
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2007; 07:1–6 Prepared using nlaauth.cls [Version: 2002/09/18 v1.02]

A Generalized Eigensolver Based on Smoothed Aggregation
(GES-SA) for Initializing Smoothed Aggregation Multigrid (SA)

M. Brezina†, T. Manteuffel†, S.McCormick†, J. Ruge†, G. Sanders∗†, P. Vassilevski‡

†Department of Applied Mathematics, University of Colorado at Boulder,
UCB 526, Boulder, CO, 80309-0526, USA

‡Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
7000 East Avenue, Mail Stop L-560, Livermore, CA, 94550, USA

SUMMARY

Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and positive
definite matrix and b is a known vector. Solving this system for unknown vector x using a smoothed
aggregation multigrid (SA) algorithm requires a characterization of the algebraically smooth error,
meaning error that is poorly attenuated by the algorithm’s relaxation process. For many common
relaxation processes, algebraically smooth error corresponds to the near-nullspace of A. Therefore,
having a good approximation to a minimal eigenvector is useful to characterize the algebraically
smooth error when forming a linear SA solver. We discuss the details of a generalized eigensolver
based on smoothed aggregation (GES-SA) that is designed to produce an approximation to a minimal
eigenvector of A. GES-SA may be applied as a stand-alone eigensolver for applications that desire
an approximate minimal eigenvector, but the primary purpose here is to apply an eigensolver to the
specific application of forming robust, adaptive linear solvers. This paper reports the first stage in our
study of incorporating eigensolvers into the existing adaptive SA framework. Copyright c© 2007 John
Wiley & Sons, Ltd.

key words: generalized eigensolver; smoothed aggregation; multigrid; adaptive solver;

1. Introduction

In the spirit of algebraic multigrid (AMG; [1, 2, 5, 14, 15]), smoothed aggregation multigrid
(SA; [17]) has been designed to solve a linear system of equations with little or no prior
knowledge regarding the geometry or physical properties of the underlying problem. Therefore,
SA is often an efficient solver for problems discretized on unstructured meshes, with varying

∗Correspondence to: G. Sanders, Department of Applied Mathematics, University of Colorado at Boulder,
UCB 526, Boulder, CO, 80309-0526, USA. E-mail: sandersg@colorado.edu
†University of Colorado at Boulder and Front Range Scientific Computing
‡The work of the last author was performed under the auspices of the U. S. Department of Energy by the
University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48

Grants

Received 17 May 2007
Copyright c© 2007 John Wiley & Sons, Ltd. Revised 16 November 2007

2 BREZINA, MANTEUFFEL, MCCORMICK, RUGE, SANDERS, VASSILEVSKI

coefficients, or with no associated geometry. The relaxation processes commonly used in
multigrid solvers are computationally cheap, but commonly fail to adequately reduce certain
types of error, which we call error that is algebraically smooth with respect to the given
relaxation. If a characterization of algebraically smooth error is known, in the form of a small
set of prototype vectors, the SA framework constructs intergrid transfer operators that allow
such error to be eliminated on coarser grids, where relaxation is more economical. For example,
in a three-dimensional elasticity problem, six such components (the so-called rigid body modes)
form an adequate characterization of the algebraically smooth error. Rigid body modes are
often available from discretization packages, and a solver can be produced with these vectors
in the SA framework [17]. However, such a characterization is not always readily available
(even for some scalar problems) and must be developed in an adaptive process.

Adaptive SA (αSA), as presented in [4], was designed specifically to create a representative
set of vectors for cases where a characterization of algebraically smooth error is not known.
Initially, simple relaxation is performed on a homogeneous version of the problem for all levels
of the multigrid hierarchy being constructed. These coarse-level approximations are used to
achieve a global-scale update that serves as our first prototype vector that is algebraically
smooth with respect to relaxation. Using this one resulting component, the SA framework is
employed to construct a linear multigrid solver, and the whole process can be repeated with
the updated solver playing the role of relaxation on each multigrid level. At each step, the
adequacy of the solver is assessed by monitoring convergence factors, and if the current solver
is deemed adequate, then the adaptive process is terminated and the current solver is retained.

We consider applying SA to an algebraic system of equations Ax = b, where A = (aij) is
an n× n symmetric, positive definite matrix that is symmetrically scaled so that its diagonal
entries are all ones. For simplicity, we use damped-Jacobi for our initial relaxation. The SA
framework provides an interpolation operator, P , that is used to define a coarse level with
standard Galerkin variational corrections. If the relaxation process is a convergent iteration,
then it is known from the literature (e.g. [1, 11]) that a sufficient condition for two-level
convergence factors bounded from one is that for any u on the fine-grid, there exists a v from
the coarse-grid such that

‖u− Pv‖22 ≤
C

‖A‖2
(Au,u), (1)

with some constant C. The quality of the bound on convergence factor depends on the size of C,
as shown in [3]. This requirement is known in the literature as the weak approximation property,
and reflects the observation noted in [13, 11] that any minimal eigenvector (an eigenvector
associated with the smallest eigenvalue) of A needs to be interpolated with accuracy inversely
proportional to the size of its eigenvalue. For this reason, this paper proposes a Generalized
EigenSolver based on Smoothed Aggregation (GES-SA) to approximate a minimal eigenvector
of A.

Solving an eigenvalue problem as an efficient means to developing a linear solver may appear
counterintuitive. However, we aim to compute only an appropriately accurate approximation of
the minimal eigenvector to develop an efficient linear solver with that approximation at O(n)
cost. In this context, many existing efficient methods for generating a minimal eigenvector
are appealing (see [9] and [12] for short lists of such methods). Here, we propose GES-SA
because it takes advantage of the same data-structures as the existing αSA framework. Our
intention is to eventually incorporate GES-SA into the αSA framework to enhance robustness
of our adaptive solvers for difficult problems that may benefit from such enhancement (such

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

GES-SA 3

as systems problems, corner-singularity problems, or problems with geometrically oscillatory
near-kernel).

The GES-SA algorithm performs a series of iterations that minimize the Rayleigh quotient
over various subspaces, as discussed in the later sections. In short, GES-SA is a variant
of algebraic Rayleigh quotient multigrid (RQMG [6]) that uses overlapping block Rayleigh
quotient Gauss-Seidel for its relaxation process and smoothed aggregation Rayleigh quotient
minimization for coarse-grid updates. In [8], Hetmanuik developed an algebraic RQMG
algorithm that performs point Rayleigh quotient Gauss-Seidel for relaxation and coarse-grid
corrections based on a hierarchy of static intergrid transfer operators that are supplied to his
algorithm. This supplied hierarchy is assumed to have adequate approximation properties. In
contrast, GES-SA initializes the hierarchy of intergrid transfer operators and modifies it with
each cycle, with the goal of developing a hierarchy with adequate approximation properties,
as in the setup phase of αSA. This is discussed in more detail in section 3.2.

