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This article presents musical examples and computer tools that could be used in
an introductory pde and Fourier Series class, where students work with the heat and
wave equations. The study of Fourier series from a musical perspective offers great in-
sight into basic mathematical concepts and the physics of musical instruments. Tools
available in Matlab allow students to easily analyze the wave forms and harmonics of
recorded sounds and to synthesize their own. These experiments are a thought pro-
voking way to understand how a wave form is composed of a summation of Fourier
Series basis functions and how this relates to the frequency domain. Many students
I have worked with have special musical interests and go on to conduct experiments
with their own instruments.

The plucked string. One of the standard problems in an introductory pde course is
the wave equation with Dirichlet boundary conditions, utt = c2uxx , x ∈ (0, L), t ≥ 0

u(0, t) = u(L , t) = 0, t ≥ 0
u(x, 0) = α(x), ut (x, 0) = β(x), x ∈ (0, L).

(1)

Physically, we can think of u(x, t) as the displacement of a plucked guitar string
with initial displacement α(x) and initial velocity β(x). Additional terms may be
added to the wave equation to account for string stiffness and internal damping [1].
The solution, obtained by separation of variables, is

u(x, t) =
∞∑

n=1

sin
nπ

L
x

(
an cos

nπ

L
ct + bn sin

nπ

L
ct

)
, (2)

where

an = 2

π

∫ L

0
α(x) sin

nπ

L
x dx (3)

bn = 2L

cnπ2

∫ L

0
β(x) sin

nπ

L
x dx (4)

are the Fourier coefficients of α(x) and β(x). Using the trig identity cos(x − y) =
cos x cos y + sin x sin y we may rewrite the solution as

u(x, t) =
∞∑

n=1

pn sin
nπ

L
x cos

nπ

L
c (t − γn). (5)
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Figure 1. Modes of a vibrating string.

The solution is a superposition of many modes, where each mode oscillates at a
different frequency as shown in Figure 1. The first factor in the sum, sin nπ

L x , is a
snapshot of the vibrating string. The second factor, cos nπ

L c(t − γn), shows how this
mode vibrates with time. The nth mode has a frequency of fn = n c

2L , a phase shift of
γn , and the amplitude of each mode is pn = √

a2
n + b2

n .
A musician would call f1 the fundamental frequency and f2, f3, . . . its harmonics.

The pitch of each note on the keyboard is associated with a specific fundamental fre-
quency. For example, a low low low A has a fundamental frequency of 55 Hz, and
harmonics occur at 110, 165, 220, 275, . . . . Note that the harmonics form an arith-
metic sequence, fn = n f1. This is because a string with fixed endpoints can physically
only vibrate in the modes shown in column 1 of Figure 1.

The wave speed c can be shown to be the square root of the string’s tension over its
line density [1, p. 36]. Thus the pitch of a string is described by three parameters,

f1 = 1

2 length

√
tension

line density
. (6)

This makes sense, as tightening a guitar string increases its pitch while choosing longer
strings and thicker strings lowers the pitch. A guitarist changes pitch while playing by
shortening the string against the frets.

The solution (5) describes a vibrating string, but other instruments like woodwinds
and brass are similar. When an instrument vibrates it sets the surrounding air in motion,
producing oscillations in pressure. These are the sound waves detected by your ear.
Thus a microphone near our vibrating string would record

y(t) =
∞∑

n=1

pn cos 2π fn (t − γn). (7)
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Physically the amplitudes pn describe the energy associated with each harmonic. The
power spectrum is the distribution of energy among the harmonics, in this case the
vector [p1, p2, p3, . . .]. For real sounds the power is concentrated in the first 10 to 20
harmonics and the power spectrum is a continuous function of frequency.

Harmonic analysis. At this point there is a wealth of experiments that a student (or
instructor) could conduct. Questions about how the spectrum of harmonics changes
for different instruments and notes can be investigated using Matlab. The function
analyze.m [4] uses the built-in Matlab functions wavread and fft to calculate
the power spectrum of a Microsoft wave (.wav) sound file. A similar function named
auread can be used for UNIX audio files.

The plots produced by analyze.m can be used to identify the pitch and volume of
a sound sample. Figure 2 shows the results of low A, middle A, and high A played on a
piano. The waveforms on the left are the pressure variations with time detected by the
microphone. The amplitude of the wave is a measure of its pressure oscillations and
corresponds to the volume of the sound. Volume is usually measured in decibels, the
logarithm of pressure. One does not usually think of sound in terms of pressure, but
feeling the pressure waves of sound at a concert or near loud equipment is a common
experience.
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Figure 2. Analysis of piano notes using analyze.m

From the wave forms in Figure 2 one can immediately see the periodic nature of
each sound and pick out its fundamental period T1. The corresponding fundamental
frequencies ( f1 = 1/T1) are 220 Hz, 440 Hz, and 880 Hz for the three notes and can be
seen as the first peaks on the power spectrums. The fundamental frequency f1 doubles
with each octave, and the harmonics are spaced in proportion to f1 as expected. The
spectrum is nonzero between harmonics because the waves are not perfectly periodic.

Notice that the difference in frequency between any two consecutive harmonics is
the fundamental frequency. The human mind unconsciously uses this fact to identify
a pitch even if the fundamental and lower harmonics are missing. This is how small
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speakers make the low sounds of a bass guitar without actually producing low frequen-
cies (Exercise 2).

Going up an octave always corresponds to a doubling in frequency. Thus the fre-
quencies of octaves form a geometric sequence. For example, the frequencies of As
are 55, 110, 220, 440, 880 . . . . According to (6) an octave’s doubling in frequency can
be accomplished by halving the length of the string, as can be verified on any stringed
instrument.

