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Abstract. Following earlier work for Stokes equations, a least-squares functional is developed for two- and
three-dimensional Oseen equations. By introducing a velocity flux variable and associated curl and trace equations,
ellipticity is established in an appropriate product norm. The form of Oseen equations examined here is obtained by
linearizing the incompressible Navier-Stokes equations. An algorithm is presented for approximately solving steady
state, incompressible Navier-Stokes equations with a Nested Iteration-Newton-FOSLS-AMG iterative scheme, which
involves solving a sequence of Oseen equations. Some numerical results for Kovasznay flow are provided.
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1. Introduction. Over the last decade, many successful theories were developed for a first-
order system formulation of Stokes and Navier-Stokes equations (see [1, 2, 3, 4, 5, 6, 7]). The first-
order system introduced in [7] for Stokes equations involved velocity, u, a new dependent variable,
U = ∇ut, refer to as velocity flux, and pressure, p. The least-squares functional using L2 and H−1

norms weighted appropriately by the viscosity constant, µ, was shown to be elliptic in the sense that
its homogeneous form is equivalent to squared product norm µ2‖U‖2 +µ2‖u‖21 +‖p‖2. Furthermore,
with the extended first-order system, which includes equations involving trace and curl related to
velocity flux, it was shown that the functionals using an L2 norm weighted by µ is elliptic in the sense
of squared product norm µ2‖U‖21+µ2‖u‖21+‖p‖21 (see [7]). This equivalence of the first-order system
least-squares method enables us to use standard finite element spaces to discretize the equations and
multigrid methods to solve the resulting linear systems with respective optimal approximation and
solver properties (see, for example, [8]).

The purpose of this paper is to apply this methodology to the steady-state, incompressible
Navier-Stokes equations with a linearized convection term, which yields the Oseen equations. A
method for linearization of the Navier-Stokes equations is to introduce a known function, β, con-
sidered as an approximation of velocity, u, in the convection terms. Thus, (∇ut)tu is replaced by
(∇(ut + βt))t(u + β), which is linearized as (∇ut)tβ + (∇βt)tu + (∇βt)tβ. As in [7], we begin
by reformulating the Oseen equations in two or three dimensions as a first-order system in terms
of a velocity flux variable, and then apply least-squares principles to this system using L2 and H−1

norms, which produces a functional we call G1 (see (3.1)). This system can be further extended to
a first-order system with equations involving the curl and grad trace of the velocity flux variable.
The associated least-squares functional, formed by summing L2 norms of each equation, we call G2
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(see (3.2)). We assume that the Oseen equations have a unique solution, which provides the desired
H1 and H2 regularities (see (3.5) and (3.12)). We are, thus, able to show that G1 is equivalent to
the squared L2 and H1 norms and that G2 is equivalent to the squared product H1 norm. It should
be noted that the constants involved in the equivalences we develop in this paper are naturally
dependent on the domain, Ω, the Reynolds number, λ = 1

µ , and the approximate velocity, β.
Incompressible Navier-Stokes equations can be approximately solved by initial triangulation of

the physical domain using a finite element grid that is as coarse as possible, but fine enough to
roughly resolve the domain. A Newton iteration is employed, which involves solving a sequence of
Oseen equations, each of which is discretized using a FOSLS formulation. The resulting discrete
equations are solved using an algebraic multigrid method (AMG). Once the Navier-Stokes equations
on the initial grid are sufficiently resolved, the solution is used as an initial guess for a refined
grid. This Nested-Iteration (NI) algorithm is repeated through a sequence of successively finer grids
until sufficient resolution of the Navier-Stokes equations is achieved. Numerical results presented in
section 6 show that this approach is highly effective. Computation on the finest grid is minimized,
which is advantageous because work on the coarse grids is relatively inexpensive. After the first few
grids, the solution on one grid is in the basin of attraction of the next finer grid, where only one
Newton step, that is, the solution of one Oseen system, is required. The approach here is similar to
the NI-Newton-FOSLS-AMG scheme described in [9] and applied to elliptic grid generation in [10].

It is well known that the basin of attraction for such methods can be very small. To get
within the basin of attraction, one often has to use on coarser levels more expensive and problem-
specific methods such as the Projection Multilevel (PML) method proposed in [11], which treats the
nonlinearity of the Navier-Stokes equations directly and does not appeal to any linearization step.
This method tends to be more robust and has typically a larger domain of convergence, but is in
its current form limited, for example, by its set-up cost and choice of smoother. A more significant
advantage of global linearization methods, e.g., the NI-Newton-FOSLS-AMG scheme, is that they
rely on the solution of large linear systems of equations and, therefore, can draw upon an extensive
repertoire on algorithms and knowledge, in particular, since substantial multigrid research is directed
on developing robust, fast, and efficient linear solvers.

In section 2, we provide the first-order system formulation with definitions, notation, and some
preliminaries. In section 3, ellipticity and continuity for the functionals are shown. In section 4,
H1 and H2 regularity is proved under the assumption of uniqueness of the solution of the Oseen
equations. The NI-Newton-FOSLS-AMG algorithm is described in section 5. In section 6, numerical
results for Kovasznay flow are presented.

2. The Oseen equations, its first-order system formulation, and other preliminaries.
Let Ω be a bounded, connected domain in <n(n = 2, 3) with Lipschitz continuous (C0,1) boundary,
∂Ω. Consider the stationary, incompressible Oseen equations with Dirichlet boundary conditions for
velocity, u = (u1, . . . , un)t, and the usual integral condition for pressure, p, as follows:




−µ∆u + (∇ut)tβ + (∇βt)tu +∇p = f , in Ω,

∇ · u = g, in Ω,
u = b, on ∂Ω,

(2.1)

where symbols ∆,∇, and ∇· stand for the Laplacian, gradient, and divergence operators, respectively
(∆u is the vector of components ∆ ui); β = (β1, . . . , βn)t is a given C1 vector function; µ is a viscosity
constant; f is a given vector function; g is a given scalar function; and b is the value of velocity on
the boundary. We further assume that

∫

Ω

p dΩ = 0.

