+δ smooth and f ∈ H1+δ(Ω) in order to guarantee U∗ ∈ H2+δ(Ω).
In the context of elasticity, the internal forcing function, f , is generally at least this
smooth for a wide range of practical problems. Assuming a very smooth domain,
however, is a stronger restriction than we generally wish to adhere to in practice. We
do find that in practice this can be relaxed in some cases, but in many cases we must
consider complimentary methods for dealing with nonsmooth domains.
A2: Assume the operator of linearized elasticity maps V1+ε

D into Hε(Ω). This is
established in Section 7.
A3: Assume H1+ε ellipticity of the functional as in (7.1). Theorem 7.7 establishes this
for the pure displacement problem under the small strains assumption of Theorem 6.1.
A4: Assume boundedness of the second Fréchet derivative of F as in (7.13). Justifi-
cation of this is established in Lemma 7.6.
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A5: Assume the finite element spaces in (9.1) guarantee the following approximation
properties and inverse estimate. Let Ih

ν be a bounded Hν projection onto finite
element space Vh. We assume interpolation bounds of the form

‖U− Ih
1+δU‖γ ≤ Ch2+δ−γ‖U‖2+δ ∀γ ∈ [0, 1 + δ],

and the inverse estimate

‖U‖β ≤
C

hβ−γ
‖U‖γ ∀U ∈ Vh, β ∈ [0, 1 + δ], γ ∈ [0, β].

We concentrate on standard finite element subspaces of H1 (for example, bilinears on
rectangles) which exhibit these properties; see [5] for details.
A6: Assume a sufficiently fine coarsest level by insisting that Br ∩ Vh0 6= ∅ and that
the initial guess is sufficiently close to the solution by choosing U0 ∈ Br∩Vh0 . Bounds
on r can be found in the full theory in [1].

Under these assumptions, we may directly apply the theory developed in [1]. By
this theory, there are values of m and n, independent of h, in the multilevel algorithm
described above that result in an approximation on the finest level that is accurate
to the level of discretization error at a cost proportional to the degrees of freedom on
the finest level.

There are many contributions to the error in each approximation in the NI-
Newton-FOSLS-MG solution process. In the innermost iteration, the multigrid solver
reduces the algebraic error by performing a number of multigrid cycles before relin-
earizing. On each grid level, there is discretization error associated with the finite
element space used. A sufficient number of Newton steps must be performed on each
level to eliminate the error associated with the nonlinearity. For a truly optimal al-
gorithm, we must consider the sources of error that contribute to the total error in
the current approximation, and make decisions on how to proceed in the algorithm
in order to efficiently reduce the total error to an acceptable level.

10. Computational Results. To validate the theory presented above, consider
the numerical approximation to the solution of a pure displacement problem on do-
main Ω = [0, 1]2, with Lamé constants λ = 2.15, µ = 1. As a test problem, we choose
the solution to nonlinear Problem (3.1) to be

u∗ =

(

x(1− x)y2(1− y)2 sin(πx)
x2(1− x)2y2(1− y)2 cos(πy)

)

,

and let U∗ = ∇u∗ be the exact solution for the first stage problem. The right-side
function, f , is computed accordingly.

Denote by Vh the space of continuous piecewise bilinear finite elements on a
uniform grid of mesh size h. For convenience, we use this space for all test problems.
Each step of the pure displacement problem is found by minimizing the discrete
functional,

G(Uh;Uh
n, fn) = ‖∇ · (ÃnUh)− fn‖2 + ‖∇ ×Uh‖2, (10.1)

over the space

Vh
D = {Vh ∈ Vh : τ ·Vh = 0 on ∂Ω}.

We begin with an initial guess of U0 = 0 so that the first Newton step corresponds
to the linear elasticity case. Recall that we seek the solution to the original nonlinear
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problem as well as each linearized step. Define the following nonlinear functional to
measure the convergence to nonlinear Problem (3.1):

G(U; f) = ‖F(U)‖2 + ‖∇ ×U‖2. (10.2)

Because we are able to decouple the unknowns, U and u, we include the curl term
in (10.2) to ensure that U remains gradient-like throughout the solution process.
Furthermore, at convergence of Newton’s method, the nonlinear and linearized func-
tionals tend to take on the same values. Thus, a practical (albeit rough) measure of
how much of the error in the approximation is due to the nonlinearity can be obtained
by the difference in the linearized and nonlinear functional values.

For the test problem summarized in Table 10.1, we ensure that essentially all
algebraic error is removed from each system by reducing the residual by a factor of 106

using V (1, 1) cycles. Numerical results are reported for: grid level, N (h = (N +1)−1);

Newton step, m; linearized functional norm, G(Uh;Uh
n, f)

1/2; nonlinear functional

norm, G(Uh; f)
1/2; L2 error of the solution, ‖U∗ − Uh‖; and asymptotic multigrid

convergence factor, ρ. On each mesh size, the Newton iterations were started with
initial guess Uh

0 = 0.

