
Submitted to SIAM Journal on Scientific Computing, March 2009

ALGEBRAIC MULTIGRID FOR MARKOV CHAINS

H. DE STERCK∗‡, T.A. MANTEUFFEL†§, S.F. MCCORMICK†¶, K. MILLER∗‡‡, J. RUGE†‖,

AND G. SANDERS†∗∗

Abstract. An algebraic multigrid (AMG) method is presented for the calculation of the sta-
tionary probability vector of an irreducible Markov chain. The method is based on standard AMG
for nonsingular linear systems, but in a multiplicative, adaptive setting. A modified AMG interpo-
lation formula is proposed that produces a nonnegative interpolation operator with unit row sums.
It is shown how the adoption of a previously described lumping technique maintains the irreducible
singular M-matrix character of the coarse-level operators on all levels. Together, these properties are
sufficient to guarantee the well-posedness of the algorithm. Numerical results show how it leads to
nearly optimal multigrid efficiency for a representative set of test problems.

Key words. multilevel method, Markov chain, stationary probability vector, algebraic multigrid

AMS subject classifications. 65C40 Computational Markov chains, 60J22 Computational
methods in Markov chains, 65F10 Iterative methods for linear systems, 65F15 Eigenvalues, eigenvec-
tors

1. Introduction. This paper describes an algebraic multigrid (AMG) method
for computing the stationary probability vector of large, sparse, irreducible Markov
transition matrices.

While multigrid methods of aggregation type have been considered before for
Markov chains [13, 10, 9], our present approach is based on standard AMG for non-
singular linear systems, but in a multiplicative, adaptive setting. The current method
is, in fact, an extension to non-variational coarsening of the variational adaptive AMG
scheme originally developed in the early stages of the AMG project by A. Brandt,
S. McCormick, and J. Ruge [3] (described earlier in [18]). One of the features of the
earlier approach is that it constructed interpolation to exactly match the minimal
eigenvector of the matrix. A closely related technique called the Exact Interpola-
tion Scheme (EIS) was proposed by Brandt and Ron [4]. The EIS has been applied to
eigenvalue problems, for example, as a multigrid solver for one-dimensional Helmholtz
eigenvalue problems [14]. Moreover, the current method also incorporates some as-
pects of early work on aggregation multigrid for Markov chains. In particular, it uses
a multiplicative correction form of the coarse-grid correction process that is similar
to the two-level aggregated equations proposed in [21], and its framework is similar
to the two-level iterative aggregation/disaggregation method for Markov chains pio-
neered in [25] and since used and analyzed extensively (see [22] and [9] for references).
The so-called square-and-stretch multigrid algorithm by Treister and Yavneh [26] is a
recent aggregation-based multigrid method for Markov chains that is also related to
our approach.

∗Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
†Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado,

USA
‡hdesterck@uwaterloo.ca
§tmanteuf@colorado.edu
¶stevem@colorado.edu
‡‡k7miller@uwaterloo.ca
‖jruge@colorado.edu

∗∗sandersg@colorado.edu

1

2

Starting from the classical definition of AMG interpolation described in [6], we
propose a modified interpolation formula that produces a nonnegative interpolation
operator with unit row sums. Furthermore, it is shown how the adoption of a lumping
technique, which was recently employed in an aggregation-based method for Markov
chains [9], maintains the irreducible singular M-matrix character of the coarse-level
operators on all levels. Together, these properties are sufficient to prove the well-
posedness of our algorithm. We show numerically that the resulting lumped AMG
method for Markov chains (MCAMG) leads to nearly optimal multigrid efficiency for
a representative set of test problems for which traditional iterative methods are slow
to converge. The aim here is to use a sequence of successively coarser versions of the
original problem to remedy the slow convergence that plagues traditional one-level
iterative methods, like the power method, when the subdominant eigenvalue satisfies
|λ2| ≈ 1 [17].

The set of test problems is composed of two classes, those for which the proba-
bility transition matrix is similar to a symmetric matrix and for which the eigenvalue
spectrum is thus real (their solution can be determined by an inexpensive, local cal-
culation), and more challenging problems with non-symmetric sparsity structure, for
which the spectrum is complex. Note that the use of AMG has already been explored
for Markov chain problems [27], in the context of additive AMG used as a precon-
ditioner for GMRES. Our formulation, however, is multiplicative, and near-optimal
results are obtained without GMRES acceleration. Our formulation is also different
in that it is related to adaptive AMG [5].

Large sparse Markov chains are of interest in a wide range of applications, includ-
ing information retrieval and web ranking, performance modelling of computer and
communication systems, dependability and security analysis, and analysis of biolog-
ical systems [22]. Multilevel solvers for Markov problems with improved efficiency,
thus, promise to have significant impact in many disciplines.

This paper is organized as follows. We begin with the problem formulation and
definitions in Section 2 and, in Section 3, we provide some essential theoretical back-
ground concerning the class of (irreducible) singular M-matrices. As such, it is our
aim that this paper be self-contained. In Section 4, we recall the general framework of
AMG methods for nonsingular systems and discuss where our method deviates from
the classical approach. We present the MCAMG V-cycle algorithm in Section 4.6
and, in Section 4.7, we rigorously prove the well-posedness of MCAMG. Numerical
convergence tests are presented for a set of representative test problems in Section 5.
Conclusions and future work are discussed in Section 6.

2. Mathematical formulation. The problem of finding the stationary proba-
bility vector of a Markov chain can be stated as follows. Given a column-stochastic
transition-probability matrix, B ∈ R

n×n, i.e., 0 ≤ bij ≤ 1 and

1T B = 1T , (2.1)

we seek the vector x ∈ R
n, such that

B x = x, xi ≥ 0 ∀ i, ‖x‖1 = 1. (2.2)

Here, 1 is the column vector of all ones. It can be shown that, if B is irreducible, then
there exists a unique solution to (2.2), with strictly positive components. This is a
consequence of the Perron-Frobenius theorem for nonnegative matrices [12]. In what
follows, we consider the case where B is irreducible, a concept that we now formally
define.

