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Abstract

Two related approaches for solving linear systems that arise from a higher-order fi-
nite element discretization of elliptic partial differential equations are described. The
first approach explores direct application of an algebraic-based multigrid method
(AMG) to iteratively solve the linear systems that result from higher-order dis-
cretizations. While the choice of basis used on the discretization has a significant
impact on the performance of the solver, results indicate that AMG is capable of
solving operators from both Poisson’s equation and a first-order system least-squares
(FOSLS) formulation of Stoke’s equation in a scalable manner, nearly independent
of basis order, p, for 3 < p ≤ 8. The second approach incorporates precondition-
ing based on a bilinear finite element mesh overlaying the entire set of degrees of
freedom in the higher-order scheme. AMG is applied to the operator based on bi-
linear finite elements and is used as a preconditioner in a conjugate gradient (CG)
iteration to solve the algebraic system derived from the high-order discretization.
This approach is also nearly independent of p. Although the total iteration count is
slightly higher than using AMG accelerated by CG directly on the high-order opera-
tor, the preconditioned approach has the advantage of a straightforward matrix-free
implementation of the high-order operator, thereby avoiding typically large compu-
tational and storage costs.
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1 Introduction

One of the goals in approximating the solution of elliptic partial differential
equations is to formulate a method in which the computational cost scales
optimally. More precisely, we seek a method for which the number of opera-
tions is proportional to the number of discrete unknown values. For elliptic
problems with low-order discretizations (finite element or finite difference),
this was achieved by using the multigrid algorithm developed by, for example,
Brandt [1] and Hackbusch [2]. Multigrid, and other more recent multilevel al-
gorithms (e.g., [3]), are often optimal due to their ability to properly handle
different scales present in the problem – effectively reducing both smooth and
oscillatory error.

The increased interest in developing optimal solution schemes for elliptic prob-
lems is paralleled by an increased interest in using higher-order discretization
schemes. Standard isoparametric polynomial approximation theory [4] states
that, under certain assumptions, the approximation error in the L2-norm is
bounded according to

‖u− uh‖0 ≤ Chp‖u‖Hp(Ω), (1)

where ‖ · ‖Hp is the standard Hp Sobolev norm [4], ‖ · ‖0 is the H0 or L2-
norm, u is the exact solution of the PDE, and uh is the solution of the discrete
level h problem. Thus, under certain assumptions, if u ∈ Hp(Ω) and if a
finite element basis of at least degree p − 1 is used, then we achieve O(hp)
convergence. This potentially high accuracy for sufficiently smooth problems
has lead to extensive development of higher-order finite element methods, as
e.g., spectral element methods [5].

Much of the current research in efficient solution methods for solving the
linear system arising from higher-order discretizations relies on Schwarz-based
methods, which consist of local block solves and a coarse-grid solve. The work
of Widlund [6,7], Mandel [8], and others demonstrated that solver optimality
is indeed achievable in that setting. However, these methods may still be
computationally expensive since the local blocks are typically dense and solved
with a direct method. More importantly, these methods often require a coarse-
grid solve that can become relatively expensive, particularly since the coarse
grid must be fairly dense. On the other hand, the work of Fischer [9–11,5]
and others has overcome some of the high computational cost associated with
such methods for certain classes of problems. Lottes and Fischer [12] have
also conducted a comparison between Schwarz-based methods and multigrid
methods.

Attempts have been made to apply multilevel ideas directly to higher-order
finite element discretizations without using a Schwarz-based approach. The
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earliest approaches used coarse grids based on lower-order polynomials. For
example, if a basis of polynomial order p is used, the coarse grids would consist
of polynomials of order p/2, p/4, etc. Once the polynomial order was reduced
to p = 1, the traditional geometric multigrid algorithm could then be used.
The early results on 1-dimension problems are encouraging and show optimal
solver performance [13,14]. However, the extension to higher dimensions re-
sults in non-optimal performance due to the dependence of the convergence
factor, ρ, of the multigrid iteration using a Jacobi smoother on the order of
the polynomial basis, p. More precisely, ρ = 1− c/p, where c is a constant in-
dependent of p [13]. It was shown that using a Chebyshev acceleration scheme
resulted in the convergence factor being 1 − c/

√
p, but still not independent

of p.