For convenience, we adopt the notation introduced in [7]. A new independent variable related to
the n2-vector function of gradients of the displacement vectors, ui, i = 1, . . . , n, is introduced below.
It is convenient to view the original n-vector functions as column vectors and the new n2-vector
functions as either block column vectors or matrices. The velocity variable, u = (u1, . . . , un)t, is a
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column vector with scalar components ui, so that the gradient, ∇ut, is a matrix with columns ∇ui.
For a function, U, with n vector components Ui, we write

U = ∇ut = (U1,U2, . . . ,Un)
= (Uij)n×n,

which is a matrix with entries Uij = ∂uj/∂xi, 1 ≤ i, j ≤ n. We next define the trace operator, tr , as

trU =
n∑

i=1

Uii,

the divergence operator, ∇·, as

(∇ ·U)t = (∇ ·U1,∇ ·U2, . . . ,∇ ·Un)t
,

and the curl operator, ∇×, as

∇×U = (∇×U1, . . . ,∇×Un).

Note that, in the two-dimensional case, n = 2, the curl of u is naturally defined by means of the
scalar function

∇×
(

u1

u2

)
= ∂1u2 − ∂2u1.

We also define the tangential operator, n×, componentwise as

n×U = (n×U1, . . . ,n×Un).

The inner products and norms on the block column vector functions are defined in the natural
componentwise way; for example,

‖U‖2 =
n∑

i=1

‖Ui‖2 =
n∑

i,j=1

‖Uij‖2.

We use standard notation and definitions for the Sobolev spaces Hs(Ω)n, associated inner products
< ·, ·>s, respective norms, ‖ · ‖s, and semi-norms, | · |s, for s ≥ 0. When s = 0, H0(Ω)n is the usual
L2(Ω)n, in which case the norm and inner product are denoted by ‖ · ‖ and < ·, ·>, respectively.
L2

0(Ω) denotes the space of L2(Ω) functions p such that
∫
Ω

pdx = 0. The space Hs
0(Ω) is the closure

of C∞0 (Ω), functions in C∞(Ω) with compact support in the ‖ · ‖s norm. From now on, we omit
superscripts, n, and the domain, Ω, if the meaning is clear by context. We use H−1

0 (Ω) to denote
the dual spaces of H1

0 (Ω) with norm defined by

‖φ‖−1, 0 := sup
ψ∈H1

0 (Ω)

<φ,ψ>

‖ψ‖1 .(2.2)

We use

‖u‖∞ := ess sup
x∈Ω

|u(x)|.

Let

H(div; Ω) := {v ∈ L2(Ω)n : ∇ · v ∈ L2(Ω)}
and

H(curl; Ω) := {v ∈ L2(Ω)n : ∇×v ∈ L2(Ω)2n−3},
3



which are Hilbert spaces under respective norms

‖v‖H(div;Ω) :=
(‖v‖2 + ‖∇ · v‖2)

1
2

and

‖v‖H(curl;Ω) :=
(‖v‖2 + ‖∇×v‖2)

1
2 .

Define their subspaces:

H0(div; Ω) := {v ∈ L2(Ω)n : ∇ · v ∈ L2(Ω), n · v = 0 on ∂Ω}

and

H0(curl; Ω) := {v ∈ L2(Ω)n : ∇×v ∈ L2(Ω)2n−3, n× v = 0 on ∂Ω}.

Throughout the paper, we use c and C as generic constants whose dependence on problem
parameters is specified where they occur. Subscripts are used to denote special constants.

As in [7] for Stokes equations, we introduce the velocity flux variable, U = ∇ut, and define
λ = 1

µ . The incompressible Oseen equations (2.1) may be written as the following equivalent first-
order system:





U−∇ut = 0, in Ω,
−(∇ ·U)t + λ

(
Utβ + (∇βt)tu

)
+∇p = f , in Ω,
∇ · u = g, in Ω,

u = b, on ∂Ω.

(2.3)

where f and p have been scaled by λ.
Note that the definition of U, the continuity condition, ∇·u = g in Ω, and the Dirichlet condition

u = b on ∂Ω imply the respective properties

∇×U = 0 in Ω, trU = g in Ω, and n×U = n×∇b on ∂Ω.(2.4)

Then, the extended equivalent system for (2.3) is




U−∇ut = 0, in Ω,
−(∇ ·U)t + λ

(
Utβ + (∇βt)tu

)
+∇p = f , in Ω,
∇ · u = g, in Ω,
∇×U = 0, in Ω,

∇(trU) = ∇g, in Ω,
u = b, on ∂Ω,

n×U = n×∇b, on ∂Ω.

(2.5)

We close this section by recalling some known results.
Lemma 2.1.
(1) There is a constant, c1 > 0, dependent only on Ω, such that

‖p‖ ≤ c1‖∇p‖−1,0, for p ∈ L2
0(Ω).

(2) There is a constant, c2 > 0, dependent only on Ω, such that

‖p‖ ≤ c2|p|1, for p ∈ L2
0(Ω).

Proof. For (1) and (2), see Nečas [12] and [13] for a general proof.
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Theorem 2.1. Assume that domain Ω is a bounded convex polyhedron or has C1,1 boundary.
Then, for any vector function, v, in either H0(div; Ω)∩H(curl; Ω) or H(div; Ω)∩H0(curl; Ω), there
is a constant, c3, depending only on Ω, such that

‖v‖21 ≤ c3

(
‖v‖2 + ‖∇ · v‖2 + ‖∇×v‖2

)
.(2.6)

If, in addition, the domain is simply connected, then there is a constant, c4, depending only on Ω,
such that

‖v‖21 ≤ c4

(
‖∇ · v‖2 + ‖∇×v‖2

)
.(2.7)

Proof. See Theorem 3.7-3.9 in [13] and Lemmas 3.4 and 3.6 in [13].

3. Least-squares functional. The main objective of this section is to establish ellipticity and
continuity of least-squares functionals based on (2.3) and (2.5) in appropriate Sobolev spaces. For
simplicity of presentation, in the next two sections, we assume that the boundary conditions are
homogeneous, that is, we set b = 0.