3

Definition 2.1 (Directed walk and directed path).
For nodes u and v in a directed graph, D = (N ,A), with node set N and arc set A,
a u-v walk in D is a finite sequence of nodes u = v0, v1, . . . , vk−1, vk = v, beginning
at u and ending at v, such that (vi−1, vi) ∈ A for i = 1, . . . , k. A directed u-v path is
a directed u-v walk in which no node is repeated.

Definition 2.2 (Directed graph of a matrix).
The directed graph of A ∈ R

n×n, denoted by Γ(A), is the directed graph on n nodes
v1, . . . , vn such that an arc exists from vi to vj if and only if aji 6= 0.

Definition 2.3 (Irreducible matrix).
Matrix A ∈ R

n×n is called irreducible if and only if there exists a directed path from
vi to vj for any two distinct nodes vi, vj ∈ N (Γ(A)).

3. Singular M-matrices. Following the approach outlined in [27], we can,
equivalently, restate the problem of finding the stationary probability vector as solving
for a strictly positive vector of unit length in the null space of an irreducible singular
M-matrix. Mathematically, we seek the vector x ∈ R

n such that

Ax = 0, xi > 0 ∀ i, ‖x‖1 = 1, (3.1)

where A := I −B. Here, A is an irreducible singular M-matrix and 1T A = 0.
We now define singular M-matrices, show that A belongs to this class, and state

a number of properties shared by all singular M-matrices. These properties, together
with irreducibility, provide a solid theoretical foundation with which we can prove the
well-posedness of our algorithm, in the the sense that, given an iterate that is strictly
positive, the algorithm gives a proper definition for the next iterate. Let ρ(B) be the
spectral radius of B. Then, we have the following definition:

Definition 3.1 (Singular M-matrix).
A ∈ R

n×n is a singular M-matrix if and only if there exists B ∈ R
n×n, with bij ≥ 0

for all i, j, such that A = ρ(B)I −B.
The justification that A = I −B is a singular M-matrix now follows readily from

Definition 3.1 and from the fact that ρ(B) = 1 for any column-stochastic matrix B.
Furthermore, it is easy to see that, if B is irreducible, then A must also be irreducible,
since subtracting B from I cannot zero out any off-diagonal elements of B (refer to
Definition 2.3). The following properties of singular M-matrices are used throughout
this paper and can be found in [2, 9, 27].

Theorem 3.2 (Some properties of singular M-matrices).
(1) Irreducible singular M-matrices yield a unique solution to Ax = 0, up to scaling,
which can be chosen such that all components of x are strictly positive.
(2) Irreducible singular M-matrices have nonpositive off-diagonal elements and strictly
positive diagonal elements (n > 1).
(3) If A has a strictly positive vector in its left or right null space and its off-diagonal
elements are nonpositive, then A is a singular M-matrix.
(4) If A is an irreducible singular M-matrix, then each of its principal submatrices,
other than A itself, is a nonsingular M-matrix.

As we shall see, property (2) allows us to construct an interpolation operator with
nonnegative entries and unit row sums. These properties are also used below to prove
that the coarse operators of our AMG method are irreducible singular M-matrices on
all levels.

4. Algebraic multigrid for Markov Chains. In this section, we recall the
principal features of the classical AMG V-cycle [3, 6, 24] on which our method is

4

based. We discuss how our approach for Markov chains deviates from the classical
approach for nonsingular linear systems, and how it incorporates aspects of recent
work on aggregation multigrid for Markov chains [9]. We conclude this section by
describing our V-cycle algorithm and proving well-posedness.

4.1. Multiplicative AMG method and coarsening. One major difference
between our approach for Markov chains and that of classical AMG for nonsingular
linear systems is the use of multiplicative error, ei, defined by x = diag(xi) ei, where
x is the exact solution of (3.1) and xi is the ith iterate. As we see below, the xi

obtained by our algorithm have strictly positive components. Equation (3.1) can
then be rewritten as

Adiag(xi) ei = 0. (4.1)

We observe that, at convergence, xi = x and, hence, ei = 1. This motivates the
following definition of the multiplicative coarse-level error correction:

xi+1 = diag(xi)P ec, (4.2)

where P is the interpolation operator (see Section 4.2) and ec is the error approxi-
mation on the coarse level. It is easy to see that (4.2) is the natural extension of the
additive coarse-level error correction to the multiplicative case.

Now consider the scaled fine-level operator given by Ā := Adiag(xi). By Theorem
3.2(3), Ā is also an irreducible singular M-matrix. We can rewrite Equation (4.1) in
terms of Ā, which results in the following fine-level error equation:

Ā ei = 0. (4.3)

To seek a coarse representation of Equation (4.3), we first perform the two-pass AMG
coarsening routine described in [6], which determines the set of points on the coarse
level. The coarsening routine partitions the points on the current level into a set of
coarse points, C, and a set of fine points, F . Its goal is to choose C large enough
so that interpolation is accurate, but not so large that the work done in a V-cycle is
prohibitive. The first pass proceeds by constructing a preliminary partition of coarse
points (C-points) and fine points (F -points), such that for any F -point i, there exists
at least one C-point j that strongly influences i (see Equation 4.4). As well, the
first pass attempts to satisfy the condition that C be a maximal subset with the
property that no C-point strongly influences another. The second pass refines the
initial partition by changing some of the F -points into C-points. New C-points are
chosen such that any point j that strongly influences F -point i either belongs to Ci,
or is strongly influenced by at least one point in Ci. Here, Ci is the set of C-points
that strongly influence point i. Performing the second pass improves the accuracy
that can be obtained by interpolation, and is necessary to ensure the well-posedness
of the interpolation formula presented in Section 4.2.