A third multilevel approach for solving higher-order discretizations is the
multi-p preconditioner [15]. This technique is based on using the basis

φ0(ξ) =
1 − ξ

2
, (2)

φ1(ξ) =
1 + ξ

2
, (3)

φj(ξ) =

√

2j − 1

2

∫ ξ

−1
Pj−1(t) dt , (4)

where Pj−1(t) is the Legendre polynomial of degree j − 1, j = 2, 3, . . . , p. The
modal basis functions generate an almost diagonal stiffness matrix in 1-D.
While the numerical experiments based on this method indicate that using the
preconditioner results in an operator condition number that is independent of
p, the total computational cost is not scalable. This is likely due to the fact
that the multi-p V-cycle uses p− 1 coarse grids, with each level having a grid
corresponding to a polynomial order of p−1, p−2, ... 1. Relaxation on several
relatively dense levels results in a computationally expensive algorithm.

A fourth method for solving matrices from higher-order discretizations, which
is related to multilevel methods, is to precondition the higher-order operator,
As, using a lower order operator, Af , obtained by overlaying the higher-order
nodes with a lower-order finite element mesh. The idea of lower-order pre-
conditioning was originally proposed by Orszag [16] and has been studied by
others [17–19]. Numerical results by Fischer [10] show that the condition num-
ber of A−1

f As is bounded and that the bound is particularly low when an ap-
proximate, lumped mass matrix is used. Alternatively, Deville and Mund [18]
show that bilinear finite elements are preferable to linears or triangles if the
mass matrix is not lumped. For a single spectral element and p = 40, the
condition number is 7.02 without mass-matrix lumping and only 2.35 with
lumping. In either case, the preconditioned operator should be easily handled
by a bounded number of Krylov iterations.
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The final method for combining higher-order discretizations and multilevel
solvers is to use an algebraic multigrid (AMG) solver. AMG is based on ap-
plying multigrid ideas directly to the discrete operator [20] and is especially
helpfully in the case of unstructured or highly irregular grids. Early attempts
at applying AMG directly to the high-order discretization operator, As, are
discouraging [21]. However, as we show in this paper, this poor performance
is the result of several obstacles that can be overcome with relatively modest
adjustments, including the the use of unevenly space nodes for the precondi-
tioning basis. The goal of this paper is to explore this avenue and other aspects
of the use of AMG on operators resulting from high-order discretizations (i.e.,
1 < p ≤ 8).

2 Discretizations

The standard benchmark problem for studying the performance of linear
solvers on matrices derived from the discretization of two-dimensional elliptic
partial differential equations is Poisson’s equation:

−∇2u = f . (5)

Using the Galerkin finite element model, the weak form of (5) for a chosen
basis V = (ψ1, ψ2, . . . , ψn) is given by:

a(uh, vh) = (f, vh) ∀ vh ∈ V , (6)

where

a(uh, vh) =
∫

Ω
∇uh · ∇vh, (7)

(f, vh) =
∫

Ω
fvh . (8)

The weak problem (6) is equivalent to solving the following system of algebraic
equations:

Ahuh = fh , (9)

where

Ah = [a(ψj, ψi)]
n

i,j=1 , (10)

fh =
[
∫

Ω
fψi

]n

i=1
. (11)

The matrix Ah is typically called the stiffness matrix. Likewise, we refer to

Mh = [(ψj, ψi)]
n

i,j=1 (12)

as the mass matrix.
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There are a variety of choices for the approximation basis, V , which can loosely
be divided into two groups: nodal and modal. The nodal basis is constructed
using a Lagrangian interpolant such that ψi(ξj) = δij, where δij is the Kro-
necker delta. The choice of node location does not typically affect the final
approximation, since all bases of the same order span the same space, but
the location greatly affects the condition of the discrete system. Choosing
evenly spaced nodes is appealing since it enables straightforward adaptive hp-
refinement. However, the resulting matrix can be extremely ill-conditioned,
particularly as the polynomial order increases past 4 [22]. A second choice
for node locations is the Gauss-Lobatto-Legendre (GLL) quadrature points.
This choice is popular since the now approximate mass matrix becomes diag-
onal and the GLL points can be used for both quadrature and node locations.
Unfortunately, the integration by quadrature is often not computed exactly,
introducing additional error into the numerical approximation. (This aspect
is beyond the scope of this paper, so exact quadrature is used throughout
for both uniform and GLL distributions of points.) A third choice for node
locations is the Chebyshev-Legendre (CL) points, given by