This paper is organized as follows. The rest of section 1 gives a simple example and a
background on smoothed aggregation multigrid. Section 2 introduces the components of GES-
SA. Section 3 presents how the components introduced in section 2 are put together to form the
full GES-SA algorithm. Section 4 presents a numerical example with results that demonstrate
how the linear SA solvers produced with GES-SA have desirable performance for particular
problems. Finally, section 5 makes concluding remarks.

1.1. The Model Problem

Example 1. Consider the linear problem Ax = b and its associated generalized eigenvalue
problem Ax = λBx. Matrix A is the 1D Laplacian with Dirichlet boundary conditions,
discretized with equidistant, second-order central differences, symmetrically scaled so that
the diagonally entries are all ones:

A =
1

2

2 −1
−1 2 −1

. . .

−1 2 −1
−1 2

, (2)

an n × n tridiagonal matrix. Matrix B for this example is In, the identity operator on R
n.

The full set of nodes for this problem is Ωn = {1, 2, ... , n}. The problem size, n = 9, is used
throughout this paper to illustrate various concepts regarding the algorithm. Note that the
1D problem is used merely to display concepts and is not of further interest, as its tridiagonal
structure is treated with optimal computational complexity using a direct solver. However, the
example is useful in the sense that it captures the concepts we present in their simplest form.

1.2. Smoothed Aggregation Multigrid

In this section, we briefly recall the smoothed aggregation multigrid (SA) framework for
constructing a multigrid hierarchy. Like any algebraic multilevel method, SA requires a setup
phase. Here, we follow the version presented in [17, 16]. Given a relaxation process and a set of
vectors K characterizing algebraically smooth error, the SA setup phase produces a multigrid
hierarchy that defines a linear solver.

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

4 BREZINA, MANTEUFFEL, MCCORMICK, RUGE, SANDERS, VASSILEVSKI

Figure 1. Graph of matrix AG from example 1 with n = 9. The nine nodes are
enumerated, edges of the graph represent nonzero off-diagonal entries in A, and the
Dirichlet boundary conditions are represented with the hollow dots at the end points.

AG

For symmetric problems, such as those we consider here, standard SA produces a coarse grid
using interpolation operator P and restriction operator, R = PT . This gives the variational (or
Galerkin) coarse-grid operator, Ac = PT AP , commonly used in AMG methods. This process is
repeated recursively on all grids, constructing a multigrid hierarchy. The interpolation operator
is produced by applying a smoothing operator, S, to a tentative interpolation operator, P̂ , that
satisfies the weak approximation property.

At the heart of forming P̂ is a discrete partitioning of fine-level nodes into a disjoint covering
of the full set of nodes, Ωn = {1, 2, ..., n}. Members of this partition are locally grouped based
on matrix AG, representing the graph of strong connections [17]. AG is created by filtering
the original problem matrix A with regard to strength of coupling. For the scalar problems
considered here, we define node i to be strongly connected to node j with respect to the
parameter θ ∈ (0, 1) if

|aij | > θ
√

aiiajj . (3)

Any connection that violates this requirement is a weak connection. Entry (AG)ij = 1 if the
connection between i and j is strong, and (AG)ij = 0 otherwise.

Definition 1.1. A collection of m subsets {Aj}mj=1 of Ωn = {1, 2, ..., n} is an aggregation

with respect to AG if the following conditions hold.

• Covering:
⋃m

j=1Aj = Ωn.
• Disjoint: For any j 6= k, Aj ∩ Ak = ∅.
• Connected: For any j, if two nodes p, q ∈ Aj , then there exists a sequence of edges with

endpoints in Aj that connects p to q within the graph of AG.

Each individual subset Aj within the aggregation is called an aggregate.

The method we use to form aggregations is given in [17], where each aggregate has a central

node, or seed, numbered i, and covers this node’s entire strong neighborhood (the support of the
i-th row in graph of AG). This is a very common way of forming aggregations for computational
benefits, but is not mandatory. We return to example 1 to explain the aggregation concept.
An acceptable aggregation of Ω9 with respect to A would be m = 3 aggregates, each of size 3,
defined as follows:

A1 = {1, 2, 3}, A2 = {4, 5, 6}, A3 = {7, 8, 9}. (4)

It is easily verified that this partitioning satisfies definition 1.1. This aggregation is pictured
in figure 2. Two-dimensional examples are presented in section 4.

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

GES-SA 5

Figure 2. Graph of matrix AG from example 1 with n = 9, split into three
aggregates. Each box encloses a group of nodes in its respective aggregate.

A1 A2 A3

We find it useful to represent an aggregation {Aj}mj=1 with an n × m sparse, binary
aggregation matrix, which we denote by [A]. Each column of [A] represents a single aggregate,
with a one in the (i, j)-th entry if point i is contained in aggregate Aj , and a zero otherwise.
In our 1D example, with n = 9, we represent the aggregation given in (4) as

[A] =

1
1
1

1
1
1

1
1
1

. (5)

Based on the sparsity structure of [A], the SA setup phase constructs P̂ with a range that
represents a given, small collection of linearly independent vectors, K. This is done by simply
restricting the values of each vector in K to the sparsity pattern specified by [A].

Under the above construction, the vectors in K are ensured to be in R(P̂), the range of
the tentative interpolation operator, and are therefore well attenuated by a corresponding
coarse-grid correction. However, K is only a small number of near-kernel components. Other
vectors in R(P̂) may actually be quite algebraically oscillatory, which can be harmful to the
coarsening process because it may lead to a coarse-grid operator with higher condition number
than desired. This degrades the effect of coarse-grid relaxation on vectors that are moderately
algebraically smooth. Of greater importance, some algebraically smooth vectors are typically
not well-represented by R(P̂) and are therefore not reduced by coarse-grid corrections. To
remedy the situation, SA does not use P̂ as its interpolation operator directly, but instead
utilizes a smoothed version, P = SP̂ , where S is an appropriately chosen polynomial smoothing
operator. As a result, a much richer set of algebraically smooth error is accurately represented
by the coarse grid. A typical choice for S is one step of the error propagation operator
of damped-Jacobi relaxation. In this paper, we use damped-Jacobi smoothing under the
assumption that the system is diagonally scaled so that diagonal elements are one.

The underlying set, K, that induces a linear SA solver can either be supplied, as in standard
SA, or computed, as in adaptive SA methods. We now describe a new approach to constructing
K that can be used within the existing αSA framework.

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

6 BREZINA, MANTEUFFEL, MCCORMICK, RUGE, SANDERS, VASSILEVSKI

2. Rayleigh Quotient Minimization within Subspaces

Consider the generalized eigenvalue problem, Av = λBv, where A and B are given n×n real,
symmetric, positive definite (SPD) matrices, v is an unknown eigenvector of length n, and λ

is an unknown eigenvalue. Our target problem is stated as follows:

find an eigenvector, v1 6= 0, corresponding to the
smallest eigenvalue, λ1, in the problem Av = λBv.