The two main least-squares functionals considered in this paper are

G1(U,u, p; f , g) := ‖ − (∇ ·U)t + λ[Utβ + (∇βt)tu] +∇p− f ‖2−1,0(3.1)

+‖∇ · u− g‖2 + ‖U−∇ut‖2

and

G2(U,u, p; f , g) := ‖ − (∇ ·U)t + λ[Utβ + (∇βt)tu] +∇p− f‖2(3.2)
+‖∇ · u− g‖2 + ‖∇×U‖2 + ‖∇trU−∇g‖2 + ‖U−∇ut‖2.

Define

M1(U,u, p) := ‖U‖2 + ‖u‖21 + ‖p‖2

and

M2(U,u, p) := ‖U‖21 + ‖u‖21 + ‖p‖21.
Let

V0 := {U ∈ H1(Ω)n2
: n×U = 0 on ∂Ω},

V1 := L2(Ω)n2 ×H1
0 (Ω)n × L2

0(Ω),

and

V2 := V0 ×H1
0 (Ω)n × (H1(Ω)/<).

The first-order system least-squares variational problem for the incompressible Oseen equations
(2.3) is to minimize quadratic functional Gi over Vi, i = 1, 2: find (U,u, p) ∈ Vi such that

Gi(U,u, p; f , g) = inf
(V,v,q)∈Vi

Gi(V,v, q; f , g).(3.3)

We introduce the following technical result found in [3].
Lemma 3.1. For any u ∈ L2(Ω) and v ∈ H1(Ω), there exists a constant, c5, depending only on

Ω, such that

‖uv‖−1,0 ≤ c5‖u‖ ‖v‖1.(3.4)
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Proof. See Lemma 7 in [3].

To establish norm equivalence between G1 and M1, assume that β and λ are such that the
Oseen equations (2.1) have a unique solution, u ∈ H1(Ω)n and p ∈ L2

0(Ω), for every f ∈ H−1
0 (Ω)n,

where Ω has Lipschitz continuous (C0,1) boundary. Under this assumption, the following a priori
regularity estimate holds: there exists a constant, C1,r, which depends on λ, β, and Ω, such that

‖∇u‖2 + ‖p‖2 ≤ C1,r

(
‖ −∆u + λ[(∇ut)tβ + (∇βt)tu] +∇p‖2−1,0 + ‖∇ · u‖2

)
.(3.5)

This result is established in Theorem 4.1.
Theorem 3.1. Assume that Ω has Lipschitz continuous boundary. Then there are two positive

constants, C1,e and C1,c, depending on λ, β, and Ω, such that, for all (U,u, p) ∈ V1,

C1,eM1(U,u, p) ≤ G1(U,u, p;0, 0) ≤ C1,cM1(U,u, p).(3.6)

Proof. The upper bound in (3.6) is a simple consequence of the triangle inequality, the Cauchy-
Schwarz inequality, and the definition of ‖ · ‖−1,0. Because of limiting arguments, it is enough to
show that the lower bound in (3.6) holds for Ṽ = H(div; Ω)n ×H1

0 (Ω)n × L2
0(Ω). Now, using (3.5),

the triangle inequality, definition (2.2), and equation (3.4), we have

‖∇u‖2 + ‖p‖2 ≤ C1,r

(
‖ −∆u + λ[(∇ut)tβ + (∇βt)u] +∇p‖2−1,0 + ‖∇ · u‖2

)
(3.7)

≤ 2C1,r

(
‖ − (∇ ·U)t + λ[Utβ + (∇βt)tu] +∇p‖2−1,0 + ‖∇ · u‖2

+‖∇ · (U−∇ut)‖2−1,0 + λ2‖(∇ut −U)tβ‖2−1,0

)

≤ 2C1,r

(
G1(U,u, p;0, 0) + (λ2c2

5‖β‖21 + 1)‖U−∇ut‖2)

≤ c6 G1(U,u, p;0, 0),

where c6 depends on λ, β, and Ω.
Since

<U,U> = <U−∇ut,U> + <∇ut,U>(3.8)

≤
(
‖U−∇ut‖ ‖U‖+ ‖∇u‖‖U‖

)
,

dividing by ‖U‖ and using (3.7) yields

‖U‖2 ≤ c7G1(U,u, p;0, 0),(3.9)

where c7 depends on λ, β, and Ω. Now combining (3.7) and (3.9) with the Poincaré inequality from
Lemma 2.1 yields the lower bound. This completes the proof.

The following rseult can be found in Lemma 3.2 in [7].
Lemma 3.2. Under the assumptions of Theorem 2.1 with simply connected Ω, we have the

following:
(1) Let φ = (φ1, φ2)t and q = (q1, q2)t; if each qi ∈ H1

0 (Ω) ∩ H2(Ω) and each φi ∈ H1(Ω) is
such that ∆φi ∈ L2(Ω) and n · ∇φi = 0 on ∂Ω, then

α|∇ · q|21 ≤ |∇ · q + tr∇× φt|21 + ‖∆φ‖2,(3.10)

where α is a positive constant depending only on Ω.
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(2) Let Φ = (φ1, φ2,φ3)t and q = (q1, q2, q3)t; if each qi ∈ H1
0 (Ω)∩H2(Ω) and each φi ∈ H1(Ω)3

is divergence free with ∆φi ∈ L2(Ω)3 and n× (∇× φi) = 0 on ∂Ω, then

α|∇ · q|21 ≤ |∇ · q + tr∇×Φ|21 + ‖∆Φ‖2,(3.11)

where α is a positive constant depending only on Ω.
To establish norm equivalence between G2 and M2, assume that β and λ are such that the Oseen

equations (2.1) have a unique solution, u ∈ H2(Ω)n and p ∈ L2
0(Ω) ∩H1(Ω), for every f ∈ L2(Ω)n

and g ∈ H1(Ω)/<, where Ω is either a convex polygon or has C1,1 boundary. Under this assumption,
the following regularity holds: there exists a constant, C2,r, which depends on λ, β, and Ω, such
that

‖u‖22 + ‖p‖21 ≤ C2,r

(
‖ −∆u + λ[(∇ut)tβ + (∇βt)tu] +∇p‖2 + ‖∇ · u‖21

)
.(3.12)

This result is established in Theorem 4.2.
Theorem 3.2. Assume that Ω is either a convex polygon or has C1,1 boundary. Then there are

two positive constants, C2,e and C2,c, which depend on λ, β, and Ω, such that, for all (U,u, p) ∈ V2,

C2,eM2(U,u, p) ≤ G2(U,u, p;0, 0) ≤ C2,cM2(U,u, p).(3.13)

Proof. The upper bound in (3.13) is straightforward from the triangle and Cauchy-Schwarz
inequalities. To prove the lower bound in (3.13), note that the H−1 norm of a function is always
bounded by its L2 norm. Since V2 ⊂ V1, then G1 ≤ G2 on V2. Hence, by Theorem 3.1, we have

‖U‖2 + ‖u‖21 + ‖p‖2 ≤ C1,e G1(U,u, p;0, 0) ≤ C1,e G2(U,u, p;0, 0).(3.14)

It is, thus, required to show only that

‖U‖21 + ‖p‖21 ≤ C G2(U,u, p;0, 0).