We base strength of connection on the scaled operator, Ā, and not on A itself (see
also [10, 9]). On the finest level, we can offer a probabilistic justification for this: For
i 6= j, −aij is the probability of moving to state i given that the chain is currently in
state j, i.e., −aij is a conditional probability. In order for conditional probabilities
to be meaningful, they must be interpreted in terms of the underlying probability
distribution on which they are conditioned. For example, in terms of a Markov chain,
Xn,

P(Xk+1 = i) =

n∑

j=1

P(Xk+1 = i |Xk = j)P(Xk = j).

5

Thus, the transition probabilities, P(Xk+1 = i |Xk = j), tell us little about P(Xk+1 =
i), unless we know the P(Xk = j). This is an indication that basing strength of
connection on A may not be meaningful and may result in poor convergence of our
method. Instead, by basing strength of connection on Ā, we make use of the most
current information available on the underlying distribution and consider the joint
probability of being in state i.

Strength of connection for our multigrid method is defined as follows: given a
threshold value, θ ∈ [0, 1], point j strongly influences point i if

−āij ≥ θ max
k 6=i
{−āik}. (4.4)

In this paper, unless stated otherwise, we use strength threshold θ = 0.25. At conver-
gence, 1 lies in the null space of Ā, so standard AMG coarsening and interpolation
approaches work well. The coarse-level version of (4.3) is given by

R ĀP ec = 0 or Āc ec = 0, (4.5)

with Āc := R ĀP and the restriction operator defined by the variational property,
R = PT .

The attentive reader may question the well-posedness of the coarse-level equation:
coarse-level operator Āc may not be an irreducible singular M-matrix, which implies
that the coarse-level equation may not have a unique, strictly positive solution (up to
scaling). As we show in Section 4.3, this problem is remedied by applying a lumping
method [9] to the coarse-level operator, whereby we obtain the lumped coarse-level
operator, Âc. We prove below that Âc is an irreducible singular M-matrix, and that
the exact solution, x, is a fixed point of the V-cycle with the lumped coarse-level error
equation, Âc ec = 0.

We conclude this section by stating two identities for the unlumped Āc, which
are used in Section 4.3. Let the coarse-level column vector of all ones be denoted by
1c. We choose P such that P 1c = 1 (see below), which implies that

1T
c Āc = 0 ∀ xi, (4.6)

Āc 1c = 0 for xi = x. (4.7)

4.2. Interpolation. The interpolation operator, P , transfers information from
coarse to fine levels. It is constructed in such a way that it accurately represents fine-
level algebraically smooth components, by which we mean components whose error is
not effectively reduced by relaxation. In the AMG method, interpolation is accom-
plished by approximating the error at each fine-level point (F -point) as a weighted
sum of the error at coarse-level points (C-points). In what follows, we recall the def-
inition of the AMG interpolation operator from [6], and explain how the formula for
the interpolation weights is modified to obtain the properties for P that are desirable
for Markov chain problems.

Suppose we have already performed coarsening on the current set of fine-level
points, H = {1, . . . , n}, and have, thus, partitioned H into a set of coarse (C) and
fine (F) points. Without restricting generality, we assume that H is ordered so that

H = {1, . . . , nc
︸ ︷︷ ︸

C

, nc + 1, . . . , nc + nf
︸ ︷︷ ︸

F

},

6

where |C| = nc, |F | = nf and n = nc + nf . Then, for any point i ∈ H = C ∪ F , we
require that

(P ec)i =

{

(ec)i if i ∈ C,
∑

j∈Ci
wij(ec)j if i ∈ F,

(4.8)

where ec is the coarse-level error approximation, wij are the interpolation weights, and
Ci is the set of C-points that strongly influence point i according to (4.4). Observe
that, for any i ∈ C, row i of P is all zeros except for the entry corresponding to C-
point i, which equals 1. A classical formula for AMG interpolation weights is derived
in [6]:

wij = −

āij +
∑

m∈Ds
i

(

āimāmj
∑

k∈Ci
āmk

)

āii +
∑

r∈Dw
i

āir
, (4.9)

where Ci∪Ds
i ∪Dw

i = Ni, the directed neighborhood of point i, which is the set of all
points k 6= i such that āik 6= 0. Here, Ds

i is the set of F -points that strongly influence
i and Dw

i is the set of points in the neighborhood Ni that weakly influence i. Note
that Dw

i may contain both F -points and C-points.
However, we desire an interpolation operator whose rows sum to unity, that is,

we desire a P such that P 1c = 1. This is a necessary condition to establish identities
(4.6) and (4.7), which are essential for the well-posedness of our method (see below).
To ensure that P enjoys this property, we simply rescale the wijs of (4.9) such that
they sum to one, with the rescaled weights w̄ij given by

w̄ij =

āij +
∑

m∈Ds
i

(

āimāmj
∑

k∈Ci
āmk

)

∑

p∈Ci
āip +

∑

r∈Ds
i
āir

. (4.10)

Note that, in the case of singular M-matrices, the classical interpolation formula, (4.9),
can lead to negative weights and division by zero. The rescaled formula, (4.10), does
not suffer from these deficiencies. Indeed, under the premise that Ā is an irreducible
singular M-matrix, Theorem 3.2(2) ensures that all matrix elements used in (4.10)
are nonpositive. Since the two-pass AMG coarsening routine ensures that Ci 6= ∅, it
follows that the denominator in Equation (4.10) is nonzero. Furthermore, together
with the fact that Ci, Ds

i and Dw
i do not have points in common (which precludes

diagonal elements āmm from occurring in (4.10)), we find that w̄ij > 0 for all i ∈ F
and j ∈ Ci. Thus, the redefined interpolation operator has nonnegative entries and
unit row sums. Note that it is important to perform both passes of the coarsening
routine, since this ensures that

∑

k∈Ci
āmk 6= 0 for any i ∈ F and m ∈ Ds

i , which is
required for the wijs to be well-defined. It is the second pass of the coarsening routine
that ensures that every point in Ds

i strongly depends on at least one point in Ci.