ξj = cos
πj

N
0 ≤ j ≤ N . (13)

The location of the CL points is similar to the location of the GLL points and,
in both cases, ill-conditioning of the matrix due to high-order polynomials is
avoided as much as possible. The advantage of the CL points is that the points
are somewhat nested. For example, the points associated with a 4th degree
polynomial are a subset of those associated with an 8th degree polynomial.
This property makes adaptive p-refinement more straightforward. For any of
the nodal bases described, it is possible to overlay the higher-order element
with a set of lower-order (bilinear) finite elements, as shown in Figure 1.

The other option for defining the basis, as mentioned above, is the so-called
modal basis. The most common approach is given by equations (2-4). This
finite element approach is commonly referred to as the p-version of finite ele-
ments, and it has the advantage of producing a stiffness matrix that is nearly
diagonal in 1-D due to the orthogonality of the derivatives of the basis func-
tions. There are two main drawbacks to the method. First, the 1-D mass
matrix is not diagonally dominant so the 2-D stiffness matrix (produced as a
tensor product of the 1-dimensional mass and stiffness matrices) is not diago-
nal, but it is still less dense than the equivalent nodal stiffness matrix. Second,
because the solution only represents coefficients of the polynomial representing
the solution, post-processing and visualization are less straightforward.

The first benchmark problem tested in this paper is the model Poisson equa-
tion.
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Fig. 1. Higher-order finite elements with a nodal basis – evenly spaced nodes (left)
and approximately GLL nodes (right). In both cases, the spectral element, shown
with bold lines, is overlaid with a set of bilinear finite elements, shown with thin
lines and bold lines.

Example 1

−∇ · ∇u = 0 in Ω, (14a)

u = 0 on Γ1, (14b)

u = sin(πx) on Γ2, (14c)

where Ω = [0, 1]2, Γ1 is the North, West and East boundaries of Ω, and Γ2 is
the South boundary. To maintain consistency with Lottes and Fischer [12], a
regular spectral element mesh with 16× 16 elements is used, unless otherwise
noted.

The second benchmark problem tested in this paper is Stokes equation for low
Reynold’s number flow.

Example 2

−∇p+ ∇2u = 0 in Ω, (15a)

∇ · u = 0 in Ω, (15b)

u = g on Γ, (15c)

where p is the pressure scaled by viscosity and u is the velocity vector. The
Galerkin finite element [5] model does not produce an H1-elliptic form and
multigrid schemes typically perform very poorly. An alternative formulation
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is based on reformulating the Stokes equation as a first-order system and
minimizing the least-squares norm of residual equations in the resulting system
– the so-called, first-order system least-squares (FOSLS) approach. Defining
a matrix of new variables, U, the first-order system for Stokes equation is

U −∇u = 0 in Ω, (16a)

−∇p+ ∇ · U = 0 in Ω, (16b)

∇ · u = 0 in Ω. (16c)

Because U is the gradient of u and we are solving a minimization problem, we
can augment the first-order system of equations by the following consistent
equations:

∇(tr(U)) = 0, (17)

∇× U = 0, (18)

where tr(U) = U11 + U22. The resulting least-squares functional is then

G(u,U, p) := ‖U −∇u‖2
0 + ‖ − ∇p+ ∇ · U‖2

0+

‖∇ · u‖2
0 + ‖∇(tr(U))‖2

0 + ‖∇ × U‖2
0 .

(19)

Using the FOSLS formulation, the minimization problem is H1-elliptic [23],
yielding optimal discretization error estimates and optimal multigrid conver-
gence estimates. The Dirichlet boundary conditions (e.g., u = g) on the orig-
inal problem (15a,15b) may be enforced weakly by adding them to the func-
tional (19), or they may be strongly imposed on the finite element space.
In either case, it is beneficial to include the consistent boundary condition:
τ · U = ∂g

∂τ
, where τ is the vector tangential to the boundary.

