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Mathematical Harmonies
Mark Petersen

What is music?  When you hear a flutist, a signal is sent from her fingers to your ears.  As
the flute is played, it vibrates.  The vibrations travel through the air and vibrate your
eardrums.  These vibrations are fast oscillations in air pressure, which your ear detects as
sound.

The Basics

The simplest model of a musical sound is a sine wave, were the domain (x-axis) is time
and the range (y-axis) is pressure.

)2sin( ftAP ��

where: P pressure, in decibels or Pascals
t time, in seconds
A amplitude (height of the wave) or volume, in decibels or Pascals
f frequency or pitch, in hertz.
T period, in seconds is the duration of one wave. fT 1�

Figure 1.  A sine wave with amplitude A = 60 dB and frequency f = 100 Hz.

In general, a sound has two characteristics: pitch and volume.  The pitch, or note played,
corresponds to the frequency of the wave.  High notes have high frequencies, so the
pressure varies quickly.  Low notes have low frequencies.  Frequency is measured in
Hertz (Hz), which is the number of waves per second.

Figure 2.  Two notes, both with amplitude A = 60 dB.  The lower note has frequency
f = 100 Hz (solid).  The higher note has frequency f = 125 Hz (dashed).

T = 0.01 sec
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Figure 3.  Frequency ranges of various instruments, in Hz.  Audible frequencies
range from 20 Hz to 20,000 Hz.

Volume, or loudness, corresponds to the amplitude of the pressure.  When one hears loud
music, like at a rock concert, the large pressure oscillations may be felt by the body.

Figure 4.  A loud note at A = 60 dB (solid) and a quiet note at A = 40 dB (dashed).
Both notes have a frequency of  f = 100 Hz.

Figure 5. Intensities of various sounds on a linear and logarithmic scale.
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Pressure is normally measured in Pascals, which is force per unit area (1 Pa = 1 N/m2).
As shown in Figure 5, most sounds are less than _ Pa, while loud ones are between 5 and
10.  The decibel scale is a log pressure scale, which is used for volume so that the quiet
sounds are spread out.  Pascals are converted to decibels as follows:

5102
log*20 ��� Pa

dB

p
p

The constant 5102
��  was chosen because 5102

��  Pa is considered the hearing
threshold.  This is where the dBp  is zero, because when Pa102 5���

Pap , we have

01log*20 ��

dBp .

Frequencies of Octaves and Harmonics

In order to understand why certain combinations of notes make harmony and others do
not, we will study the simplest instrument, a single string.  The formula for the frequency
of a vibrating string is

densityline

tension

length
frequency

 *2

1�

where: frequency is in Hertz = 1/sec
length is in meters
tension is a force, in Newtons = kg*m/sec2

line density is the string thickness, in kg/m

Notice that we may change the frequency, or pitch, in three ways:

1. Tighten the string:
�

 tension results in:
�

 frequency
2. Use a thicker string:

�
 line density results in: �  frequency

3. Use fingers on frets1: �  length results in:
�

 frequency

Specifically, frequency is inversely proportional to the length of the string.  This means if
I halve the length of the string, the frequency will double.  It turns out that a doubled
frequency is an octave higher.  Using these facts, we may construct the following chart.

Note Frequency Diagram of vibrating string

low low low A f = 55 Hz

low low A f = 110 Hz

low A f = 220 Hz

middle A f = 440 Hz

                                                            
1 Frets are the vertical bars on the neck of a guitar.

1/2

1/4

1/8



4

Figure 6.  Octaves of a vibrating string.
The sequence of frequencies of these octaves: 55, 110, 220, 440,É is a geometric
sequence.  A geometric sequence is a sequence where the previous term is multiplied by a
constant.  In this case, the constant is two.  A very simple example of a geometric
sequence is 2, 4, 8, 16, 32, É  If this sequence were graphed, it would look like an
exponential function.

The important point here is:

The frequencies of octaves form a geometric sequence.

This fact has many physical manifestations, such as:
�  Low instruments must be much larger than high instruments.  In general, an

instrument which is an octave lower must be twice as large.  For example, in the
string family, as we progress from violin, viola, cello, to bass, the cello is large and
the bass is very large.

�  Organ pipes must also double in size to go down an octave.  This is why the organ
pipes at the front of a church, if arranged in descending order, approximate an
exponential curve.

�  Frets on a guitar are far apart at the neck and close together near the body, a pattern
which also appears on log graphing paper.  Frets and log paper both follow an inverse
exponential pattern.

If we could watch our simple string vibrate with a slow motion camera, we would see
that it vibrates in many modes, as shown below.  The main mode is the fundamental
frequency or first harmonic, and gives the note its specified frequency.  The string may
vibrate in higher modes, or harmonics, at various times or simultaneously.