4.3. Lumping. As we mentioned at the close of Section 4.1, the coarse-level
operator, Āc, may not be an irreducible singular M-matrix. To illustrate this point,
let matrices D, L, and U be such that Ā = D − (L + U), where D is diagonal, L is
strictly lower triangular, and U is strictly upper triangular. Then

Āc = PT Ā P = PT D P − PT (L + U)P = S −G, (4.11)

7

where both S = PT D P and G = PT (L + U)P are nonnegative matrices because
Ā is a singular M-matrix and P has nonnegative entries. PT D P is generally not
diagonal, so Āc may have positive off-diagonal entries, meaning it may not be a
singular M-matrix. Furthermore, Āc may lose irreducibility due to new zero entries
being introduced. To rectify this problem, we adopt the lumping method described in
[9] for smoothed aggregation multigrid methods for Markov chains. In what follows,
we motivate why lumping is necessary for our algorithm and then provide an overview
of the lumping procedure.

If we do not perform lumping, then the irreducible singular M-matrix sign struc-
ture of the coarse-level operators is not guaranteed. This leads in many cases to erratic
convergence of our method, and, in some cases, may even result in stalling or diver-
gence. Indeed, many things can go wrong in the algorithm when coarse-level operators
are not singular M-matrices. For example, incorrect signs in coarse-level operators
may produce negative interpolation weights. Coarse-grid correction may then lead to
the generation of multiplicative error vectors with some vanishing or negative compo-
nents. Components with incorrect signs may also be generated after relaxation (see
Section 4.4). These pathological error vectors propagate incorrect signs upward in the
cycle via coarse-grid correction, and downward via column-scaled operators that may
have entire columns that vanish or have incorrect signs. A unique, strictly positive
solution is also no longer guaranteed for the coarse-level direct solve (see Section 4.4):
it may become singular itself, or may produce a solution with incorrect signs that
propagate upwards in the cycle. We have found that, in some cases, lumping is not
necessary, but unfortunately we know of no easy way to determine a priori whether
or not a particular problem requires lumping. In our experience, problem matrices
that are similar to symmetric matrices (and thus have real eigenvalue spectra) often
do not require lumping, except sometimes in the first few cycles. In fact, for cer-
tain subclasses of symmetric M-matrices (in particular, weakly diagonally dominant
matrices) and under some fairly restrictive assumptions on the coarsening and inter-
polation routines, it can be shown that the AMG coarse-level Galerkin operator will
also be an M-matrix [19], in which case we expect lumping to be unnecessary, at least
close to convergence. Even for cases like this, however, if lumping is not performed in
the early cycles, we have found that convergence may become erratic (especially for
large problems). Problems with less symmetry typically require lumping in all cycles.
In summary, we have found that lumping is required for the algorithm to be robust.

We thus consider a modified version, Ŝ, of S, obtained by lumping parts of S to
the diagonal (explained below), resulting in the modified coarse-level operator

Âc = Ŝ −G. (4.12)

Our goal is to modify S in such a way that Âc has nonpositive off-diagonal elements
and retains nonzero off-diagonal elements where G has them (to guarantee irreducibil-
ity).

Define an offending index pair as a tuple (i, j) such that i 6= j and sij 6= 0 and
(Āc)ij ≥ 0. It is for these indices that lumping is performed. Let (i, j) be an offending

8

index pair. To correct the sign in Āc at location (i, j), let

S{i,j} =

i j

. . .
...

...
i · · · β{i,j} · · · −β{i,j} · · ·

...
...

j · · · −β{i,j} · · · β{i,j} · · ·
...

...

, (4.13)

where β{i,j} > 0 and the other elements are zero. We add S{i,j} to S, which cor-
responds to lumping parts of S to the diagonal, in the sense that β{i,j} is removed
from off-diagonal elements sij and sji and added to diagonal elements sii and sjj . We
choose β{i,j} so that

sij − gij − β{i,j} < 0, (4.14)

sji − gji − β{i,j} < 0,

resulting in strictly negative off-diagonal elements in Âc at locations (i, j) and (j, i).
Note that β{i,j} is chosen such that adding S{i,j} for correcting the sign at location
(i, j) also corrects the sign at location (j, i), if necessary. This means that if both
(i, j) and (j, i) are offending index pairs, then only one matrix S{i,j} has to be added

to S. In our implementation, β{i,j} = max
(
β

(1)
{i,j}, β

(2)
{i,j}

)
, with

sij − gij − β
(1)
{i,j} = −η gij , (4.15)

sji − gji − β
(2)
{i,j} = −η gji,

and η a fixed parameter ∈ (0, 1]. It is important to note that while lumping may
introduce new nonzero entries into Âc, it cannot create a zero entry in Âc where G is
nonzero. Finally, we experimentally observed that we should lump as little as possible,
so η should be chosen small [9]. In practice, η = 0.01 seems to be a good choice.

Finally, symmetric matrices of the form in (4.13) are used to modify S so that
column sums and row sums of Āc are conserved. This ensures that properties (4.6)
and (4.7) are retained after lumping: Âc has 1 as a left-kernel vector on all levels and,
at convergence, has 1 as a right-kernel vector. Indeed, since Ŝ − S =

∑
S{i,j}, where

the sum is over all matrices S{i,j} added to S, it follows that

1T
c Âc = 1T

c Āc + 1T
c (Ŝ − S) = 1T

c Āc = 0 ∀ xi, (4.16)

Âc 1c = Āc 1c + (Ŝ − S)1c = Āc 1c = 0 for xi = x. (4.17)

4.4. Relaxation and coarsest level direct solve. This paper uses weighted
Jacobi for all relaxation operations. Decomposing matrix A into its diagonal and
negative strictly upper and lower triangular parts, A = D− (L + U), weighted Jacobi
for solving Ax = 0 is given by

x(k+1) = (1− ω)x(k) + ωD−1(L + U)x(k) (4.18)

where ω ∈ (0, 1) is a fixed weight parameter. We observe that if A is an irreducible
singular M-matrix, then Theorem 3.2 confirms that D−1 exists and, that D−1(L+U)

9

has nonnegative entries. Thus, x(k+1) has strictly positive entries if x(k) has strictly
positive entries and ω ∈ (0, 1). Since we can normalize the result after relaxation, the
constraint that x be a probability vector is easily obtained.