The FOSLS formulation results in 7 degrees of freedom (DOF) per node. Thus,
the size of the finite element mesh for the test problem is reduced to an 8× 8
element mesh. The domain is the unit square, Ω = (0, 1)2, and the velocity
components are set to zero on the North and South boundaries. On the West
and East boundaries, the tangential velocity is set to zero and a parabolic
profile is specified for the normal velocity. With these boundary conditions,
the exact solution is in the finite element space if elements of degree 2 or
greater are used. One advantage of the FOSLS formulation is that we are free
to pick the finite element basis for velocity and pressure independently (i.e.,
there is no inf-sup condition). We thus choose the same space for velocity and
pressure in all cases because the algorithm development is simplified.
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3 AMG Solver

The preconditioning strategy we follow is a multilevel approach in that some
error components are reduced on the fine grid, while other error components
are accounted for on successively coarser, and thus less expensive, grids. The
classic multigrid scheme is geometric in nature, meaning coarse grids are se-
lected based on the geometric location of the degrees of freedom. In a geometric
multigrid (GMG) method, the coarse grids are know a priori, enabling one to
choose intergrid transfer operators–interpolation and restriction–accordingly.
Error components are described in a geometrical sense as well, usually as oscil-
latory or smooth. The goal in GMG is to properly define a relaxation strategy
(e.g. Gauss-Seidel) to reduce the oscillatory errors on a given grid and rely on
the predetermined interpolation to effectively represent the remaining smooth
error components on coarser levels.

We employ an algebraic based multigrid method, where the underlying philos-
ophy is quite different. The first and most popular published implementation
of the algorithm, by Ruge and Stüben [24], is the implementation used here.
AMG does not rely on the notion of an underlying “physical” grid. Instead, the
multilevel process is realized from a purely algebraic standpoint in that only
the connections in the matrix graph are used to determine intergrid transfer
operators and to define coarse grids. Central to AMG is that we fix the re-
laxation strategy and define coarse grids and transfer operators on-the-fly to
handle various components of the error. For a fixed relaxation process, such
as point-wise Gauss-Seidel, some error is effectively eliminated, while other
components of the error are reduced quite slowly. Smooth error, in the case
of AMG, is then defined to be any error not reduced by relaxation. Using
the nonzero structure of the matrix to determine the adjacency relationships
between the unknowns, we can relate this idea of smooth error to strongly
connected degrees of freedom. We say that ui is connected to uj if aij 6= 0.
The magnitude of aij indicates how strong the connection is and how much
influence the error at j has on the error in i in relaxation. We follow the classic
Ruge-Stüben algorithm [24] and define ui to be strongly connected to uj if

−aij ≥ θmax
k 6=i

(−aik). (20)

Throughout the paper, a threshold of θ = 0.25 is used. This value has been
used successfully in a number of applications [25] and is a typical choice when
other motivation is not present. The Ruge-Stüben (RS) algorithm also allows
us to control a number of other parameters in an effort to more accurately
define strong connections, while maintaining a reasonable level of complexity.
For example, so-called long range connections are not used in the results in
this paper, meaning connections to connections are not considered: only direct
connections may be used to define interpolation. The interpolation weights are
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defined as in the original Ruge-Stüben [24] implementation: the problem is not
considered to be a scalar problem, strong connections are distributed along all
connections, and weak connections are distributed to the diagonal. We refer
to [24,25] for a more in-depth discussion of these details, only mentioning that
we adhere the RS approach for nearly all choices in defining interpolation. For
systems of PDEs, we also note that the coarsening process is separate for each
unknown (unlike the strict scalar case, where coarsening is based on only one
variable). We choose the RS implementation due to its proven robustness and
generality, noting that one of the main differences between the Ruge-Stüben
algorithm and other, newer algorithms is the method by which the coarse grid
points are selected.