(6)

For convenience, v1 is called a minimal eigenvector and the corresponding eigenvalue, λ1, is
called the minimal eigenvalue.

First, we review a well-known general strategy for approximating the solution of (6), an
approach that has been used in [6] and [7], to introduce our method. This strategy is to select
a subspace of R

n and choose a vector in the subspace that minimizes the Rayleigh quotient. In
GES-SA, we essentially do two types of subspace selection: one uses local groupings to select
local subspaces that update our approximations locally; the other uses smoothed aggregation
to select low-resolution subspaces that use coarse grids to update our approximation globally.
These two minimization schemes are used together in a typical multigrid way.

We recall the Rayleigh quotient to introduce a minimization principle that we use to update
an iterate within a given subspace.

Definition 2.1. The Rayleigh quotient (RQ) of a vector, v, with respect to matrices A and
B is the value

ρA,B(v) ≡ vT Av

vT Bv
. (7)

Since we restrict ourselves to the case when A and B are SPD, the RQ is always a real and
positive valued. The solution we seek minimizes the RQ:

ρA,B(v1) = min
v∈Rn

ρA,B(v) = λ1 > 0. (8)

If two vectors w and v are such that ρA,B(w) < ρA,B(v), then w is considered to be a better
approximate solution to (6) than v. Therefore, problem (6) is restated as a minimization
problem:

find v1 6= 0 such that ρA,B(v1) = min
v∈Rn

ρA,B(v). (9)

Given a current approximation, ṽ, we use the minimization principle to construct a subspace,
V ⊂ R

n, such that dim(V) = m << n and

min
v∈V

ρA,B(v) ≤ ρA,B(ṽ). (10)

The new approximation, w̃, is a vector in V with minimal RQ. Note that if ṽ is already of
minimal RQ, then lowering the RQ is not possible. In general, we must carefully construct the
subspace to ensure that the RQ is indeed lowered.

To select w̃, we must solve a restricted minimization problem within V :

find w̃ 6= 0 such that ρA,B(w̃) = min
v∈V

ρA,B(v). (11)

This restricted minimization problem is solved for w̃ by restating the minimization problem
within the lower-dimensional vector space, R

m, and then mapping the low-dimensional solution

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

GES-SA 7

to the corresponding vector in V . To do so, we construct an n×m matrix, Q, whose m column
vectors are a basis for V . Note that, for any v ∈ V , there exists a unique y ∈ R

m such that
v = Qy. Moreover, the RQ of v with respect to A and B and the RQ of y with respect to
coarse versions of A and B are equivalent:

ρA,B(v) =
vT Av

vT Bv
=

yT QT AQy

yT QT BQy
= ρQT AQ, QT BQ(y) = ρAV ,BV

(y), (12)

for AV = QT AQ and BV = QT BQ. Thus, the solution of restricted minimization problem (11)
is found by solving a low-dimensional minimization problem:

find y1 6= 0 such that ρAV ,BV
(y1) = min

y∈Rm
ρAV ,BV

(y), (13)

or, equivalently, a low-dimensional eigenproblem:

find an eigenvector, y1 6= 0, corresponding to the smallest
eigenvalue, µ1, in the eigenproblem AVy = µBVy.

(14)

After either approximating the solution to low-dimensional minimization problem (13)
or solving low-dimensional eigenvalue problem (14) for y1 with a standard eigensolver, the
solution to the minimization problem restricted to V defined in (11) is w̃ ← Qy1. The whole
process is then repeated: update ṽ← w̃, use ṽ to form a new subspace, V , and corresponding
Q, solve (14) for y1, and set w̃ ← Qy1.

The specific methods we use for constructing subspaces are the defining features of GES-SA
and are explained in the following three sections. In section 2.1, we focus on how a reasonable
initial approximation is obtained using a non-overlapping version of the subspace minimization
algorithm. In section 2.2, we present the global subspace minimization based on SA that
serves as our nonlinear coarse-grid update. In section 2.3, we describe the local subspace
minimizations that play the role of nonlinear relaxation.

2.1. Initial Guess Development

Because the RQ minimization problem we wish to solve is nonlinear, it is helpful to develop
a fairly accurate initial approximation to a minimal eigenvector. The algorithm presented in
this section is very similar to the local subspace iteration that is presented later in section 2.3.
The difference is that here we perform non-overlapping, additive updates with the zero-vector
as an initial iterate.

First, we require that an aggregation, {Aj}mj=1, be provided. Each aggregate induces a
subspace, Vj ⊂ R

n, defined by all vectors v whose support is contained entirely in Aj . We
form a local selection matrix, Qj, that maps R

mj onto Vj, where mj is the number of nodes
in the j-th aggregate. This matrix is given by

Qj =

⊤ ⊤
êp1

. . . êpmj

⊥ ⊥

 , (15)

where êp is the p-th canonical basis vector, and {pq}mj

q=1 are the nodes in the j-th aggregate. We

then form local principal submatrices, Aj ← QT
j AQj and Bj ← QT

j BQj . A solution, y1 6= 0,
to generalized eigenvalue problem (14) of size mj is then found using a standard eigensolver.

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

8 BREZINA, MANTEUFFEL, MCCORMICK, RUGE, SANDERS, VASSILEVSKI

Nodes within the j-th aggregate are set as w̃j ← Qjy1. After w̃j is found for each aggregate,
the initial approximation is the sum of disjoint, locally supported vectors: ṽ←∑m

j=1 w̃j .

Remark 2.1. There is no guarantee that w̃j is of the same sign as the w̃k that are supported
within adjacent aggregates. For example, w̃j may have all negative entries on Aj and w̃k may
have all positive entries on an adjacent aggregate. In fact, discrepancies in the sign of entries
on neighboring aggregates usually occur in practice because βy1 is still a solution to the local
eigenproblem, for any β 6= 0. However, this is not an issue of concern, because the subsequent
coarse-grid update presented in section 2.2 uses the same aggregation as the initial guess
development. The coarse space is invariant to such scaling, so the result of coarse-grid update
is independent as well. In any case, we emphasize that this may only occur for the initial
guess development phase of the algorithm. Example 2 in section 4 is designed to display the
invariance of the success of GES-SA with respect to these sign changes.

We summarize initial guess development in the form of an algorithm. This algorithm is used
on every level in the full GES-SA (algorithm 3 of section 3) as pre-relaxation for only the first
multigrid cycle.

Algorithm 1. Initial Guess Development.

• Function: ṽ← IGD(A, B, {Aj}mj=1).
• Input: SPD matrices A and B, and aggregation {Aj}mj=1.
• Output: initial approximate solution ṽ to (6).

1. For j = 1, ..., m, do the following:

(a) Form Qj based on Aj as in (15).
(b) Compute Aj ← QT

j AQj and Bj ← QT
j BQj .