At the coarsest level, our goal is to perform a direct solve to obtain a nontrivial
solution of Âc ec = 0, where Âc is an irreducible singular M-matrix obtained by lump-
ing. However, since Âc is singular we cannot use Gaussian elimination. Instead, we
show that the solution can be obtained by solving an equivalent nonsingular problem,
to which Gaussian elimination can then be applied.

By Theorem 3.2(1), there exists a unique right-kernel solution, ec (up to scaling),
whose components are positive. Without loss of generality, we can scale ec to ēc, to
have its first component equal to 1. Thus, it is clear that

[
zT

Âc

]

ēc =

[
1
0

]

, (4.19)

where z = (1, 0, . . . , 0)T . Dropping the second equation in the overdetermined system
above, we see that ēc also solves the resulting square system,

K ēc =

[
1 0T

a Ã

]

ēc =

[
1
0

]

:= z, (4.20)

where Ã is a principal submatrix of Âc and a is the vector of the off-diagonal entries
in the first column of Âc. Since Ã is a nonsingular M-matrix (see Theorem 3.2(4)),
det(Ã) 6= 0 which implies that det(K) = 1 · det(Ã) 6= 0. Thus, ēc is also the unique
solution of Equation (4.20).

We conclude that, in order to obtain a nontrivial solution to Âc ec = 0, it is
sufficient to solve the invertible system K ēc = z. In exact arithmetic, we are guar-
anteed that the solution vector has positive components. For small problems on the
coarsest level, we perform a direct solve via Gaussian elimination and, for each of
our test cases, it was verified numerically that ēc has strictly positive components.
However, for larger problems, ēc may have nonpositive components due to rounding
error incurred during Gaussian elimination. For example, this may be an issue if K is
very ill-conditioned. In our implementation we do not consider large problems on the
coarsest level. However, if nonpositivity were encountered, one possibility would be
to replace Gaussian elimination by a sufficient number of weighted Jacobi relaxations.

4.5. MCAMG V-cycle algorithm. Now that our method has been described,
we state our V-cycle algorithm for Markov chains:

10

Algorithm 1: MCAMG(A, x, ν1, ν2), AMG for Markov chains (V-cycle)

if not at the coarsest level then
x← Relax(A, x) ν1 times
Ā← A diag(x)
Compute the set of coarse-level points C
Construct the interpolation operator P
Construct the coarse-level operator Āc ← PT Ā P
Obtain the lumped coarse-level operator Âc ← Lump(Āc, η)
ec ← MCAMG(Âc, 1c, ν1, ν2) /* coarse-level solve */

x← diag(x)P ec /* coarse-level correction */

x← Relax(A, x) ν2 times
else

x← direct solve of K x = z /* see Section 4.4 */

end

Note that the set of coarse-level points, C, and the interpolation operator, P ,
are recalculated for each V-cycle on each level. In principle, however, the sets of
coarse-level points and the interpolation operators can be “frozen” after a few cycles
to reduce the amount of work, but this is not done for the results presented in this
paper.

4.6. Well-posedness of MCAMG. We recall that we require well-posedness
of this algorithm in the sense that, given an iterate that is strictly positive, the
algorithm gives a proper definition for the next iterate. We begin by proving the
following proposition, which is the key result necessary to prove irreducibility of Âc.

Proposition 4.1 (irreducibility of G).
If Ā = D − (L + U) is an irreducible singular M-matrix, then G = PT (L + U)P is
irreducible.

Proof. We need to show that, for any C-points with coarse-level labels I and J ,
there exists a directed path from node I to node J in the directed graph of G. First,
observe that if Ā is irreducible, then (L + U) is irreducible, since diagonal entries do
not matter for irreducibility. Assume that (L + U)kl 6= 0 for some fine-level labels k
and l and let I be any C-point that interpolates to l, that is, plI 6= 0. Similarly, let
J be any C-point that interpolates to k, that is, pkJ 6= 0. In Section 4.2, we showed
that every row of P contains at least one nonzero element, hence, indices I and J
exist. Now,

gIJ = pT
I (L + U)pJ ,

where pI denotes column I of P and pJ denotes column J of P . Since both (pI)l

and (pJ)k are nonzero and (L + U)kl 6= 0, it follows by the nonnegativity of P and
(L + U) that gIJ 6= 0. Thus, for any fine-level points l and k such that there exists
an arc from node l to node k in Γ(Ā), there must also exist coarse-level points I and
J such that there is an arc from node I to node J in Γ(G).

Now, let I and J be any distinct C-points. Furthermore, let i and j be the fine-
level labels of I and J , respectively. By the irreducibility of (L + U), there exists a
directed path of distinct fine-level points from node i to node j. Denote this path by

i = v0, v1, . . . , vk−1, vk = j,

11

where the nodes v0, . . . , vk are fine-level points. By the result above, there must exist
coarse-level points V0, . . . , Vk that form the directed walk (see Definition 2.1)

V0, V1, . . . , Vk−1, Vk

in Γ(G). However, any directed U -V walk contains a directed U -V path [7]. Thus,
we can find a directed path in Γ(G) that begins at V0 and ends at Vk. Recall that
C-points V0 and Vk were chosen such that they interpolate to i and j, respectively.
Now, since the only point that interpolates to a given C-point is the point itself (by
the definition of P), it follows that V0 = I and Vk = J . Therefore, there exists a
directed path from node I to node J in the directed graph of G. Since I and J were
arbitrary, G is irreducible.