Note Frequency Harmonic Diagram of vibrating string

low low low A f = 55 Hz fundamental

low low A f = 110 Hz second

low E f = 165 Hz third

low A f = 220 Hz fourth

middle C# f = 275 Hz fifth

middle E f = 330 Hz sixth

approx. middle G f =  385 Hz seventh M

middle A f = 440 Hz eighth

1/2

1/3

1/4

1/5

1/6
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Figure 7.  Harmonics of a vibrating string.
The sequence of frequencies of these harmonics: 55, 110, 165, 220, 275, É form an
arithmetic sequence.  An arithmetic sequence is a sequence where a constant is added to
the previous term.  In this case, the constant is 55.  A simple example of an arithmetic
sequence is 2, 4, 6, 8, 10, É

To summarize our important points,

 The frequencies of octaves form a geometric sequence.
The frequencies of harmonics form an arithmetic sequence.

Let us overlay an arithmetic sequence (harmonics) on a geometric sequence (the octaves):

Arithmetic (harmonics) 2 4 6 8 10 12 14 16 18 20
Geometric (octaves) 2 4 8 16

Number terms in between: zero one three      seven

Figure 8.  Numerical example of harmonics overlaid on octaves.

Harmonics

                                   zero                     one                     three                  seven

Figure 9.  Harmonics of low low low A (as on Figure 7) shown as vertical lines below the
keyboard.  Frequencies are shown above the keyboard.

You may have noticed that the harmonics of A include C# and E, which are the notes of
an A-major chord.  We will return to this issue after some diversions.

Notice that the number of  arithmetic terms between each geometric is 0, 1, 3, 7, É  Figure 9.
shows the harmonics of low low low A, which have the same relation.
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Harmonics of Instruments

Two characteristics of a musical sound are volume and pitch.  How does one know the
difference between a flute and a violin, even when they play the same note and volume?
If we measured the air pressure near a flute, oboe, and violin all playing middle A
(440 Hz), it would look like this:

Figure 10.  Pressure variations with time of a flute, oboe, and violin.

Their pressure signals look very different, even though the amplitude and fundamental
frequencies are all the same.  This difference is caused by the relative amplitudes of the
higher harmonics.  This can be seen when the volume of each harmonic is graphed
separately, as follows.

Figure 11. Amplitudes of the harmonics of a flute, oboe, and violin playing middle A2.

                                                            
2 In advanced mathematics, these are called the Fourier coefficients of the wave forms in Figure 10.
Fourier Analysis is used to calculate these coefficients for a given signal.
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Notice that the fluteÕs harmonics consist mostly of the fundamental at 440 Hz and the
second harmonic at 880 Hz.  When the air pressure near a flute is actually measured, we
see the sum of these two harmonics.  This is equivalent to adding the two sine curves as
follows:

Fundamental: 440 Hz, 0.004 Pa = 46 dB

Second Harmonic: 880 Hz, 0.003 Pa = 43.5 dB

Sum of fundamental and second harmonic.

Figure 12.  Summation of 1st and 2nd harmonic of a flute.

The third graph is the signature pressure wave of the flute (compare to Figure 10).  The
same process could be used to produce the oboe and violin pressure waves, but the other
harmonics shown in Figure 11 must be added in.

Synthesized music imitates instruments by combining harmonics, just as we did for a
flute above.  Synthesized music often sounds fake because its harmonics are constant,
while real music has harmonics that change subtly as the musician varies timbre, vibrato,
and phrasing.



8

Beats and Intervals

When two sine waves are played with nearly the same frequency, beats are made.  These
beats can be heard by playing two guitar strings or flutes with one slightly flatter than the
other.

Two frequencies, 100 Hz and 110 Hz, both at 0.01 Pa

Summation of above frequencies.

This pattern produces super-waves which are audible as beats.

Figure 13.  Superposition of two waves of slightly different frequency.

Notice how the two curves in the first graph vary between being aligned and in opposite
alignment.   The summation curve in the second graph is doubled when these two graphs
are aligned and cancel out when they are in opposite alignment.

Beats are strongest when the frequency separation is between a half step and a minor
third.  When the separation is smaller than this, the beats are too slow for the ear to
distinguish.  When the separation is larger, the beats are too fast to hear.  This is shown
graphically in Figure 14.

For physiological reasons, the human mind dislikes beats.  We may therefore assume that
frequencies that are close enough to produce beats will not be harmonious.  In fact, the
strength of these beats can be used to represent the consonance, or harmoniousness,
between two frequencies.
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Figure 14.  Consonance verses frequency separation ( 12 ff )

Our conclusion is

Frequencies close to each other create beats and sound bad (dissonance)

We may use this knowledge to investigate why certain combinations of notes sound
harmonious and others do not.  First we must cover some music vocabulary.  An interval
is the difference between two pitches.  A third is an interval which is three steps above
the bass.  For example, in the key of C major, E is the third, and G is the fifth (see Figure
16).

Returning to our keyboard, let us examine the harmonics of several intervals.

Octaves  Harmonics of low low C and low C.  Octaves sound like the same note because
all of their harmonics line up.