(c) Find any y1, ‖y1‖2 = 1, by solving (14) with a standard eigensolver.
(d) Interpolate w̃j ← Qjy1.

2. Output ṽ←∑m
j=1 w̃j .

Algorithm 1 is demonstrated through example 1. The selection matrices are

Q1 =

1
1

1

, Q2 =

1
1

1

, and Q3 =

1
1

1

. (16)

Here, for all aggregates, j = 1, 2, 3, the restricted matrices are identical:

Aj =
1

2

2 −1
−1 2 −1

−1 2

 and Bj =

1
1

1

 . (17)

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

GES-SA 9

Hence, solutions to the restricted eigenproblems are all of the form ỹ1 = ωj

[

1
2 , 1√

2
, 1

2

]T

, with

a scaling term |ωj | = 1. So the initial guess developed is the vector

ṽ =

[

ω1

2
,

ω1√
2
,
ω1

2
,
ω2

2
,

ω2√
2
,
ω2

2
,
ω3

2
,

ω3√
2
,
ω3

2

]T

. (18)

For the case ωj = 1 for all three aggregates, the initial guess is seen in figure 3. We reiterate
what is stated in remark 2.1: if, for example ω1 = ω3 = 1 and ω2 = −1, then the initial guess
causes no difficulty, even though the RQ of this vector is much higher than the vector formed
from ω1 = ω2 = ω3 = 1. For either vector, the subsequent coarse-grid update uses the same
subspace to find a set of coefficients that correspond to some new vector of minimal RQ within
that subspace.

Figure 3. Initial guess for the 1D model problem produced by the initial guess
development algorithm; the RQ has been minimized over each aggregate individually.

In the context of multigrid, initial guess development is used in place of pre-relaxation for
the first GES-SA multigrid cycle performed. Subsequent pre-relaxations and post-relaxations
are applied as local subspace relaxation as presented in section 2.3. We now describe how
smoothed aggregation is used for global subspace updates.

2.2. Global Coarse-Grid RQ Minimization

Typically, smoothed aggregation has been used to form intergrid transfer operators within
multigrid schemes for linear systems, as in [4] and [17]. Here, we use smoothed aggregation
in a similar fashion to form coarse subspaces of lower dimension that are used to compute
iterates with lower RQ.

Smoothed aggregation defines a sparse n × m interpolation operator, P , that maps from
a coarse set of m variables to the original fine set of n variables. Here, we use the same
aggregation that was used for initial guess development in section 2.1. This is essential for the
initial guess to be a suitable one, as stated in remark 2.1. Given a current iterate, ṽ, we form
a space V that is designed to contain a vector with a RQ that is less than or equal to that of
ṽ. Our construction is to first form tentative interpolation, P̂ , that has ṽ in its range. This is
done in the usual way by restricting the values of ṽ to individual aggregates according to the
sparsity pattern defined by the aggregation matrix, [A]:

P̂ := diag(ṽ)[A]. (19)

Operator P̂ is such that ṽ ∈ R(P̂). Specifically, ṽ = P̂ 1m, where 1m is the column vector
of all ones with length m. This means that that we are guaranteed to have a vector within
R(P̂) with no larger a RQ than that of ṽ:

min
v∈R(P̂)

ρA,B(v) ≤ ρA,B(ṽ). (20)

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

10 BREZINA, MANTEUFFEL, MCCORMICK, RUGE, SANDERS, VASSILEVSKI

Many of the vectors in R(P̂) are of high RQ, because the columns of P̂ have local support
and are not individually algebraically smooth with respect to relaxation. Therefore, as in
standard SA, we apply a polynomial smoothing operator of low degree, S, to P̂ , and use the
resulting operator, instead of P̂ , as a basis for our coarse space. This gives a coarse space
with better approximation to the sought eigenvector at reasonable increase in computational
complexity. This smoothing consists of just one application of the error propagation operator
of damped-Jacobi:

S := (In − αD−1A), (21)

where In is the identity operator on R
n and α = 4

3‖D−1A‖2

.

Normalization of the columns of interpolation is also performed, which does not change the
range of interpolation, but does control the scaling of the coarse-grid problems. This scaling
is used so that the diagonal entries of coarse-grid matrix Ac are all one. The scaling is done
by multiplying with diagonal matrix, N , whose entries are given by

Nii :=
1

‖S(P̂)i‖A
, (22)

where (P̂)i is the i-th column of P̂ . Note that we must assume that ṽ is nonzero on every
aggregate. The interpolation matrix is

P := SP̂N. (23)

Under this construction, Sṽ is in the range of P . Therefore, if Sṽ has lower RQ than that of
ṽ, we have guaranteed that a vector in Vc = R(P) improves the RQ of our iterate. The vector
of minimal RQ we select from Vc is typically a vector of much lower RQ than that of Sṽ due
to the localization provided by prolongation.

Note that a choice of α could be computed to minimize the RQ of ṽ, a single vector in the
range of interpolation. However, this choice of α may not be best for all other vectors in the
range. Therefore, we retain the standard choice of α, known from the literature [16].

The columns of P form a basis for Vc because our construction ensures that there is at least
one point in the support of each column that is not present in any other column. Forming
aggregates that are at least a neighborhood in size and using damped-Jacobi smoothing does
not allow columns to ever share support with an aggregate’s central node. Therefore, under the
assumption ṽ is nonzero on every aggregate, Ac ← PT AP and Bc ← PT BP are both SPD.
In the multigrid vocabulary, restricted problem (14) is now the coarse-grid problem. A coarse-
grid update is given by interpolating the solution of the coarse-grid problem: w̃ ← Py1. This
problem, Acy = µBcy, is either solved using a standard eigensolver or posed as a coarse-grid
minimization problem as in (13), where local and global updates may be applied in a recursive
fashion. This process forms the coarse-grid update step of algorithm 3 of section 3, the full
GES-SA algorithm.

As in linear multigrid, the coarse-grid update needs to be complemented by an appropriately
chosen relaxation process, on which we next focus.

2.3. Local Subspace RQ Relaxation

In the context of a nonlinear multilevel method, we use subspace minimization updates
posed over locally supported subsets as our relaxation process, which is a form of nonlinear,

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

GES-SA 11

overlapping-block Gauss-Seidel method for minimizing the RQ. This section explains the
specifics for choosing the nodes that make up each block, and presents the relaxation algorithm.

The original generalized eigenvalue problem, Av = λBv, is posed over a set of n nodes,
Ωn. To choose a subspace that provides a local update over a small cluster of mj nodes,
we construct Wj to be a subset of Ωn, with cardinality mj . Subset Wj should be local and
connected within the graph of A. Subspace V ṽ

j is chosen to be the space of all vectors that only
differ from a constant multiple of our current approximation, ṽ, by w, a vector with support
in the subset Wj :

V ṽ

j := {v ∈ R
n | v = w0ṽ + w where w0 ∈ R and supp(w) ⊂ Wj}, (24)

a subspace of R
n with dimension (mj + 1) used to form and solve (11) for an updated

approximation, w̃, that has a minimum RQ within V ṽ

j . We allow changes to the entries of
current iterate ṽ only at nodes in setWj to minimize RQ, while leaving ṽ unchanged at nodes
outside of Wj , up to a scaling factor, w0.