Well-posedness of the algorithm now follows from the first of the following two
theorems; the second theorem is a requirement for convergence of the method.

Theorem 4.2 (Singular M-matrix property of lumped coarse-level operator).
Âc is an irreducible singular M-matrix on all coarse levels and, thus, has a unique
right-kernel vector with positive components (up to scaling) on all levels.

Proof. Assume that Ā is an irreducible singular M-matrix and let Ā = D−(L+U).
By Proposition 4.1, matrix G = PT (L + U)P is irreducible. Lumping ensures that
Âc has nonzero entries where G has nonzero entries. Hence, Âc is irreducible. To
establish the singular M-matrix property, observe that lumping ensures that Âc has
nonpositive off-diagonal entries. It follows by (4.16) and Theorem 3.2(3) that Âc is an
irreducible singular M-matrix. By Theorem 3.2(1), Âc has a unique right-kernel vector
with strictly positive components (up to scaling). The proof now follows formally by
induction over the levels.

Theorem 4.3 (Fixed-point property).
The exact solution, x, is a fixed point of the MCAMG V-cycle.

Proof. Property (4.17) implies that ec = 1c is a solution of the coarse-level
equation Âc ec = 0 for xi = x. We note that this solution is unique (up to scaling)
since Âc is an irreducible singular M-matrix. The coarse-level correction formula then
gives xi+1 = diag(xi)P ec = diag(x)P 1c = x. The result now follows by the fact
that the exact solution, x, is a fixed point of the weighted Jacobi relaxation scheme
(see Section 4.4).

5. Numerical results. In this section we present numerical convergence results
for MCAMG. Testing is performed for a variety of problems that fall into two distinct
categories: those for which B has a real spectrum, and those for which the spectrum
of B is complex. In the latter case, we plot the spectrum of B and, in both cases,
we analyze how the magnitude of the subdominant eigenvalue approaches 1 as the
problem size increases. Recall that for irreducible stochastic matrices, a subdominant
eigenvalue is an eigenvalue with magnitude |λ2| = maxλ∈Σ(B),|λ|<1{|λ|}, where Σ(B)
is the spectrum of B. We are interested in the behaviour of the subdominant eigen-
value as the problem size increases, since traditional one-level iterative methods, like
the power method, are increasingly slow to converge when |λ2| → 1 as n increases.

In the tables that follow, n is the number of degrees of freedom on the finest level
and γ is the geometric mean of the convergence factors of the last five V-cycles, which
are defined as the ratios of the one-norm of the residual, ‖Axi‖1, after and before
each cycle. Note that the xi are scaled such that ‖xi‖1 = 1. For all the numerical
results presented in this paper, we start from a random, strictly positive initial guess
and iterate until the residual has been reduced by a factor of 10−8 measured in the
one-norm. We perform a direct solve on the coarse level when n < 12. All V-cycles

12

used are (1, 1) cycles, with one pre-relaxation and one post-relaxation on each level.
A scalable (or optimal) method requires γ to be uniformly bounded away from one
as n is increased, resulting in the number of required iterations to be bounded as
well. In the tables, it is the number of iterations performed and lev is the number of
levels in the last cycle. Initially, the number of levels may occasionally change slightly
from cycle to cycle. However, as the algorithm converges, the number of levels per
cycle becomes constant. This is due to the adaptive nature of the algorithm: as the
approximate solution converges, the aggregation hierarchy essentially becomes fixed.
The weight in the weighted Jacobi relaxation is chosen as ω = 0.7. The operator
complexity of the last cycle, Cop, is defined as the sum of the number of nonzero
elements in all operators, A, on all levels divided by the number of nonzero elements
in the fine-level operator. This number gives a good indication of the amount of work
required for a cycle and, for a scalable (or optimal) method, it should be bounded by
a constant not too much larger than one as n increases. We also provide an effective
convergence factor, defined as γeff = γ1/Cop . This effective convergence factor takes
work into account and makes it easier to evaluate the overall efficiency of the method
as n increases. For a scalable method, γeff should be uniformly bounded below one
as the problem size increases. Finally, Rl is the lumping ratio of the last cycle, defined
as the sum of the number of “offending” elements in operators A on all levels divided
by the sum of the number of nonzero elements in A on all levels. This ratio gives the
fraction of matrix elements for which lumping is required, and is, thus, an indication
of the extra work required for lumping. Note that no lumping is required in the
fine-level matrix, so lumping only contributes extra work starting from the second
level.

For each test problem, we compare our results with numerical tests performed
using Algebraic Smoothed Aggregation for Markov chains (A-SAM) in [9]. Depending
on the case, so-called distance-one or distance-two aggregations are employed (see [9]),
whichever is the most efficient. Strength parameter θ = 0.25 is used for the A-SAM
simulations, except where noted.

5.1. Real spectrum problems. In this section, we consider test problems
for which B has a real spectrum. These include a uniform chain, a uniform two-
dimensional (2D) lattice, an anisotropic 2D lattice, and a random walk on an un-
structured planar graph. Each test problem has also been considered in [9], so our de-
scription is brief. The test problems are generated by undirected graphs with weighted
edges. The weights determine the transition probabilities: the transition probability
from node i to j is given by the weight of the edge from node i to j, divided by the sum
of the weights of all outgoing edges from node i. It is easy to show that the spectrum
of the resulting transition matrices is real (they are similar to their symmetric weight
matrices). These problems are rather academic test problems, since the exact solution
in each node can easily be calculated using only local information. Nevertheless, these
problems constitute interesting initial test cases for our algorithm, also because they
have a strong connection with linear problems from PDEs, where much is understood
about AMG.