Fifth  Harmonics of C and G.  Here every other harmonic lines up while the others are
not close enough to create beats.  The interval of a fifth is very harmonious.

A  B  C  D  E A  B C  D  E A  B A  B A  B A  B C  D  EF  G  F  G C  D  E  F  G C  D  E  F  G C  D  E  F  G

A  B  C  D  E A  B C  D  E A  B A  B A  B A  B C  D  EF  G  F  G C  D  E  F  G C  D  E  F  G C  D  E  F  G
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Third  Harmonics of C and E.  Many harmonics line up and most are not close enough to
create beats.  The interval of a third is also harmonious.

Diminished Fifth  Harmonics of C and F#.  Notice that no harmonics lines up and many
are close enough to create beats.  This interval is dissonant (not harmonious).

We can measure the dissonance of a pair of notes, like the C and F# above, as follows:
Look for all the harmonics of C that are within a half step of a harmonic of F#, but donÕt
line up exactly.  These are starred above.  The dissonance is high for a pair of notes that
have many of these close harmonics.

Because most of the harmonics of a third and fifth line up, these intervals have low
dissonance.  The diminished fifth has high dissonance.  Figure 15 shows a graph which
was constructed by testing many intervals for dissonance in this manner.

Figure 15.  Total dissonance of intervals along an octave.

We have just shown that the major scale can be developed mathematically!  Although
cultures of the world have many different scales, they all include some combination of
these intervals.  Ancient cultures sang and played these intervals intuitively without
knowing about frequencies and harmonics.

A  B  C  D  E A  B C  D  E A  B A  B A  B A  B C  D  EF  G  F  G C  D  E  F  G C  D  E  F  G C  D  E  F  G

A  B  C  D  E A  B C  D  E A  B A  B A  B A  B C  D  EF  G  F  G C  D  E  F  G C  D  E  F  G C  D  E  F  G
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Just and Equal Temperament

Because of the way the harmonics line up the frequency ratios of major intervals turn out
to be exact fractions, as shown in Figure 15.  For example, the frequency of G is exactly
3/2 times that of C.  Beginning with a frequency of 65.4 Hz for C, we may build the
major scale using these ratios.

Interval from C: 2nd 3rd 4th 5th 6th 7th octave

C D E F G A B C
Frequency ratio: 1 9/8 5/4 4/3 3/2 5/3 15/8  2
Frequency (Hz): 65.4 73.6 81.8 87.2 98.1 109 122.6 130.8
Ratio from one 1.125 (1.067) 1.111 (1.067)
note to the next: 1.111 1.125 1.125

Figure 16.  Frequencies of notes in key of C in just temperament.  Parenthesis
indicate half-steps.

This system of tuning is called just temperament because when these intervals are played
the harmonics line up and it sounds Òjust perfectÓ.

But perfection comes at a price.  Notice that the whole note frequency ratios are 1.125 for
CD, FG and AB, but 1.111 for DE and GA.  Suppose you had a flute tuned in just
temperament in the key of C.  Then the harmonics line up perfectly in the key of C, but
not in any other key.  For example, in the key of D the first ratio is 1.111, but it needs to
be 1.125.  With just temperament, your flute is only good in one key!

Just temperament instruments were the standard until the 1700s.  A flutist would have
had to own several flutes each tuned to a different key.  Likewise, harpsichords had to
have several keyboards for different keys.  Vocalists and stringed instruments without
frets are unaffected, because the pitch is not hardwired into the instrument but may be
chosen exactly.

In the 18th century Bach and other musicians advocated a new tuning standard.  In equal
temperament the ratio for each step is always the same.  The harmonics of an equal
tempered instrument do not exactly line up.  This is a small sacrifice, as only trained
musicians can hear the difference.  In return for Òalmost perfectÓ we get instruments that
can play in every key.  Modern instruments use equal temperament.
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Interval from C: 2nd 3rd 4th 5th 6th 7th octave

C D E F G A B C
Frequency (Hz): 65.4 73.4 82.4 87.3 98 110  123.5 130.8
Ratio from one 1.122 (1.059) 1.122 (1.059)
note to the next: 1.122 1.122 1.122

Figure 17.  Frequencies of notes in key of C in equal temperament.

In equal temperament the frequency ratio for a whole step is always 1.122, which is
between the 1.125 and 1.111 found in the just temperament scale.  This number is arrived
at as follows.

�  There are 12 half steps in an octave, and an octaveÕs frequency ratio is 2.
The frequency ratio of each half step is: 059.1212 �

�  There are 6 whole steps in an octave.

The frequency ratio of each whole step is: 122.126 �

Conclusion

The mathematics of harmonics and vibrating strings is a beautiful example of the
mathematics that surrounds us every day.  Music, one of our most ancient and universal
traditions, is at once quantifiable and emotional, both mathematical and moving.  My
hope is that this introduction can show students that math is not dry and boring, but
exciting, intriguing, and fun.
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