From Theorem 2.1 and Lemma 2.1, we have

‖U‖21 + ‖p‖21 ≤ C
(‖U‖2 + ‖(∇ ·U)t‖2 + ‖∇×U‖2 + ‖∇p‖2) .(3.15)

Therefore, it suffices to show that

‖(∇ ·U)t‖2 + ‖∇p‖2 ≤ c8‖U‖2 + ‖∇trU‖2 + ‖∇×U‖2(3.16)
+‖ − (∇ ·U)t + λ

(
Utβ + (∇βt)tu

)
+∇p‖2 + c9‖u‖2,

for some positive constants c8 and c9 to be chosen later. We prove (3.16) only for the case n = 3
because the proof for n = 2 is similar.

First, assume that domain Ω is simply connected with connected boundary. Since n ×U = 0
on ∂Ω, we decompose U as

U = ∇qt +∇×Φ,(3.17)

where q ∈ H1
0 (Ω)n ∩H2(Ω)n and Φ ∈ H1(Ω)n with ∇ ·Φ = 0 (see [7]). Then, using the inequality

|x+ y|2 ≥ 1
2x2− y2, the triangle inequality, the Poincaré inequality, (3.11), and regularity (3.12), we

have

c8‖U‖2 + ‖∇trU‖2 + ‖∇×U‖2 + ‖ − (∇ ·U)t + λ[Utβ + (∇βt)tu] +∇p‖2 + c9‖u‖2
≥ c8 ‖∇qt‖2 + c8 ‖∇×Φ‖2 + |∇ · q + tr∇×Φ|21 + ‖∆Φ‖2

+
1
2
‖ −∆q + λ[β · (∇qt +∇×Φ) + (∇βt)tq] +∇p‖2

−‖λ(∇βt)t(u− q)‖2 + c9‖u‖2
7



≥ c8 ‖∇qt‖2 + c8 ‖∇×Φ‖2 + α|∇ · q|21 +
1
4
‖ −∆q + λ[(∇qt)tβ + (∇βt)tq] +∇p‖2

−1
2
λ2 ‖β · ∇×Φ‖2 − 2λ2‖(∇βt)tu‖2 − 2λ2‖(∇βt)tq‖2 + c9‖u‖2

≥ (c8 − 2c2
2λ

2‖∇β‖2∞) ‖∇qt‖2 + (c8 − 1
2
λ2‖β‖2∞) ‖∇×Φ‖2

+min{α,
1
4
} 1
C2,r

(‖∆q‖2 + ‖∇p‖2) + (c9 − 2λ2‖∇β‖2∞)‖u‖2

≥ min{α,
1
4
} 1
C2,r

( ‖(∇ ·U)t‖2 + ‖∇p‖2),

where c2 is the Poincaré constant; α is the constant in (3.11); and the last inequality is established
by choosing c8 and c9 so large that c8 − 2c2

2λ
2‖∇β‖2∞, c8 − 1

2λ2‖β‖2∞, and c9 − 2λ2‖∇β‖2∞ are
positive. This establishes (3.16), which yields the proof of the lower bound in (3.13) for simply
connected ∂Ω. The proof for convex polygonal domain or a domain whose boundary is C1,1 now
follows by an argument similar to the proof of Theorem 3.7 in [13].

4. Regularity estimates. In this section, we provide H1 and H2 regularity estimates of the
following Oseen equations in <n, where n = 2, 3:




−∆u + λ[(∇ut)tβ + (∇βt)tu] +∇p = f , in Ω,

∇ · u = g, in Ω,
u = 0, on ∂Ω,

(4.1)

where p ∈ L2
0(Ω),

∫
Ω

g dΩ = 0, and β is a given C1 function. We assume that equations (4.1) have
a unique solution, (u, p) ∈ H1(Ω)n × L2

0(Ω), when domain Ω is a bounded, connected subset of <n

with Lipschitz continuous boundary ∂Ω.
Lemma 4.1. Let Ω be a domain with Lipschitz continuous boundary. Then, for q ∈ L2

0(Ω), there
exists a function, v ∈ H1

0 (Ω)n, such that

∇ · v = q, |v|1 ≤ c10‖q‖,
where c10 is a constant depending only on Ω.

Proof. See Corollary 2.4 and the proof of Lemma 2.2 in [13] or Lemma 9.2.3 in [14].

The next result is the first step toward the H1 regularity estimate.
Lemma 4.1. Assume that Ω has Lipschitz continuous boundary. For f ∈ H−1

0 (Ω)n and g ∈ L2
0,

the weak solution of (4.1), (u, p) ∈ H1
0 (Ω)n × L2

0(Ω), satisfies the a priori estimate:

‖∇u‖+ ‖p‖ ≤ c11 (‖f‖−1,0 + ‖g‖+ ‖u‖) ,(4.2)

where c11 is a constant that depends on λ, β, and Ω.
Proof. Taking the pointwise dot product of the first equation in (4.1) with any v ∈ H1

0 (Ω)n,
integrating over Ω, and using integration by parts yields

{
<∇ut,∇vt > +λ <(∇ut)tβ + (∇βt)tu,v> − <p,∇ · v> = < f ,v>, v ∈ H1

0 (Ω)n,
<∇ · u, q> = <g, q>, q ∈ L2(Ω).