The AMG algorithm has setup costs associated with the automatic selection
of coarse grid operators that other multilevel methods do not have in gen-
eral. While this automatic selection by the algorithm makes implementing the
algorithm into a given application simpler, it does add extra computations
to every simulation. Unfortunately, it is not possible to get realistic a pri-

ori estimates of the setup costs for AMG, especially for general unstructured
grids [26]. Experience has shown that in single processor environments, the
setup costs are typically 1-10 V-cycles [26,27], and all AMG setup costs for
simulations in the paper were in that range (typically close to 2 V-cycles).
In parallel (distributed memory) environments, the setup phase can require
significant communication between nodes and can require a larger fraction of
that total computing time. However, estimates are even less reliable in the
distributed memory setting.

AMG is also commonly used as a preconditioner for a Krylov subspace method
such as the conjugate gradient (CG) or the generalized minimal residual (GM-
RES) method. The advantage to this scheme is that the Krylov method re-
duces the error in eigenmodes that are not being effectively reduced by multi-
grid. For this reason, the approach of using AMG with CG is often referred to
as “CG accelerated” multigrid (AMG/CG). One variation is to base the pre-
conditioning operator on a matrix other than the discretization matrix, that
is, perform the AMG preconditioning on a different operator from that being
solved by CG. For example, in this paper, we use the AMG preconditioner
on an operator, Af , obtained by overlaying the spectral element nodes with a
bilinear finite element mesh. The operator from the original spectral element
problem, As, is treated by CG using AMG on Af as a preconditioner.

4 Results

Table 1 summarizes the convergence factors obtained by solving Poisson’s
equation in 2-D on the unit square with a 16 × 16 spectral element grid (Ex-
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P DOF GLL CL even modal

2 1089 0.11 (0.04) 0.11 (0.04) 0.11 (0.04) 0.69 (0.26)

3 2401 0.14 (0.06) 0.11 (0.06) 0.20 (0.08) 0.75 (0.29)

4 4225 0.11 (0.04) 0.22 (0.10) 0.28 (0.10) 0.68 (0.32)

5 6561 0.08 (0.03) 0.12 (0.05) 0.78 (0.40) 0.69 (0.37)

6 9409 0.13 (0.06) 0.18 (0.08) 0.95 (0.67) 0.71 (0.38)

7 12769 0.16 (0.05) 0.38 (0.14) 0.98 (0.86) 0.79 (0.42)

8 16641 0.17 (0.06) 0.19 (0.09) 0.98 (0.94) 0.81 (0.45)

Table 1
Average AMG convergence factors on spectral element operator from Poisson’s
equation. Different finite element bases are used: GLL points, CL points, evenly
spaced nodes, and a modal basis. The numbers in parentheses indicate convergence
factors using CG acceleration.

ample 1). The convergence factor is defined as the average fractional change in
the residual for a multigrid cycle. For example, a convergence factor of 0.1 in-
dicates that the residual decreases by one order of magnitude each multigrid
cycle on average over all the computed cycles. Four different finite element
bases were used, including three nodal bases: GLL points, CL points, evenly
spaced nodes, and a modal basis based on (2)-(4). V(1,1)-cycles (1 pre- and
1 post- smoothing sweep) are used in the AMG algorithm in each case. As
shown in Table 1, AMG performance on the spectral element operator us-
ing both GLL and CL nodal distributions is very good. In fact, convergence
factors are approximately independent of p and, when coupled with CG accel-
eration, the results are even more convincing. Figure 2 shows the approximate
solution using the GLL nodal basis and p = 3. The nodal basis using evenly
spaced nodes resulted in poor AMG performance due to the operator being
ill-conditioned. The modal basis also performed poorly, likely a result of the
lowest, smooth eigenmode not being represented by an approximately constant
vector in this modal basis – a fundamental assumption in algebraic multigrid.