The first test problem we consider is a one-dimensional Markov chain generated by
a linear graph with weighted edges. We choose the weights equal to 1, so the transition
probabilities from interior nodes are 1

2 , and 1 from the end nodes. Table 5.1 shows
the numerical convergence results for MCAMG. Observe that MCAMG V-cycles lead
to computational complexity that is optimal: Cop is bounded, γ is constant and much
smaller than one, and the number of required iterations is small and constant for

13

MCAMG A-SAM [9] distance-two
n γ it Cop γeff lev Rl γ it Cop γeff lev Rl

2187 0.18 11 1.99 0.42 9 0 0.31 12 1.49 0.46 6 0
6561 0.18 11 2.00 0.43 10 0 0.31 12 1.49 0.46 7 0

19683 0.18 11 2.00 0.42 12 0 0.32 12 1.49 0.47 8 0
59049 0.18 11 2.00 0.43 14 0 0.32 12 1.50 0.47 9 0

Table 5.1
Uniform chain.

increasing n. Compared to the A-SAM results from [9], it is apparent that MCAMG
performs similarly to A-SAM. Note that MCAMG does not require any lumping on
the last cycle.

The remaining tests we consider are for 2D problems. In the uniform 2D lattice,
all weights are chosen equal to 1 and, in the anisotropic lattice, horizontal weights are
1 while vertical weights are 10−6 (see [9]). The numerical results for the uniform 2D
lattice and the anisotropic lattice are given in Table 5.2 and Table 5.3, respectively.

MCAMG A-SAM [9] distance-two
n γ it Cop γeff lev Rl γ it Cop γeff lev Rl

1024 0.23 11 2.25 0.53 6 0 0.49 20 1.42 0.60 4 4.5e-3
4096 0.23 11 2.26 0.52 7 0 0.49 20 1.47 0.62 4 1.7e-3

16384 0.23 11 2.27 0.53 8 0 0.59 20 1.56 0.72 5 1.4e-3
65536 0.23 11 2.26 0.52 9 0 0.66 21 1.59 0.77 6 1.3e-3

Table 5.2
Uniform 2D lattice.

MCAMG A-SAM [9] distance-two
n γ it Cop γeff lev Rl γ it Cop γeff lev Rl

1024 0.18 11 2.41 0.49 8 0 0.49 20 1.42 0.60 4 4.5e-3
4096 0.18 11 2.50 0.50 10 0 0.49 20 1.47 0.62 4 1.7e-3

16384 0.18 11 2.56 0.51 12 0 0.59 20 1.56 0.72 5 1.4e-3
65536 0.18 11 2.61 0.52 14 0 0.66 21 1.59 0.77 6 1.3e-3

Table 5.3
Anisotropic 2D lattice (ε = 1e − 6).

The results obtained for the uniform lattice and the anisotropic lattice are very similar
and, in both cases, the MCAMG V-cycles lead to computational complexity that is
optimal. Furthermore, we observe that, in each case, the same number of iterations
are required to achieve convergence and the effective convergence factors are almost
identical. Note also that no lumping is required on the last cycle. In both cases, it is
clear that MCAMG significantly outperforms A-SAM [9].

In our final test problem of this section, we consider an unstructured planar
(undirected) graph and calculate the stationary probability distribution of the random
walk on the graph. The graph is generated by choosing n random points in the unit
square and triangulating them using Delaunay triangulation. The random walk on
the graph is modelled by a Markov chain with the transition probability from node

14

i to node j given by the reciprocal of the number of edges incident on node i (equal
weights). Table 5.4 shows good convergence results for the unstructured planar graph

MCAMG A-SAM [9] distance-one
n γ it Cop γeff lev Rl γ it Cop γeff lev Rl

1024 0.44 16 2.15 0.68 6 0 0.53 20 1.69 0.68 5 2.6e-2
2048 0.36 14 2.20 0.62 6 6.4e-5 0.52 19 1.68 0.68 5 2.1e-2
4096 0.40 15 2.23 0.66 7 1.3e-4 0.61 21 1.80 0.76 5 2.4e-2
8192 0.40 15 2.27 0.67 8 1.1e-4 0.64 22 1.92 0.79 7 2.5e-2

16384 0.37 14 2.30 0.65 8 8.3e-5 0.76 30 2.03 0.87 7 2.4e-2
32768 0.37 14 2.29 0.65 9 1.0e-4 0.74 28 2.08 0.86 7 2.4e-2

Table 5.4
Unstructured planar graph.

problem with very little lumping on the last cycle. It appears that Cop is bounded,
and consideration of γ and the number of iterations suggest that the computational
complexity is optimal. Compared to the results from [9], it is evident that MCAMG
again significantly outperforms A-SAM.

To investigate the nature of these test problems, we seek the following asymptotic
relationship between the subdominant eigenvalue of B and the problem size n:

1− |λ2| ≈ C

(
1

n

)p

, (5.1)

where C > 0 and p > 0 are constants. We are interested in the exponent p, which
determines how rapidly |λ2| → 1 as n→∞. An estimate of p provides insight into the
rate at which traditional one-level iterative methods converge for this type of problem.
For problems for which |λ2| approaches 1 as in (5.1), we expect multilevel methods
to outperform traditional one-level iterative methods. Figure 5.1 shows log-log plots
of 1 − |λ2| as a function of n (hollow circles) and the linear best fit to these data
points. For the uniform chain test problem, observe that p ≈ 2 and, for all other
test problems, that p ≈ 1. As expected, p ≈ 2/d, with d the dimensionality of the
problem.

5.2. Complex spectrum problems. In this section, we consider the test prob-
lems for which B has a complex spectrum, and for which the exact solution cannot
easily be computed. These include a tandem queueing network, a stochastic Petri net
problem, an ATM queueing network and an octagonal mesh problem. The first three
test problems have also been considered in [9, 13, 17, 22]. We conclude this section
with an analysis of the subdominant eigenvalues and with plots of the spectra for each
test problem. Note that, for brevity, we do not go into great detail describing our test
cases, but instead we refer the reader to the appropriate sources.