(4.3)
Since g ∈ L2

0(Ω), we can choose an s ∈ H1
0 (Ω)n, according to Lemma 4.1, such that

∇ · s = g and |s|1 ≤ c10‖g‖.(4.4)

Then, setting w = u− s ∈ H1
0 (Ω)n in (4.3), we have, for any v ∈ H1

0 (Ω)n and q ∈ L2(Ω), that




<∇wt,∇vt > +λ <(∇wt)tβ + (∇βt)tw,v> − <p,∇ · v> = < f ,v> − <∇st,∇vt >
−λ <(∇st)tβ + (∇βt)ts,v>,

<∇ ·w, q> = 0.
(4.5)
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Taking v = w in the first equation of (4.5)and using the second equation of (4.5), the Poincaré-
Friedrichs inequality in Lemma (2.1), and (4.4), we have that

‖∇wt‖2 = < f ,w> − <∇st,∇wt > −λ <(∇st)tβ + (∇βt)ts,w>(4.6)
− λ <(∇βt)tw + (∇wt)tβ,w>

≤ C
(
‖f‖−1,0 + ‖g‖

)
‖∇wt‖+ C‖∇wt‖‖w‖,

where C depends on λ, β, and Ω. Cancelling ‖∇wt‖ on both sides yields

‖∇wt‖ ≤ C (‖f‖−1,0 + ‖g‖+ ‖w‖) .(4.7)

To bound p, choose a v ∈ H1
0 (Ω)n according to Lemma 4.1 such that

∇ · v = p and |v|1 ≤ c10‖p‖.(4.8)

Thus, from the first equation of (4.5), using the Poincaré-Friedrichs inequality, and (4.8), we have

‖p‖2 = <∇wt,∇vt > +λ <(∇wt)tβ + (∇βt)tw,v> − < f ,v>

+ <∇st,∇vt > +λ <(∇st)tβ + (∇βt)ts,v>

≤ C
(‖∇wt‖+ |s|1 + ‖f‖−1,0

) |v|1
≤ C

(‖∇wt‖+ |s|1 + ‖f‖−1,0

) ‖p‖,

where C depends on λ, β, and Ω. Cancelling ‖p‖ and using (4.7) and (4.4), we have

‖p‖ ≤ C (‖f‖−1,0 + ‖g‖+ ‖w‖) .(4.9)

From (4.7), w = u− s ∈ H1
0 (Ω)2, and (4.4) with the Poincaré-Friedrichs inequality, we have

‖∇ut‖ ≤ ‖∇wt‖+ ‖∇st‖(4.10)
≤ C (‖f‖−1,0 + ‖g‖+ ‖w‖) ,

≤ C (‖f‖−1,0 + ‖g‖+ ‖u‖) ,

which, together with (4.9), implies that

‖∇ut‖+ ‖p‖ ≤ C (‖f‖−1,0 + ‖g‖+ ‖u‖) .

This completes the proof.

In the next theorem, we remove the ‖u‖ term in (4.2) by assuming uniqueness of the solution
for the Oseen equations.

Theorem 4.1. Let Ω have Lipschitz continuous boundary. Assume that the Oseen equations
(4.1) have a unique solution, (u, p) ∈ H1

0 (Ω)n × L2
0(Ω). Then this solution satisfies the following a

priori estimate:

‖∇u‖+ ‖p‖ ≤ c11

(‖ −∆u + λ[(∇ut)tβ + (∇βt)tu] +∇p‖−1,0 + ‖∇ · u‖) ,(4.11)

where c11 is a constant that depends on λ, β, and Ω.
Proof. The proof uses a standard compactness argument. Assume that (4.11) does not hold.

Thus, there exists a sequence, (ui, pi), i = 1, 2, . . ., in H1
0 (Ω)n × L2

0(Ω) such that

‖∇ui‖+ ‖pi‖ = 1, i = 1, 2, . . . ,(4.12)

and

‖ −∆ui + λ[(∇ut
i)

tβ + (∇βt)tui] +∇pi‖−1,0 + ‖∇ · ui‖ → 0 as i →∞.(4.13)
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Since H1
0 (Ω)n is compact in L2(Ω)n, the bounded sequence, ui ∈ H1

0 (Ω)n, has a convergent subse-
quence, denoted for convenience by ui again, such that

lim
i→∞

ui = u in L2(Ω)n.(4.14)

Thus, by (4.2), (4.13), and (4.14), we now show that (ui, pi) is a Cauchy sequence with respect to
the ‖∇u‖+ ‖p‖ norm: for given ε > 0, there exists a positive integer, N , such that

‖∇(ui − uj)‖ + ‖pi − pj‖
≤ C

(
‖ −∆(ui − uj) + λ[(∇(ui − uj)t)tβ + (∇βt)t(ui − uj)] +∇(pi − pj)‖−1,0

+‖∇ · (ui − uj)‖+ ‖ui − uj‖
)

≤ C
(
‖ −∆ui + λ[(∇ut

i)
tβ + (∇βt)tui] +∇pi‖−1,0 + ‖∇ · ui‖

+‖ −∆uj + λ[(∇ut
j)

tβ + (∇βt)tuj ] +∇pj‖−1,0 + ‖∇ · uj‖+ ‖ui − uj‖
)

≤ ε, for i, j ≥ N.

Let (u, p) be a limit of Cauchy sequence (ui, pi) in the above norm. Then, by the triangle inequality,
the definition of ‖ · ‖−1,0, and (4.13), we have

‖ −∆u + λ[(∇ut)tβ + (∇βt)tu] +∇p‖−1,0 + ‖∇ · u‖
≤ ‖ −∆(u− ui) + λ[(∇(u− ui)t)tβ + (∇βt)t(u− ui)] +∇(p− pi)‖−1,0

+‖∇ · (u− ui)‖+ ‖ −∆ui + λ[(∇ut
i)

tβ + (∇βt)tui] +∇pi‖−1,0 + ‖∇ · ui‖
≤ C

(
‖∇(u− ui)‖+ ‖p− pi‖

)
+ ‖ −∆ui + λ[(∇ut

i)
tβ + (∇βt)tui] +∇pi‖−1,0

+‖∇ · ui‖ → 0, as i →∞.