The approximate independence of the convergence factors to p in table 1 for
the GLL and CL basis function is not consistent with past efforts at applying
multilevel solvers to higher-order finite elements. Specifically, it is not con-
sistent with methods which chose coarse grids by halving the basis order on
each element, i.e., course grids of p/2, p/4, etc. Figure 3 shows the coarse
grids chosen by AMG for a 2 × 2 element Poisson problem with p = 4 and
p = 5. While nothing conclusive can be drawn from such a small test problem,
two observation can be made. First, the coarse grids chosen for the p = 5
case are more regular (i.e., every other point is chosen) than those chosen for
the p = 4 case. This may help explain the better performance of the solver
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Fig. 2. Poisson test problem using a cubic (p = 3) nodal basis on the GLL nodes.

in the p = 5 case. Second, when comparing the two finest grids (neglecting
boundary points), AMG uses approximately 50% of the total finer grid points
in the coarser grid (cf. Fig. 3). This is significantly more than using p/2 for
the coarser grid, in which only 25% of the points are retained. This may help
explain greater p independence of AMG.

To test the performance of AMG on higher-order elements and a system of
equations, a FOSLS formulation of Stokes equation (Example 2) is used with
a nodal basis based on the GLL nodes and a mesh of 8 × 8 spectral elements
on the unit square. The AMG algorithm is modified slightly from the origi-
nal Ruge-Stüben algorithm so that coarsening can be applied to each of the
seven unknowns separately. The results are summarized in Table 2. Figure 4
shows the (exact) solution using bicubic basis functions. Without CG acceler-
ation, the AMG convergence factors are independent of p, but the convergence
is slow. However, to put this in context, geometric multigrid applied to this
FOSLS formulation of Stokes equation with bilinear elements yields conver-
gence factors in the range 0.75 to 0.85 range [28]. With CG acceleration, the
convergence factors remain independent of p, and the convergence is much
faster. This large benefit in using CG acceleration is consistent with what
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Fig. 3. The coarse grids selected by the AMG algorithm for p = 4 (left) and p = 5
(right) for a 2×2 mesh and the Poisson problem. AMG uses two levels of coarsening
for this small problem. Points outside the dotted line are on the boundary and not
in the operator.

has been traditionally observed even using low-order discretizations. The final
column in Table 2 is the operator complexity (OC), which is used to describe
the size of all the coarse grid operators combined and compare that size to the
fine grid operator. The OC is defined to be the ratio of the size (number of
non-zeros) of all operators (coarse plus fine operators) to the size of the fine
grid operator. A complexity of 1 would imply only storing the fine grid oper-
ator. A complexity of 2 implies that the size of all coarse operators combined
is equal to the size fine grid operator.

Compared to low-order discretizations, the operator from higher-order dis-
cretizations is expensive both in the number of computations required to build
and in the storage costs. Both costs typically scale as O(p4) in 2-D. A matrix-
free approach to AMG is not achievable for the Ruge-Stüben implementation.
However, as mentioned above, AMG preconditioning can be applied to a low-
order operator, Af , thus minimizing the cost of building and storing a matrix
for solving by AMG. The spectral operator, As, can then be solved using a
PCG algorithm in a matrix-free approach, avoiding the high cost of storing
the full spectral matrix. Table 3 summarizes the numerical performance when
using AMG as a preconditioner on Af and then performing CG iterations
on As for the Poisson test problem (Example 1) with 16 × 16 elements. The
convergence factors appear nearly independent of p, with the exception of the
p = 4 basis. The convergence factors are not as low as applying AMG/CG
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Avg. Conv. Avg. Conv. Factor Operator

P DOF Factor with CG acceleration Complexity

1 567 0.89 0.45 1.4

2 2023 0.94 0.58 1.7

3 4375 0.94 0.59 2.1

4 7623 0.95 0.62 1.7

5 11767 0.95 0.65 1.7

6 16807 0.95 0.66 1.6

7 22743 0.95 0.66 1.6

8 29575 0.95 0.67 1.6

Table 2
AMG performance on a FOSLS formulation of Stokes equation. The mesh is 8 × 8
spectral elements with a nodal basis defined by the GLL nodes.