Remark 2.2. If ṽ has a relatively high RQ, then a vector in V ṽ

j that has minimal RQ
may have w0 = 0. Essentially, the subspace iteration throws away all information outside of
Wj . This is potentially disastrous to our algorithm because, for typical problems, minimal
eigenvectors are globally supported. Avoiding this situation is the primary reason we develop
initial guesses with algorithm 1 instead of randomly. Our current implementation does not
update the iterate for subspaces in which w0 = 0. However this situation did not occur for the
problems presented in the numerical results in section 4.

We now explain how subsets Wj are chosen, and then explain the iteration procedure. One
step of the local subspace relaxation scheme minimizes the approximate eigenvalue locally over
one small portion of the full set of nodes, Ωn. We utilize a sequence of subsets {Wj}mj=1 ⊂ Ωn

that form an overlapping covering of Ωn. We then perform local subspace relaxation with each
of these subsets in a multiplicative fashion.

Figure 4. Graph of matrix AG from example 1, with n = 9, grouped into three
overlapping subsets. Each box encloses a group of nodes in a respective subset.

W1 W2 W3

Similar to aggregation matrix [A], we represent these subset coverings with a sparse, binary,
overlapping subset matrix, [W]. One way to obtain an overlapping subset covering is by dilating
aggregates. This is accomplished by taking each aggregate Aj within the aggregation and
expanding Aj once with respect to the graph of matrix AG. Let [AG] be an n × n binary
version of AG that stores strong connections in the graph of A, defined as

[AG]ij :=

{

1, (AG)ij 6= 0
0, (AG)ij = 0

}

. (25)

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

12 BREZINA, MANTEUFFEL, MCCORMICK, RUGE, SANDERS, VASSILEVSKI

Figure 5. A typical local subspace relaxation sweep on a random iterate for the 1D
example with n = 9. The top left vector is the initial iterate, ṽ; top right shows a
subspace update on subset W1, bottom left shows a subsequent update over W2, and
bottom right shows final relaxed iterate w̃ after a subsequent subspace update over W3.

ṽ after updating over W1

after updating over W2 after updating over W3

Then define [W] by creating a binary version of the matrix product [AG][A], a dilation:

[W]ij :=

{

1,
(

[AG][A]
)

ij
6= 0

0,
(

[AG][A]
)

ij
= 0

}

. (26)

Our choice of the overlapping subsets is not limited to this construction; however, we make
this choice for simplicity and convenience.

In practice, each local RQ minimization is accomplished by rewriting minimization problem
(11) as a generalized eigenvalue problem of low dimension, as in (14), and solving for minimal
eigenvector y1 with a standard eigensolver. Note that here we use Qṽ

j to represent matrices

that span each subspace, V ṽ

j , to distinguish from the Qj used in the initial guess section. We

construct an n× (mj +1) matrix, Qṽ

j , so that its columns are an orthogonal basis for subspace

V ṽ

j . To define Qṽ

j explicitly, first define vector v0 by

(v0)i :=

{

vi, i 6∈ Wj

0, i ∈ Wj

}

. (27)

For each point p ∈ Wj , define canonical basis vectors êp. Then, we form Qṽ

j by appending

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

GES-SA 13

these (mj + 1) vectors in a matrix of column vectors:

Qṽ

j =

⊤ ⊤ ⊤
v0 êp1

. . . êpmj

⊥ ⊥ ⊥

 , (28)

where the sequence of points, {pi}mj

i=1, is a list of all points within local subsetWj . This makes
the columns of Qṽ

j orthogonal, a matrix that maps from R
mj+1 onto V ṽ

j . For the 1D example,
with W2 = {3, 4, 5, 6, 7}, the operator is given by

Qṽ

2 =

v1

v2

0 1
0 1
0 1
0 1
0 1
v8

v9

. (29)

Next, we compute Aṽ

j ← (Qṽ

j)T AQṽ

j and Bṽ

j ← (Qṽ

j)T BQṽ

j . Then (14) is solved with a
standard eigensolver for y1, which is normalized so that (y1)1 = 1. This normalization is the
same as requiring w0 = 1, which leaves all nodes outside of Wj unchanged by the update.
Then, updated iterate is then given by w̃← Qṽ

j y1.
Local subspace relaxation is summarized in the following algorithm.

Algorithm 2. Local Subspace Relaxation.

Function: ṽ← LSR(A, B, ṽ, {Wj}mj=1) .
Input: SPD matrices A and B, current approximation to the minimal eigenvector ṽ, and
overlapping subset covering {Wj}mj=1.
Output: updated iterate ṽ.

1. For j = 1, ..., m, do the following:

(a) Form Qṽ

j based on ṽ and Wj as in (28).

(b) Form Aṽ

j ← (Qṽ

j)T AQṽ

j and Bṽ

j ← (Qṽ

j)T BQṽ

j .
(c) Find y1 by solving (14) via a standard eigensolver.
(d) If w0 6= 0, normalize and ṽ← Qṽ

j y1.

2. Output ṽ.

Figure 5 shows how a single sweep of local subspace relaxation acts on a random initial guess
for the 1D example. Although the guess is never really random in the actual algorithm, due
to the initial guess development, we show this case so it is clear how the algorithm behaves.
This algorithm gives relaxed iterate w̃ local characteristics of the actual minimal eigenvector.
For problems with large numbers of nodes, the global characteristics of the iterate are far from
those of the actual minimal eigenvector. This is where the coarse-grid iteration complements
local subspace relaxation. When done in an alternating sequence, as in a standard multigrid
method, the complementary processes achieve both local and global characteristics of the
approximate minimal eigenvector, forming an eigensolver. Their explicit use is presented in
the next section.

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

14 BREZINA, MANTEUFFEL, MCCORMICK, RUGE, SANDERS, VASSILEVSKI

3. GES-SA

Because GES-SA is a multilevel method, to describe it, we change to multilevel notation. Any
symbol with subscript l refers to an object on grid l, with l = 1 the finest or original grid and
l = L the coarsest. For example, the matrix associated with the problem on level l is denoted
by Al; in particular, A1 = A, the matrix from our original problem. Interpolation from level
l + 1 to level l is denoted by by P l

l+1 instead of P , and restriction from level l to level l + 1 is

denoted (P l
l+1)

T . The dimension of Al is written nl. Other level l objects are denoted with a
subscript and superscript l, as appropriate.