Therefore, we have



−∆u + λ[(∇ut)tβ + (∇βt)tu] +∇p = 0, in Ω,

∇ · u = 0, in Ω,
u = 0, on ∂Ω.

Hence, the assumption of uniqueness of solution of the Oseen equations implies that

u = 0 and p = 0,

which is contradiction to (4.12). This completes the proof.

Finally, if Ω is a convex polygon or has a C1,1 boundary, H2 regularity can be obtained. For
this, we rewrite (4.1) as





−∆u +∇p = f − λ[(∇ut)tβ − (∇βt)tu], in Ω,
∇ · u = g, in Ω,

u = 0, on ∂Ω.
(4.15)

Theorem 4.2. Let Ω be a convex polygon or have a C1,1 boundary and assume that (4.1) has a
unique solution. Then, for f ∈ L2(Ω)n and g ∈ H1(Ω), the solution of (4.1) is in H2(Ω)n×H1(Ω)/<
and satisfies

‖u‖2 + ‖p‖1 ≤ C2,r(‖ −∆u + λ[(∇ut)tβ + (∇βt)tu] +∇p‖+ ‖∇ · u‖1),(4.16)

where C2,r is a constant dependent on λ, β and Ω.
10



Proof. Applying well-known regularity results for generalized Stokes (see [13, 15]) to (4.15) and
using (4.11) in Theorem 4.1, we have

‖u‖2 + ‖p‖1 ≤ C
(‖f − λ[(∇ut)tβ − (∇βt)tu]‖+ ‖g‖1

)
(4.17)

≤ C
(‖f‖+ ‖∇ut‖+ ‖g‖1

)

≤ C
(‖ −∆u + λ[(∇ut)tβ + (∇βt)tu] +∇p‖+ ‖∇ · u‖1

)
.

Note that Theorems 4.1 and 4.2 are used to prove the norm equivalences in Theorems 3.1 and
3.2.

Remark 4.1. Substituting µu for u, µU for U, and µβ for β throughout sections 3 and 4
yields regularity, coercivity, and continuity in the scaled norms

M̂1(U,u, p) := µ2‖U‖2 + µ2‖u‖21 + ‖p‖2,(4.18)

M̂2(U,u, p) := µ2‖U‖21 + µ2‖u‖21 + ‖p‖21.(4.19)

The first order systems (2.3) and (2.5) more closely resemble the original Oseen equations (2.1) and
the functional G2 in (3.2) now resembles the functional G3 in (5.5) used in the numerical examples
presented in the following sections.

5. NI-Newton-FOSLS-AMG Algorithm. In this section, we briefly describe the NI-Newton-
FOSLS-AMG algorithm. See [9] for more detail.

Given the steady state, incompressible Navier-Stokes equations,



−µ∆u + (∇ut)tu +∇p = 0, in Ω,

∇ · u = 0, in Ω,
u = b, on ∂Ω,

(5.1)

and an approximate solution, (ui, pi), that satisfies the boundary conditions, ui = b on ∂Ω, we
replace u with u + ui and p with p + pi, which yields




−µ∆u + (∇ut)tui + (∇ut

i)
tu + (∇ut)tu +∇p = fi, in Ω,

∇ · u = gi, in Ω,
u = 0, on ∂Ω,

(5.2)

where
{

fi = µ∆ui − (∇ut
i)

tui −∇pi, in Ω,
gi = −∇ · ui, in Ω.

(5.3)

Dropping the nonlinear term, (∇ut)tu, from (5.2), we arrive at the Oseen equations,



−µ∆u + (∇ut)tui + (∇ut

i)
tu +∇p = fi, in Ω,
∇ · u = gi, in Ω,

u = 0, on ∂Ω.
(5.4)

An approximate solution to (5.4) can be found by minimizing a FOSLS functional over the finite
element space for the current grid. For all numerical experiments presented in this paper, we use

G3(U,u, p ; fi, gi) := ‖ − µ(∇ ·U)t + Utui + (Ut
i)

tu +∇p− fi‖2(5.5)
+‖∇ · u− gi‖2 + ‖2µ∇×U‖2 + ‖U−∇ut‖2

for this purpose. It follows directly from (5.4) and differs from G2(U,u, p ; f , g) proposed in (3.2)
in the following ways: a rescaling of the momentum equations by µ = 1/λ; the missing trace term,
∇tr(U); and the scale factor, 2µ, in the curl term. The additional scale factors are used simply
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because we observed better numerical performance with them. Concerning the trace term, because
of the incompressibility condition expressed by

∂xu1 + ∂yu2 = U11 + U22 = 0,

we are able to eliminate one of the variables by setting U11 = −U22, which in turn enforces ∇tr(U) =
0 and, therefore, makes this trace equation unnecessary. In three dimensions, a similar procedure
can be used to enforce the trace constraint. It should be noted that none of these modifications
would change the ellipticity proof of the preceding sections.

Standard linear, quadratic, cubic, and quartic finite elements are used in a Rayleigh-Ritz-type
discretization, and a conjugate gradient method preconditioned by algebraic multigrid (AMG) is used
for solving the resulting system of equations. Once an acceptable approximation to the solution of
(5.4) is computed, the approximate solution of (5.1) is updated as ui+1 = u + ui and pi+1 = p + pi.
If the new approximation, (ui+1, pi+1), is sufficiently close to the best possible approximation on
that grid level, the grid is refined and (ui+1, pi+1) becomes the initial approximation on the refined
grid. This is know as a nested iteration (NI) or full multigrid (FMG, c.f. [16, 17]). The approach
here is similar to the NI-Newton-FOSLS-AMG scheme described in [9] and applied to elliptic grid
generation in [10].

6. Numerical example. In this section, we give numerical results on approximating the
Navier-Stokes equations by solving a sequence of Oseen equations within the NI-Newton-FOSLS-
AMG framework. Our results show optimal finite element approximation properties and efficiency
of the nested iteration strategy. Error-versus-work (Figure 6.1) exposes the potential of FOSLS to
develop automated and work-optimal solution strategies that are capable of controlling stepsize and
polynomial order of finite elements.