Avg. Conv. AMG/CG Operator CG iterations

P DOF Factor iterations Complexity without AMG

1 289 0.03 4 1.3 15

2 1089 0.25 10 1.4 46

3 2401 0.30 12 3.6 74

4 4225 0.57 23 2.5 110

5 6561 0.34 12 3.3 147

6 9409 0.34 12 3.0 187

7 12769 0.38 14 3.8 234

8 16641 0.39 14 3.7 279

Table 3
Performance of CG on Poisson’s equation with and without an AMG preconditioner
based on a p = 1 discretization.

directly to the spectral operator, a reflection of using a less effective precon-
ditioner, but the benefit of not having to build and store the higher-order
operator may outweigh the cost of additional iterations. All iteration counts
are based on the number of iterations required to reduce the residual by a fac-
tor of 1× 10−6. This criterion is reasonable because, in practice, one needs to
reduce the residual further for high-order elements than for low-order elements
in order to reach the accuracy level of the approximation.

The choice between method (1), which applies AMG/CG directly to the
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Fig. 4. Stokes test problem using a cubic (p = 3) nodal basis on the GLL nodes.
4 × 4 spectral elements were used to generate the plot.

higher-order operator, As, and method (2), which applies the AMG precon-
ditioning to Af and applying PCG to As, is based on memory available and
polynomial order. The cost of a V-cycle in AMG scales as O(p4) in method (1)
and O(p2) in method two, but method (1) usually requires few total V-cycles.
Looking at computational time, we found that for the Poisson test problem,
the solve time was lower for method (1) when p < 4. However, for p > 4,
method (2) required less solve time even though the total number of V-cycles
was larger. In both cases, CG acceleration was used, and the computational
time was equal (2.4 sec on 1.8 GHz Pentium 4) with p = 4. Method (2) also
has the potential for requiring less memory, so it may be the only choice on
smaller memory systems, independent of p.

The second method can also be applied to the FOSLS formulation of Stokes
equation (Example 2). Table 4 summarizes the performance of CG on the
Stokes system with and without preconditioning by AMG on the operator

14



Avg. Conv. AMG/CG Operator CG iterations

P DOF Factor iterations Complexity without AMG

1 567 0.46 16 1.4 98

2 2023 0.69 34 1.5 308

3 4375 0.72 39 2.9 496

4 7623 0.84 69 2.4 699

5 11767 0.77 47 3.0 917

6 16807 0.79 52 3.4 1150

7 22743 0.79 54 3.8 1397

8 29575 0.81 57 3.8 1651

Table 4
Performance of CG on Poisson’s equation with and without an AMG preconditioner
based on a p = 1 discretization. The mesh size is 8 × 8 spectral elements with a
GLL nodal basis.

Af . Again, the convergence factor is independent of p once p > 3, but it is
slower than simply using an AMG/CG cycle on the full spectral matrix as the
preconditioner (cf., table 2). The operator complexities are large, but that is
partially due to the lower-order operator being much sparser than the higher-
order operator used in table 2. Further, new coarse-grid selection algorithms
are being developed that maintain low convergence factors while reducing the
complexity [29,30].

5 Conclusions

The use of an AMG algorithm to solve linear problems associated with higher-
order finite element discretizations is both computationally efficient and rel-
atively simple to implement considering the widespread availability of AMG
algorithms. Two different methods were explored in the paper: (1) AMG and
AMG/CG were applied directly to the operator associated with a higher-order
finite-element discretization; and (2) CG was applied to the higher-order op-
erator, As, while AMG was used as a preconditioner on the lower-order opera-
tor, Af , assembled using the same nodes as the higher-order operator. In both
cases, the results were independent or nearly independent of the basis order,
p, for 3 < p ≤ 8. The choice between the methods is a function of memory
available and p where method (2) is faster at larger p (p > 4 for the Poisson
test problem).

There are other methods that achieve convergence factors that are indepen-
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dent of p and, in fact, many of them have demonstrated independence over
a much larger range of p [12]. The number of iterations required by Schwarz
type methods is similar to that required by our methods for these simple test
problems (cf., [12]). The main disadvantages of the methods presented here
are the requirement of assembling and storing an entire operator. Since AMG
builds coarse operators based on the fine-grid operator, current techniques
require that the global operator be assembled, but, as we have shown, only
building a low-order operator may be necessary. A second disadvantage of
AMG is the overhead cost associated with picking coarse operators and build-
ing interpolation operators. However, in many cases, these disadvantageous
are more than offset by the simplicity of this approach and the flexibility it
provides, especially in cases of adaptive refinement and unstructured grids.
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