N m G(Uh;Uh
n, f)

1/2 G(Uh; f)
1/2 ‖U∗ −Uh‖ ρ

8 1 4.73e-02 4.73e-02 2.16e-03 0.70
8 2 2.58e-02 2.58e-02 1.91e-03 0.67
8 3 2.58e-02 2.58e-02 1.91e-03 0.61
16 1 1.32e-02 4.44e-02 1.31e-03 0.70
16 2 1.29e-02 1.29e-02 4.84e-04 0.69
16 3 1.29e-02 1.29e-02 4.84e-04 0.46
32 1 6.66e-03 4.38e-02 1.26e-03 0.73
32 2 6.44e-03 6.44e-03 1.22e-04 0.73
32 3 6.44e-03 6.44e-03 1.22e-04 0.70
64 1 3.38e-03 4.37e-02 1.26e-03 0.77
64 2 3.22e-03 3.22e-03 3.02e-05 0.75
64 3 3.22e-03 3.22e-03 3.04e-05 0.72
128 1 1.73e-03 4.36e-02 1.27e-03 0.80
128 2 1.61e-03 1.62e-03 7.63e-06 0.79
128 3 1.61e-03 1.61e-03 7.53e-06 0.76

Table 10.1

Numerical results for the pure displacement problem with known smooth solution, without using

nested iteration, using V (1, 1) cycles.

By comparing the functional norm and L2 error values after three Newton steps
on a sequence of levels in Table 10.1, we see that the method achieves the optimal
discretization accuracy of O(h2) with respect to the L2 error norm, and O(h) with
respect to the linearized and nonlinear functional norms. Netwon’s method essentially
converges by the second iteration independent of the mesh size. But, even with such
fast convergence, we see that the nonlinear functional values of the first Newton step on
each level essentially stall, indicating that, even for this relatively simple problem, the
linear elasticity approximation is a poor approximation to the geometrically nonlinear
approximation.

We see that, for this problem, the multigrid convergence factors based on V (1, 1)
cycles are bounded above by about 0.8. While these are acceptable convergence
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factors, in the remainder of the numerical test problems, we use an AMG V (1, 1)
preconditioned conjugate gradient cycle to improve performance. We denote these
accelerated cycles by V (1, 1)− pcg, and because these cycles generally do not reduce
the error by a consistent amount, we report the average convergence factor, ρ̄, rather
than the asymptotic convergence factor. Refer to [6] for complete details on such
cycles.

The convergence factor does not take into account the amount of work done
per cycle. For an appropriate measure of the work expended by a multigrid cycle,
we define the cycle complexity as the total work per cycle relative to one fine grid
relaxation sweep. As a numerical estimate of the cycle complexity, we compute the
total number of nonzero matrix entries on each level, multiplied by the number of
relaxation sweeps on that level, divided by the number of nonzero matrix entries of the
finest level operator. Define the work per Newton step as the work per cycle multiplied
by the number of cycles per step, and the total work, WT , as the cumulative amount
of work expended relative to the current level. One such work unit is equivalent to
one relaxation sweep on the finest level.

We now wish to solve the same problem as above, but in the most efficient way
possible. To this end, we implement the nested iteration strategy described in Sec-
tion 9. Instead of reducing the residual of each linear system by a given amount, we
take only three V (1, 1)− pcg cycles per Newton step and one Newton step per level.
Table 10.2 summarizes these results.

N m G(Uh; f)
1/2 ρ̄ WT time (s)

8 2 2.64e-02 0.29 12.3 1
16 3 1.31e-02 0.25 16.0 4
32 4 6.61e-03 0.24 19.0 15
64 5 3.32e-03 0.24 20.8 60
128 6 1.66e-03 0.23 21.6 242

Table 10.2

Numerical results for the pure displacement problem with known smooth solution, using nested

iteration and three V (1, 1) − pcg cycles per step.

As Tables 10.1 and 10.2 show, the nested iteration method achieves optimal dis-
cretization accuracy, and the nonlinear functional on the finest grid is within 5% of
discretization error. The average convergence factors for the V (1, 1) − pcg cycles re-
main bounded and of very reasonable size for this problem. The total amount of work
required for the solution at each level is essentially bounded at less than 25 work
units, and the time to solution for each level scales almost exactly with the number
of degrees of freedom of the problem.

The numerical results presented here are for the pure displacement problem with
small strains. In practice, we find that the method performs similarly to the results
shown here for mixed boundary conditions and for somewhat larger strains than the
theory allows. In the next section, we show that the small strains assumption admits
a large class of interesting problems.

11. Validating the Small-Strains Assumption. According to Ciarlet in [2],
for any homogenous, isotropic, elastic material, the stress and strain tensors satisfy
the relation given by

Σ(E) = λtr(E)I + 2µE + o(E). (11.1)
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ν λ
Rubber 0.49 33.3
Lead 0.44 7.30

Aluminum 0.34 2.15
Nickel 0.30 1.56
Steel 0.28 1.22
Glass 0.25 1.00

Table 11.1

Material constants of homogenous isotropic materials.