3.1. The full GES-SA algorithm

GES-SA performs multilevel cycles that are structured in a format similar to standard
multigrid. The very first cycle of the full GES-SA algorithm differs from the subsequent
cycles: on each level, the initial guess development given in algorithm 1 is used in place of
pre-relaxation. Subsequent cycles use local subspace relaxation given in algorithm 2. Coarse-
grid updates are given by the process presented in section 2.2. A typical GES-SA cycling
scheme is illustrated in figure 6.

Figure 6. Diagram of how V -cycles are done in GES-SA for γ = 1. We follow the
diagram from left to right as the algorithm progresses. Gray dots represent the initial
guess development phase of the algorithm, only done in the first cycle. Hollow dots
represent solve steps done with a standard eigensolver on the coarsest eigenproblem.
Black dots represent local subspace pre- and post-relaxation steps. A dot on top stands
for a step on the finest grid and a dot on bottom stands for a step on the coarsest grid.

Algorithm 3. Generalized Eigensolver Based on Smoothed Aggregation

Function: ṽl ← GESSA(Al, Bl, ν, η, γ, l).
Input: SPD matrices Al and Bl, number of relaxations to perform ν, number of cycles
η, number of coarse-grid problem iterations γ, and current level l.
Output: approximate minimal eigenvector ṽl to the level l problem.

0. If no aggregation of Ωnl
is provided, compute {Al

j}ml

j=1. Also, if no overlapping subset

covering is provided, compute {W l
j}ml

j=1. Step 0. is only performed once per level.

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

GES-SA 15

1. For ζ = 1, ..., η, do the following:

(a) If ζ = 1, form an initial guess, ṽl ← IGD(Al, Bl, {Al
j}ml

j=1). Otherwise, pre-relax

the current approximation, ṽl ← LSR(Al, Bl, ṽl, ν, {W l
j}ml

j=1).

(b) Form P l
l+1 with SA based on ṽl and {Al

j}ml

j=1 as in (23).

(c) Form matrices Al+1 ← (P l
l+1)

T AlP
l
l+1 and Bl+1 ← (P l

l+1)
T BlP

l
l+1.

(d) If nl+1 is small enough, solve (14) for y1 with a standard eigensolver, and set
ṽl+1 ← y1. Else, ṽl+1 ← GESSA(Al+1, Bl+1, ν, γ, γ, l + 1).

(e) Interpolate the coarse-grid minimization, ṽl ← P l
l+1ṽl+1.

(f) Post-relax the current approximation, ṽl ← LSR(Al, Bl, ṽl, ν, {W l
j}ml

j=1).

2. Output ṽl.

3.2. A Qualitative Comparison with Rayleigh-Quotient Multigrid

The GES-SA algorithm differs from RQMG [6] and algebraic versions of RQMG [8] in three
main aspects. Iterations in RQMG are performed as corrections, whereas iterations in GES-
SA are replacements or updates. In terms of cost, cycles of RQMG are cheaper than those of
GES-SA. For one, the updates of the hierarchy that GES-SA creates are not performed with
each iteration of RQMG. Also, the version of GES-SA we present here uses block relaxation,
compared to the point relaxation used by the RQMG methods in the literature.

Perhaps more significant is that while the RQMG methods are supplied with a fixed hierarchy
of interpolation operators, assumed to have good approximation for the minimal eigenvector,
GES-SA starts with no multigrid hierarchy and creates one, changing the entries of the
interpolation operators with each cycle. This is similar in spirit to running several initialization
setup phase cycles of the original, relaxation-based αSA. The GES-SA multigrid hierarchy is
iteratively improved to have coarsening and good approximation properties tailored for the
problem at hand.

These differences suggests that GES-SA or a similar adaptive process may also be used
to initialize RQMG by supplying it with an initial hierarchy. Of even more appeal is that
RQMG could be used in subsequent cycles to develop several eigenvectors at once, which is
currently not a feature of GES-SA. This would be a useful approach to initialize linear solvers
for systems problems. This study does not quantitatively investigate the use of RQMG in the
context of an adaptive process. These possible expansions of the current adaptive methodology
are under consideration for our future research.

3.3. Simple Adaptive Linear Solvers

Our primary purpose is to use GES-SA to create an adaptive linear SA solver for the problem
Ax = b. We first consider problems that only require one near-kernel vector for a successful
solver. Applications of GES-SA are repeated until the RQ improvement slows. This gives an
approximate minimal eigenvector, ṽ. Then, the setup phase of SA is run to form a solver that
accurately represents K = {ṽ}. This solver is tested on the homogeneous problem, Ax = 0.
Section 4 presents results only for such one-vector solvers.

However, if the current, one-vector solver is not adequate, then we must develop a vector
that represents error that is algebraically smooth with respect to this solver. Currently, our
approach is to use the general setup phase of αSA in [4] to develop a secondary component, k2.

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

16 BREZINA, MANTEUFFEL, MCCORMICK, RUGE, SANDERS, VASSILEVSKI

(A study regarding RQ optimization approaches for computing these secondary components
is underway). Then, the setup phase of SA is run to form a solver that accurately represents
K = {ṽ,k2}. The updated solver is again tested on the homogeneous problem. If the updated
solver is also inadequate, the αSA process can be repeated until an adequate solver is built.

4. Numerical Results

Many linear systems that come from the discretization of scalar PDEs are solved efficiently with
SA, with the vector of all ones as near-kernel, where the linear solver has decent convergence
rates. However, we present examples of matrices where the vector of all ones is not a near-
kernel component, and using it as one with SA may not produce a linear solver with acceptable
convergence rates.

All the results in this section display the result of running one GES-SA V-cycle (η = 1, γ = 1)
and ν = 2 post-relaxation steps. Our implementation for GES-SA is currently in MATLAB and
we therefore make no rigorous timing comparisons with competing eigensolvers. In further
investigations, we intend to explore these details. The small eigenproblems involved in GES-
SA were all solved using the eigs() function with flags set for real and symmetric matrices,
which implements ARPACK [10] routines. No 2D problem used more than 5 iterations to solve
small eigenproblems; no 3D problem used more than 10 iterations.

Table I. Asymptotic convergence factors for the 2- and 3-dimensional finite difference (FD) and
finite element (FE) versions of the random-signed Laplacian problem. Factors in the column
labeled ”ones” correspond to solvers created using the vectors of all ones; factors in the ”ges-sa”
column correspond to solvers that use our approximate minimal eigenvector computed with
GES-SA; and factors in the ”eigen” column correspond to solvers that use the actual minimal
eigenvector. The last column, ”comp”, displays the operator complexity for all 3 types of solvers.

prob. size levels ones ges-sa eigen comp

2D, FE 81 2 0.620 0.074 0.074 1.078
729 3 0.892 0.176 0.179 1.108
6561 4 0.965 0.193 0.196 1.119
59049 5 0.977 0.215 0.214 1.123

2D, FD 81 2 0.849 0.219 0.219 1.317
729 3 0.947 0.294 0.290 1.357
6561 4 0.962 0.306 0.305 1.348
59049 5 0.978 0.312 0.312 1.342

3D, FE 729 2 0.598 0.114 0.111 1.054
19683 3 0.934 0.188 0.189 1.112

3D, FD 729 2 0.825 0.289 0.292 1.389
19683 3 0.944 0.360 0.358 1.495
64000 4 0.961 0.418 0.413 1.511

Example 2. We present the random-signed discrete Laplacian. Consider the d-dimensional

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

GES-SA 17

Poisson problem with Dirichlet boundary conditions

−∆u = f in Ω = (0, 1)d

u = 0 on δΩ.
(30)

We discretize (30) with both finite element spaces with nodal bases, and second-order finite
differences, on equidistant rectilinear grids.