All numerical experiments are based on Kovasznay flow, which is named after L.I.G. Kovasz-
nay who derived in [18] an analytic solution for the steady-state, incompressible Navier-Stokes
equations for a special laminar flow problem. The problem is posed on a rectangular domain,
[−.5, 2.0]x[−.5, 1.5]. Knowledge of the exact solution allows us to impose boundary conditions either
strongly or weakly. Here, we choose to impose all boundary conditions strongly. Note that for
accurate error estimates, FOSLS does not need to appeal to an exact analytic solution, since the
FOSLS functional itself naturally provides a sharp error measurement.

Nested iteration aims to improve the overall efficiency of a solution technique by grid contin-
uation. The basic idea behind nested iteration is to provide the solver on successively finer grids
with good initial guesses by first solving the problem on coarser levels. The advantage of such a
scheme is that it leads to substantially less work on the finer levels by eliminating the need for many
iterations there; this is an advantage for linear problems as well. It tends to produce approximations
that are in the basin of attraction on all levels. On each level, it remains to be determined when to
continue to iterate on the current Newton step, take another Newton step, refine the grid, or stop.
A little reflection suggests that the functional itself should be used to make this decision. Since the
decrease of the functional must eventually stall on each given level because of discretization error,
at some point before that stall it would be inefficient to iterate further and far more productive to
refine the grid. To describe this mathematically, let G3(Ul

n,ul
n, pl

n ; f , g)1/2 be the functional norm
of the current approximation on level l, and let G3(Ul

∞,ul
∞, pl

∞ ; f , g)1/2 be an observed estimate
of the best that we can do on level l, meaning that we determine this value by iterating enough on
each level to be confident that the functional norm stops changing in the first 4 significant decimal
places. We then say that it is more efficient to switch to the next finer level, level l + 1, if

G3(Ul
n,ul

n, pl
n; f , g )1/2 < (1 + ε) G3(Ul

∞,ul
∞, pl

∞; f , g )1/2,(6.1)

for some tolerance ε. Tolerance ε reflects what we mean by near the level of discretization error.
In this paper, we first compute G3(Ul

∞,ul
∞, pl

∞ ; f , g) on all levels. Then, under the objective of
finding a cost-optimal strategy, we manually select on each level the smallest amount of Newton
steps and multigrid cycles per Newton step that fulfill (6.1) for ε = 0.05. Of course, first computing
G3(Ul

∞,ul
∞, pl

∞ ; f , g) on the finest level makes picking an optimal strategy superfluous, but our
12



objective here is to demonstrate that the Navier-Stokes equations can be solved efficiently in a
FOSLS setting. The development of automated nested iteration techniques is the subject of future
research. Note that a tolerance of ε = 0.05 is much tighter than what is typically used in most nested
iteration or full multigrid processes. A somewhat looser tolerance would likely occur naturally in an
automatic NI strategy and lead to fewer Newton steps and V-cycles.

Tables 6.1-6.4 report on numerical experiments for optimal NI strategies to approximate Ko-
vasznay flow with Reynolds number 40 (λ = 40), using linear (Table 6.1), quadratic (Table 6.2),
cubic (Table 6.3), and quartic (Table 6.4) finite elements. In all tables, for each level l, we report on
the minimal number of Newton steps (NS) and V-cycles per Newton step (VC per NS) necessary to
satisfy (6.1) with ε = 0.05, as well as the functional norm, G

1/2
3 , resulting from this optimal choice.

Additionally, we report on the functional reduction factor as the resolution doubles, defined by

F (l) =
(

G3(Ul
n,ul

n, pl
n ; f , g )

G3(Ul+1
m ,ul+1

m , pl+1
m ; f , g )

)1/2

,(6.2)

where G3(Ul
n,ul

n, pl
n ; f , g ) is the functional value on level l obtained by choosing its level-optimal

strategy and G3(Ul+1
m ,ul+1

m , pl+1
m ; f , g ) the corresponding value on the next finer level. The different

subindices, n and m, are used to indicate that different numbers of Newton steps and V-cycles per
Newton steps can be used on different levels. Independent of the finite element discretization, we
start each NI strategy on the same coarse level. This level consists of 5×4 square elements (stepsize
h = 0.5), is denoted by l = 0, and is used as a guideline for other iteration levels. The next finer
level, l = 1, is constructed by subdividing each element into 4 elements of equal size. Hence, level
1 consists of 10 × 8 elements in all tables. The same refinement strategy is also used on all other
levels. So level l = 2 consists of 20 × 16 elements, level l = 3 of 40 × 32 elements, level l = 4
of 80 × 64 elements, and so forth. While in all numerical experiments the number of elements for
each level remains the same, the number of grid points (degrees of freedom) varies with the type
of finite elements used in the discretization. For example, on level 0, using linear finite elements
creates 30 grid points, quadratic finite elements correspond to 99, cubic finite elements result in 208,
and quartic finite elements have 357 grid points (with 6 degrees of freedom per grid point). On the
coarsest level, we start with a random initial guess. For subsequent linearization steps, we use the
current (interpolated) approximation. As the solver, we use conjugate gradients preconditioned by
AMG using V (1, 1) cycles and a Gauß-Seidel smoother.

The theory in [10] shows that, under appropriate conditions, our NI-Newton-FOSLS-AMG
scheme should converge in one overall step to an approximation on the finest level that is accu-
rate to the level of discretization error. Additionally, the numerical results in [10] suggests that only
one Newton iteration is required per level. Tables 6.1-6.4 support these predictions for Kovasznay
flow using either linear, quadratic, cubic, or quartic finite elements.On coarser levels, one might need
more than one Newton step to get within a specified tolerance of the discretization error. However,
on finer levels, one Newton linearization appears to be sufficient to fulfill (6.1). This suggests that
the solution on one grid level is close enough to the solution on the next grid level that only one
Newton step is required to approximate the solution to the level of discretization error. Moreover,
the product H1 equivalence of our functional is enough to ensure that our AMG method converges
uniformly in h for the linear element case. This optimality is confirmed by the results in Table 6.1.
However, performance of standard AMG degrades with higher-order elements and for decreasing h,
which is not surprising because AMG was developed for problems of M-matrix type. To restore
optimality, we would need to appeal to improved AMG techniques that are being developed for
higher-order finite element matrices (c.f. [19]).