The fact that octaves form a geometric sequence has many physical manifestations,
such as:

• Low instruments must be much larger than high instruments. In general, an instru-
ment which is an octave lower must be twice as large. For example, in the string
family, as we progress from violin, viola, cello, to bass, the cello is large and the
bass is very large.

• Organ pipes must also double in size to go down an octave. This is why the or-
gan pipes at the front of a church, if arranged in descending order, approximate an
exponential curve.

• Frets on a guitar are far apart at the neck and close together near the body, a pattern
which also appears on log graphing paper. Frets and log paper both follow an inverse
exponential pattern.

The human mind can identify a seemingly infinite number of instruments by their
sound alone, even if they are playing the same pitch at the same volume. What is it that
differentiates the pressure signal of a flute from that of a violin? Figure 3 shows the
wave form and spectrum of several instruments playing middle A (440 Hz). The wave
forms look completely different, but all have the same fundamental period of 0.0023
seconds. The timbre, or sound quality of an instrument, is due to the relative strengths
of the harmonics. A pure tone, composed of the fundamental alone, is shrill and metal-
lic, like a tuning fork. Power in the higher harmonics add warmth and color to the
tone. Figure 3 shows that a flute is dominated by the lower harmonics, accounting for
its simple whistle-like timbre. In contrast violins have power in the higher harmonics,
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Figure 3. Analysis of several instruments using analyze.m
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which gives them a warmer, more complex sound. The effect of higher harmonics is
clearly seen in the waveform, where the violin has complex oscillations within each
period.

Now consider a singer who sings different vowels at the same pitch and volume.
Again, the difference between vowels is the distribution of power among the harmon-
ics. In 1859 Helmholtz was able to detect individual harmonics using membranes and
bulbs which vibrate sympathetically at specific frequencies [2, p. 42]. He then created
a series of tuning forks tuned to the harmonics of b�. Each fork was forced to vibrate
electromagnetically while its volume was controlled by a cover. He astonished audi-
ences by creating synthesized vowel sounds by simply adjusting the covers of these
tuning forks (see Exercise 3).

Synthesis. At this point, I present the following role-play to my students:

Imagine you are an engineer for Yamaha in 1958, and your boss comes in the of-
fice one day and says, “Can we make a keyboard that sounds like any instrument
you choose? That could revolutionize the music industry!” And you say, “Yes, I
know how to do that!”

We know that musical sounds can be analyzed to measure the distribution of power in
the harmonics. For a particular instrument, this distribution is the key to synthesizing
its sound. Given a fundamental frequency f1 and power pn associated with the nth
harmonic, the synthesized waveform is

y(t) =
N∑

n=1

pn cos 2πn f1t . (8)

The function synthesize.m [4] creates sound wave data in this way, and then con-
verts the data into a wave sound file with the Matlab function wavwrite. Students
can use this simple program to experiment with different combinations of harmonics.
Higher frequencies sound louder to the human ear than lower frequencies of the same
decibel level (amplitude). Specifically, when choosing the power spectrum to create a
sound, frequencies between 3000 and 5000 Hz should have a tenth the amplitude of
lower frequencies in order to produce the same apparent volume [3, p. 233].

Early synthesized music used a power spectrum which was constant in time, which
gave it a false, drone sound. In reality the power spectrum changes as the musician
varies volume, vibrato, and phrasing. Modern keyboards vary the power spectrum with
time to account for the attack and decay of a hit piano string or plucked banjo. They
also vary the spectrum for high, mid, and low ranges as real instruments do. Syn-
thesized music has improved dramatically since the sixties, but it could never be as
variable or expressive as a musician on a live instrument.

Exercises. See [4] for Matlab code, sample music files, and selected solutions.

1. Analyze .wav files of two different instruments. Identify the fundamental fre-
quency in the wave form and power spectrum for each case. Do the relative
amplitudes of the harmonics explain the timbres of the instruments?

2. The human mind can identify a pitch even if the fundamental and lower har-
monics are missing. Synthesize sounds where p1 = 0, where p1 = p2 = 0, and
where p1 = p2 = p3 = 0. What pitch do you hear? Can you still recognize the
fundamental in the wave form or the power spectrum?
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3. Helmholtz suggested the following power spectrums to synthesize vowels [2,
p. 123, 543].

p1 p2 p3 p4 p5 p6 p8 p16

U oo as in boot f f m f pp
O oh as in no m f f m f p
A ah as in caught p p p m f m f p p
E eh as in bed m f m f f f
I ee as in see m f p p m f

Use synthesize.m to produce these vowels.
4. According to equation 7, each mode may have a phase shift γn . Revise

synthesize.m to include phase shifts, and create a sound where the second
harmonic is shifted from the first. Does this shift affect the waveform, spectrum,
or sound of the note? After doing this same test with electromagnetically forced
tuning forks, Helmholtz concluded that phase shifts do not affect the sound.

5. When two notes with fundamental frequencies f and f̃ are played together and
exactly on pitch, one may hear a difference tone | f − f̃ | which is lower than
the original notes or a summation tone f + f̃ which is higher. Sketch the wave-
forms of the fundamental of a note and its fifth to explain why difference and
summation tones can be heard, and try to produce them with Matlab.

6. Beats can be produced by playing two strings of slightly different frequencies
simultaneously. Plot sin 2π f t , sin 2π( f + ε)t , and their sum to show this effect.
Use a trig identity to rewrite the sum as the product of a fast wave and a slow
wave.

7. Helmholtz said 33 beats per second is the most painful beat rate to listen to. If
f = 261.63 Hz (middle C) what lower frequency, when played with f , produces
33 beats per second? Do the same for f = 523.25 Hz (high C) and see what
notes your calculated frequencies correspond to. Create these beats with Matlab
and see if you agree with Helmholtz.
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