But the model of geometrically nonlinear elasticity uses the linear stress-strain relation
given in Equation (3.2), that is, we drop the higher-order terms, o(E), under an
assumption of small strains. Thus, in analysis of the geometrically nonlinear elasticity
system, we are free to impose reasonable restrictions on the size of ‖E‖ without
limiting the scope of the model.

In Theorem 6.1, we assume that the strain associated with the solution of each
Newton iterate satisfies

‖ΦtΦ− I‖Fr <

√
2

λ + 3
, (11.2)

where we have scaled the problem such that µ = 1. In this section, we investigate
this restriction and provide examples of different configurations and their relation to
(11.2) and material constant λ.

Since physically we must have λ > 0, we first see that an upper bound on the
allowed strain is at ‖ΦtΦ − I‖Fr =

√
2/3 ≈ 0.471. We further notice that bound

(11.2) is always violated by any nonzero strain in the limit as λ → ∞. Thus, our
notion of “small strains” is coupled to the assumption of compressibility. The Poisson
ratio of an elastic material is given by

ν =
λ

2(λ + µ)
,

and we may think of the incompressible limit as λ→∞ (for bounded µ) or ν → 0.5.
In Table 11.1, we provide a few examples of common materials and their material
properties. Because we are chiefly concerned with the value of λ relative to µ, we
report the unitless λ← λ/µ. For unscaled constants with meaningful physical units,
consult [2]. For the numerical test problems in this paper, we uniformly choose to use
λ = 2.15, that of aluminum, as the level of compressibility.

Consider the two basic modes of strain: shear and tensile strain. A unit square
domain under either uniform shear or uniform tensile strain has corresponding dis-
placements of the form

ushear =

(

βy
0

)

, or utensile =

(

αx
0

)

.

Parameters β and α determine the extent of deformation as pictured in Figure 11.1.
Under these deformations, we may apply (6.1) and (6.3) to satisfy (11.2) for these

two cases. For pure shear strain, we require β and λ to satisfy

(λ + 3)2β2(β2 + 2)− 2 < 0,
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β α

1 1

Fig. 11.1. Pure shear and pure tensile strains.

and, for pure tensile strain, we require α and λ to satisfy

(λ + 3)2α2(α + 2)2 − 2 < 0.

These relations are satisfied for the parameters in the shaded regions shown in Fig-
ure 11.2.
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Fig. 11.2. Shear and tensile strain limits for small strains.

Now consider the following example of a deformed configuration with large dis-
placements but small strains. The strain of the discrete approximation is computed
pointwise from (6.3) for mesh size h = 1/16. The deformation is from a simple can-
tilever beam under a constant gravitational force. The max pointwise strain is 0.241
and, for this configuration to satisfy (11.2), the largest allowable λ is approximately
2.88, which corresponds to a Poisson ratio of ν = 0.37. Figure 11.3 shows a plot of
the deformed configuration.
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Fig. 11.3. Displacement plot for cantilever beam displaying “large displacement and small

strains”.

[1] A.L. Codd, T.A. Manteuffel, and S.F. McCormick, Multilevel first-order system least
squares for nonlinear elliptic partial differential equations, SIAM J. Numer. Anal., 41
(2003), pp. 2197–2209.

[2] P. G. Ciarlet, Mathematical Elasticity, Volume1: Three Dimensional Elasticity, North-
Holland, 1988.

[3] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, 1985.
[4] R. Adams and J. Fournier, Sobolev Spaces, Second Ed., Academic Press, 2003.
[5] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods,

Springer-Verlag, 1994.
[6] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, 2001.
[7] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory

and Algorithms, Springer-Verlag, 1986.
[8] K. Yosida, Functional Analysis, 6th Ed., Springer-Verlag, 1980.
[9] Z. Cai, C-O. Lee, T.A. Manteuffel, and S.F. McCormick, First-order system least squares

for linear elasticity: Further results, SIAM J. Sci. Comput., 21 (2000), pp. 1728–1739.
[10] , First-order system least squares for linear elasticity: Numerical results, SIAM J. Sci.

Comput., 21 (2000), pp. 1706–1727.
[11] , First-order system least squares (fosls) for spatial linear elasticity: Pure traction, SIAM

J. Numer. Anal., 38 (2001), pp. 1454–1482.
[12] Z. Cai, T.A. Manteuffel, and S.F. McCormick, First-order system least squares for

second-order partial differential equations: part ii, SIAM J. Numer. Anal., 34 (1997),
pp. 425–454.

[13] Z. Cai, T.A. Manteuffel, S.F. McCormick, and S.V. Parter, First-order system least
squares (FOSLS) for planar linear elasticity: Pure traction problem, SIAM J. Numer.
Anal., 35 (1998), pp. 320–335.