Note that we appear to have obtained optimal finite element approximation properties. On each
level, the functional norm stagnates at the level of discretization error. The fact that we reached the
level of discretization error is also supported by the functional reduction factors. For smooth enough
solutions, standard finite element theory (cf. [14, 8, 13]) establishes an asymptotic functional norm
reduction factor for linear finite elements of 2, for quadratic finite elements of 4, for cubic finite
elements of 8, and for quartic finite elements of 16 as we double the resolution. The numerically
computed functional reduction factors, F (l), are reported in column 5 of Tables 6.1-6.4 and coincide
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very well with theory. The often slightly lower than theoretical value stems from the fact that our NI
strategy moves to a finer grid whenever we are within a certain tolerance of the level of descretization
error.

To understand the overall efficiency of our NI scheme, we need to assess its cost. Figure 6.1
illustrates numerical results for the functional norm versus the total work needed to achieve accuracy
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Fig. 6.1. Functional norm versus total work for Kovasznay flow with Reynolds number 40 using different finite
element discretizations. The NI strategies presented are based on the results of Tables 6.1-6.4.

to the level of discretization error for different finite element spaces. The total work, TW, is computed
by

TW =
∑

l

(∑
ν

complexityl
ν · cyclesl

ν

)
· nonzerosl,(6.3)

where the summations are over all grid levels, l, and all Newton steps, ν. Here, ’cyclesl
ν ’ is the

number of V-cycles done on level l at Newton step ν; ’nonzerosl’ is the number of nonzero matrix
entries; and ’complexityl

ν ’ is the cycle complexity, which is computed by summing the number of
nonzero matrix entries on level l, multiplied by the number of relaxation sweeps performed on that
level, divided by the number of nonzero entries in the fine-grid matrix.

As a remark on Figure 6.1, note that high accuracy favors high-order finite elements. Better
AMG effectiveness for higher-order elements would shift the curves for the higher-oder finite element
discretizations to the left. It also should be noted that solving Oseen equations without a nested
iteration strategy is much more expensive. To demonstrate this, we use the same set-up as in Table
6.1. Now, instead of starting on coarser levels, we start with a random initial guess on the finest
level (level l = 6). To satisfy (6.1) with the same tolerance, ε = 0.05, a total of 3 Newton steps and
7 V-cycles per Newton steps are necessary. By (6.3), this approach exceeds the total work for the
NI strategy given in Table 6.1 by more than a factor of 2.3.

REFERENCES

14



[1] P.B. Bochev and M. D. Gunzburger, Analysis of least-squares finite element methods for the Stokes
equations, Math. Comp., 63 (1994), pp 479–506.

[2] P. B. Bochev and M. D. Gunzburger, Least-squares methods for the velocity-pressure-stress formulation
of the Stokes equations, Comput. Methods Appl. Mech. Engrg., 126 (1995), pp 267–287.

[3] P. B. Bochev, T. A. Manteuffel and S. F. McCormick, Analysis of velocity-flux least-squares principles
for the Navier-Stokes equations. Part I., SIAM J. Numer. Anal. 35(1998), pp. 990–1009.

[4] P. B. Bochev, T. A. Manteuffel and S. F. McCormick, Analysis of velocity-flux least-squares principles
for the Navier-Stokes equations. Part II., SIAM J. Numer. Anal. 36(1999), pp. 1125–1144.

[5] J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, A least-squares approach based on a discrete minus
one inner product for first order system, Math. comp. 66 (1997), pp 935–955.

[6] Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for velocity-vorticity-pressure
form of the Stokes equations, with application to linear elasticity, ETNA, 3 (1995), pp. 150–159.

[7] Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for the Stokes equations, with
application to linear elasticity, SIAM J. Numer. Anal., 34 (1997), pp. 1727-1741.

[8] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, New York, 1978.
[9] A. L. Codd, T. A. Manteuffel, and S. F. McCormick Multilevel first-order system least squares for non-

linear elliptic partial differential equations SIAM J. Numer. Anal., 41 (2003), pp. 2197–2209 (electronic).
[10] A. L. Codd, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge, Multilevel first-order system least

squares for elliptic grid generation, SIAM J. Numer. Anal., 41 (2003), pp. 2210–2232 (electronic).
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Level NS VC Functional- Factor
l per NS norm G

1/2
3 F (l)

0 1 1 4.6821e+00
1 1 1 2.4416e+00 1.918
2 1 3 1.4372e+00 1.699
3 1 3 8.0246e-01 1.791
4 1 3 4.3277e-01 1.854
5 1 3 2.2375e-01 1.934
6 1 4 1.1024e-01 2.029

Table 6.1
Cost-optimal strategy for Kovaszany flow with
Reynolds number 40 using linear finite elements and
tolerance ε = 0.05 in (6.1).

Level NS VC Functional- Factor
l per NS norm G

1/2
3 F (l)

0 2 2 1.8465e+00
1 2 3 4.7450e-01 3.891
2 1 5 1.5250e-01 3.111
3 1 5 4.2941e-02 3.551
4 1 6 1.1036e-02 3.891
5 1 9 2.8201e-03 3.940

Table 6.2
Cost-optimal strategy for Kovaszany flow with
Reynolds number 40 using quadratic finite elements
and tolerance ε = 0.05 in (6.1).

Level NS VC Functional- Factor
l per NS norm G

1/2
3 F (l)

0 3 4 2.6549e-01
1 1 5 7.1924e-02 3.691
2 1 8 1.0957e-02 6.564
3 1 12 1.4664e-03 7.472
4 1 14 1.8621e-04 7.875

Table 6.3
Cost-optimal strategy for Kovaszany flow with
Reynolds number 40 using cubic finite elements and
tolerance ε = 0.05 in (6.1).

Level NS VC Functional- Factor
l per NS norm G

1/2
3 F (l)

0 3 8 1.1947e-01
1 1 10 7.9668e-03 14.995
2 1 16 5.6538e-04 14.091
3 1 22 3.6122e-05 15.652

Table 6.4
Cost-optimal strategy for Kovaszany flow with
Reynolds number 40 using quartic finite elements
and tolerance ε = 0.05 in (6.1).
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