Either way we discretize the problem, we have a sparse n× n matrix Â. We then define the
diagonal, random-signed matrix D± to have randomly assigned positive and negative ones for
entries. Finally, we form the random-signed discrete Laplacian matrix A by

A← D±ÂD±. (31)

In our results, we also symmetrically scale the matrix A to have ones on its diagonal for
example 2.

Figure 7. Aggregation examples displayed for 2D test problems of low dimension. On the left
is an aggregation formed with a geometric aggregation method used for the finite element
problems; on the right is an aggregation formed with an algebraic aggregation method
used for finite-difference problems. Black edges represent strong connections within graph of
matrix AG; each gray box represents a separate aggregate that contains the nodes enclosed.

geometric aggregation algebraic aggregation

Now consider solving Ax = b given vector b. Note that the vector of all ones is not
algebraically smooth with respect to standard relaxation methods. As seen in table I, using
the vector of all ones produces SA solvers that have unacceptable convergence factors for these
problems. Instead, we use one GES-SA cycle to produce an approximate minimal eigenvector,
ṽ, and use K = {ṽ} in the setup phase of SA to produce a linear SA solver. The convergence
factors of the resulting solver are comparable to those obtained using the actual minimal
eigenvector to build the linear SA solver. Note that convergence factors are reported as an
estimation of asymptotic convergence factors by computing a geometric average of the last 5
of 25 linear SA V (2, 2)-cycles,

Asymptotic Convergence Factor ≈
(‖e(25)‖A
‖e(20)‖A

)1/5

(32)

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

18 BREZINA, MANTEUFFEL, MCCORMICK, RUGE, SANDERS, VASSILEVSKI

Table II. Relative errors between the RQ of the GES-SA approximate
minimal eigenvector, ρ, and the minimal eigenvalue, λ1, for 2- and 3-
dimensional finite element and finite difference versions of example 2.

prob. size levels ρ λ1 rel. error

2D, FE 81 2 7.222e-02 7.222e-02 0.0000034
729 3 9.413e-03 9.412e-03 0.0001608
6561 4 1.101e-03 1.100e-03 0.0002491
59049 5 1.243e-04 1.243e-04 0.0001224

2D, FD 81 2 4.895e-02 4.894e-02 0.0000582
729 3 6.307e-03 6.288e-03 0.0031257
6561 4 7.501e-04 7.338e-04 0.0222547
59049 5 9.306e-05 8.289e-05 0.1227465

3D, FE 729 2 1.066e-01 1.066e-01 0.0000017
19683 3 1.412e-02 1.409e-02 0.0022805

3D, FD 729 2 4.896e-02 4.894e-02 0.0003230
19683 3 6.303e-03 6.288e-03 0.0024756
64000 4 2.981e-03 2.934e-03 0.0158771

for the homogeneous problem, Ax = 0, starting with a random initial guess. Operator
complexity is also reported for the linear solver that uses the vector developed with GES-
SA. We use the usual definition of operator complexity,

comp =

∑L
l=1 nz(Al)

nz(A1)
, (33)

where the function nz(M) is the number of non-zeros in sparse matrix M .
Both geometric and algebraic-based aggregation was done in our tests. For the finite element

problems, we took advantage of knowing the geometry of the grid and formed aggregates that
were blocks of 3d nodes. For the finite difference problems, no geometric information was
employed and aggregation was done algebraically, as in [17]. Small examples in 2 dimensions
of the difference between the two types of aggregations we used are shown in figure 7. Algebraic
aggregations were done based on the strength-of-connection measure given in (3), with θ = .1.

Although it is not the primary purpose of this study, it is also interesting to view GES-
SA as a standalone eigensolver. For the random-signed Laplacians, table II displays how one
GES-SA V -cycle with ν = 2 produces an approximate minimal eigenvector that is very close
to the actual minimal eigenvector in the sense that the relative error between the RQ and the
minimal eigenvalue is order 1.

All the results in this section are produced using only one GES-SA cycle. However, we do
not believe that a decent approximate minimal eigenvector can be produced with one GES-SA
cycle for general problems. Note that the relative error of one cycle tends to increase as h

decreases, or as the discretization error decreases. For most problems, we anticipate having to
do more GES-SA cycles to achieve an acceptable approximate minimal eigenvector.

Example 3. We also investigate GES-SA on ”shifted” Laplacian, or Hemholtz, problems to
display the invariance of performance with respect to such shifts. Consider the d-dimensional

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

GES-SA 19

Poisson problem with Dirichlet boundary conditions, shifted by a parameter, σs > 0:

−∆u− σsu = f in Ω = (0, 1)d

u = 0 on δΩ.
(34)

Here, σs is chosen to make the continuous problem nearly singular. The minimal eigenvalue of
the Laplacian operator on (0, 1)d is dπ2. Therefore setting

σs = (1− 10−s)dπ2, (35)

for an integer s > 0, makes the shifted operator (−∆ − σs) have a minimal eigenvalue of
µ1 = 10−sdπ2. Here, we consider the d = 2 and d = 3 cases, for various shifts σs. We
discretized the 2D case with nodal bilinear functions on square elements, with h = 1

244 . This
gave us a system with n = 59, 049 degrees of freedom. All aggregation done in these tests was
geometric, and aggregate diameters were never greater than 3. For each shift, the solvers we
developed (using both GES-SA and the actual minimal eigenvector) have operator complexity
1.119 and 5 levels with 59,049, 6561, 729, 81, and 9 degrees of freedom on each respective
level. Similarly, the 3D case was discretized with nodal trilinear functions on cube elements,
with h = 1

37 . This gave us a system with n = 46, 656 degrees of freedom. Again, for each shift
the solvers have operator complexity 1.033 and 4 levels with 46,656, 1,728, 64, and 8 degrees
of freedom on each respective level. In either case, the minimal eigenvalue for the discretized
matrix A is λ1 ≈ 10−sdπ2hd.

For all cases, we produced 2 SA solvers: the first solver was based on the actual minimal
eigenvector of A and the second was based on the approximation to the minimal eigenvector
created by one cycle of GES-SA. In table III, we display asymptotic convergence factors (32)
for these solvers for 2D and 3D and specific shift parameters.

We assume that prolongation P from the first coarse grid to the fine grid satisfies the weak
approximation property, with constant

C := sup
u∈R

nf

(

min
v∈Rnc

‖u− Pv‖22‖A‖2
(Au,u)

)

. (36)

Based on the knowledge that A comes from a scalar PDE, we further assume that it is most
essential to approximate a minimal eigenvector, u1. The denominator, (Au,u), is smallest for
this vector and other vectors that have comparable denominators are locally well-represented
by u1. Under these assumptions, we feel it is insightful to monitor the following measure of

approximation for any P that we develop.

M1(P) := min
v∈Rnc

‖u1 − Pv‖22‖A‖2
(Au1,u1)

, (37)

where u1 is the minimal eigenvector of A. Note that this is a lower bound: M1(P) ≤ C. We
compute minv∈Rnc ‖u1−Pv‖2 by directly projecting u1 onto the range of P , a computationally
costly operation that is merely a tool for analyzing test problems. Table III reports M1(P) on
the finest grid, for the P developed using the GES-SA method. As σs increases, and the problem
becomes more ill-conditioned, we see an increase of M1(P) and eventually a degradation in
the convergence factors for the 2D linear solvers that GES-SA produced.

We wish to investigate whether the degradation in the 2D GES-SA solver is due to GES-SA
performing worse for the more ill-conditioned problems, or the approximation requirements

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

20 BREZINA, MANTEUFFEL, MCCORMICK, RUGE, SANDERS, VASSILEVSKI

getting stricter. To this purpose, we monitor a second measure of approximation

M2(P) := min
v∈Rnc

‖u1 − Pv‖22
‖u1‖22

. (38)

Again, this measure is displayed in table III for each problem. As σs increases, we see
that M2(P) is essentially constant for the linear solvers that GES-SA produced, with fixed
computation, indicating that the degradation is only due to the approximation requirements
getting stricter.

Table III. Asymptotic convergence factors and measures of approximation for example
3. The s values in the columns give shift sizes σs as in (35). The first block row is for
2D problems, the second is for 3D problems. The rows labeled ”λ1” display the minimal
eigenvalue for the specific discrete problem and those labeled ”ρ” display RQs of the
GES-SA vectors. Rows labeled ”eigen” display convergence factors for solvers based on
the actual minimum eigenvector. Rows labeled ”ges-sa” display convergence factors for
solvers based on the approximation to the minimal eigenvector given by one GES-SA
cycle. Measures of approximation, M1(P) and M2(P), are in rows with respective labels.

s = 1 s = 2 s = 3 s = 4 s = 5
λ1 3.32e-05 3.32e-06 3.36e-07 3.77e-08 7.90e-09
ρ 3.32e-05 3.37e-06 3.88e-07 9.11e-08 6.03e-08

2D, FE eigen .196 .198 .198 .199 .197
ges-sa .197 .197 .196 .199 .430

(n = 59,049) M1(P) 1.14e-05 1.13e-04 1.11e-03 1.01e-02 4.83e-02
M2(P) 9.45e-11 9.37e-11 9.36e-11 9.54e-11 9.54e-11

λ1 5.86e-05 6.17e-06 9.32e-07 4.08e-07 3.56e-07
ρ 5.88e-05 6.30e-06 1.06e-06 5.40e-07 4.86e-07

3D, FE eigen .187 .187 .190 .188 .183
ges-sa .188 .185 .188 .187 .185

(n=46,656) M1(P) 7.07e-05 6.67e-04 4.43e-03 1.04e-02 1.18e-02
M2(P) 3.85e-08 3.83e-08 3.84e-08 3.94e-08 3.91e-08

5. Conclusion

This paper develops a multilevel eigensolver, GES-SA, in the SA framework for the specific
application of enhancing robustness of current adaptive linear SA solvers. We show preliminary
numerical results that support approximate eigensolvers as potentially useful for initialization
within the adaptive algebraic multigrid process. This paper serves as a proof of concept,
and due to our high-level implementation, we are not making claims about the efficiency of
this algorithm versus purely relaxation-based initialization given in [4]. This question will be
investigated as we begin incorporating eigensolvers into our low-level adaptive software.

REFERENCES

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

GES-SA 21

1. A. Brandt. Algebraic multigrid theory: The symmetric case. Appl. Math. Comput., 9:23–26, 1986.
2. A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for sparse matrix equations. DJ

Evans (Ed.), Sparsity and its Applications, 1984.
3. M. Brezina. Robust iterative methods on unstructured meshes. PhD thesis, University of Colorado,

Denver, Colorado, 1997.
4. M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. Adaptive Smoothed

Aggregation (αSA). SISC, 25:1896–1920, 2004.
5. W. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial, 2nd Edition. SIAM books, 2000.
6. Z. Cai, J. Mandel, and S. F. McCormick. Multigrid methods for nearly singular linear equations and

eigenvalue problems. SIAM J. Numer. Anal., 34:178–200, 1997.
7. T. F. Chan and I. Sharapov. Subspace correction multi-level methods for elliptic eigenvalue problems.

Numerical Linear Algebra with Applications, 9:1 20, 2002.
8. U. Hetmaniuk. A Rayleigh quotient minimization algorithm based on algebraic multigrid. Numerical

Linear Algebra with Applications, 14:563–580, 2007.
9. U. Hetmaniuk and R. B. Lehoucq. Multilevel methods for eigenspace computations in structural dynamics.

Domain Decomposition Methods in Science and Engineering, Lecture notes in Computational Science and
Engineering, 55:103–114, 2007.

10. R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK USERS GUIDE: Solution of Large Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

11. S. F. McCormick and J. Ruge. Multigrid Methods for Variational Problems. SIAM J. Numer. Anal.,
19:925–929, 1982.

12. K. Neymeyr. Solving mesh eigenproblems with multigrid efficiency. Numerical Methods for Scientific
Computing, Variational Problems and Applications, editors Y. Kuznetsoz, P. Neittaanmäki, and O.
Pironneau, 2003.

13. J. Ruge. Multigrid methods for variational and differential eigenvalue problems and unigrid for multigrid
simulation. PhD thesis, Colorado State University, Fort Collins, Colorado, 1981.

14. J. Ruge and K. Stüben. Algebraic Multigrid (AMG). Multigrid Methods (McComrick, S.F., ed.), 5, 1986.
15. U. Trottenberg, C. W. Osterlee, and A. Schuller (Appendix by K. Stuben). Multigrid (Appendix A: An

Introduction to Algebraic Multigrid). Academic Press, 2000.
16. P. Vaněk, M. Brezina, and J. Mandel. Convergence of algebraic multigrid based on smoothed aggregation.

Numerische Mathematik, 88:559–579, 2001.
17. P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for second and fourth

order elliptic problems. Computing, 56:179–196, 1996.

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 07:1–6
Prepared using nlaauth.cls