The first test problem is an open tandem queueing network from [22]; see also
[9]. Two finite queues with single servers are placed in tandem. Customers arrive
according to a Poisson distribution with rate µ, and the service time distribution
at the two single-server stations is Poisson with rates µ1 and µ2. In our numerical
experiments, we limit the number of customers in the queues to N = 31, 63, 127, 255.
We choose (µ, µ1, µ2) = (10, 11, 10) for the weights. The states of the system can be
represented by tuples (n1, n2), with n1 the number of customers waiting in the first
queue and n2 in the second queue. The total number of states is given by (N + 1)2.

15

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

problem size n

1−
|λ

2|

Uniform chain, p = 2.0071

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

problem size n

1−
|λ

2|

Uniform 2D lattice, p = 1.0428

10
1

10
2

10
3

10
4

10
−9

10
−8

10
−7

problem size n

1−
|λ

2|

Anisotropic 2D lattice, p = 1.0281

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

problem size n

1−
|λ

2|

Unstructured planar graph, p = 1.0217

Fig. 5.1. Magnitude of subdominant eigenvalue as a function of problem size.

The states can be represented on a 2D regular lattice. In the directed graph, the
transition probability from node i to node j is given by the weight of the edge from
node i to j, divided by the sum of the weights of all outgoing edges from node i.
Table 5.5 shows the numerical results for the tandem queueing network test problem.
Iteration numbers are constant and the operator complexity grows somewhat as a

MCAMG A-SAM [9] distance-two
n γ it Cop γeff lev Rl γ it Cop γeff lev Rl

1024 0.31 15 4.68 0.78 7 1.2e-1 0.41 20 2.04 0.64 4 7.6e-2
4096 0.32 16 4.53 0.78 8 1.3e-1 0.45 24 2.12 0.69 5 5.5e-2

16384 0.32 15 4.57 0.78 10 1.1e-1 0.56 30 2.18 0.77 6 5.3e-2
65536 0.32 15 4.61 0.78 11 6.5e-2 0.71 37 2.37 0.86 6 1.3e-1

Table 5.5
Tandem queueing network.

function of problem size for this nonsymmetric problem, but appears bounded. The
amount of lumping required for this nonsymmetric 2D problem is larger than for the
previous problems, but is still relatively small and does not add much extra work.
These results are competitive with those obtained using A-SAM in [9].

The next problem we consider is derived from a stochastic Petri net (SPN). Petri
nets are a formalism for the description of concurrency and synchronization in dis-
tributed systems. They consist of: places, which model conditions or objects; tokens,
which represent the specific value of the condition or object; transitions, which model
activities that change the value of conditions or objects; and arcs, which specify in-
terconnection between places and transitions. A stochastic Petri net is a standard
Petri net, together with a tuple Λ = (r1, . . . , rn) of exponentially distributed transi-
tion firing rates. Furthermore, we know from [15] that a finite place, finite transition,
marked stochastic Petri net is isomorphic to a one-dimensional discrete-space Markov

16

process. For an in-depth discussion of Petri Nets, the reader is referred to [1, 15].
We test MCAMG on the SPN described in [13]. Table 5.6 shows that the number

MCAMG (θ = 0.7) A-SAM [9] distance-two (θ = 0.5)
n γ it Cop γeff lev Rl γ it Cop γeff lev Rl

1496 0.39 17 2.56 0.69 8 1.1e-3 0.40 17 3.76 0.79 5 1.5e-1
2470 0.38 17 2.62 0.69 8 1.4e-3 0.38 16 4.26 0.80 5 1.5e-1
3795 0.40 17 2.71 0.71 9 1.1e-3 0.37 16 4.53 0.80 5 1.5e-1

10416 0.41 18 2.92 0.74 10 1.1e-3 0.45 18 5.31 0.86 5 1.4e-1
16206 0.43 18 2.98 0.75 11 9.7e-4 0.45 18 5.55 0.87 5 1.3e-1
23821 0.46 18 3.08 0.78 11 9.1e-4 0.41 18 6.01 0.86 6 1.3e-1
33511 0.43 18 3.16 0.77 11 8.4e-4 0.45 18 6.57 0.88 6 1.2e-1
45526 0.42 18 3.22 0.76 12 7.6e-4 0.42 18 6.91 0.88 6 1.2e-1

Table 5.6
Stochastic Petri net, Λ = (1, 3, 7, 9, 5).

of iterations is bounded and that the effective convergence factor, γeff , is bounded
well below one, from which we conclude that optimal computational complexity is
achieved. Comparing the effective convergence factors of MCAMG and A-SAM, it
is evident that MCAMG outperforms A-SAM. Note that in order to obtain optimal
results for MCAMG it was necessary to use θ = 0.7 instead of θ = 0.25.

The next test problem we consider is a multi-class, finite buffer, priority system.
This model can be applied to telecommunications modelling, and has been used to
model ATM queueing networks as discussed in [17]. For a complete description,
including all the model parameters, see [22, 23]. The code and data files used to build
the transition rate matrix corresponding to this Markov chain model are provided
freely on the web [23]. To obtain a column-stochastic transition probability matrix B
from the row-oriented transition rate matrix Q, we set

B = (diag(Q)−QT)(diag(Q))−1.

Transition rate matrices were constructed for buffer sizes 16, 20, 26, 32, 36, 42, 50.

MCAMG (θ = 0.5) A-SAM [9] distance-two
n γ it Cop γeff lev Rl γ it Cop γeff lev Rl

1940 0.53 25 2.95 0.81 9 1.2e-2 0.26 14 3.23 0.66 5 1.6e-1
3060 0.48 21 2.85 0.77 8 9.4e-3 0.26 13 3.29 0.66 5 1.6e-1
5220 0.51 23 2.88 0.79 9 7.6e-3 0.25 14 3.50 0.67 5 1.6e-1
7956 0.45 21 2.87 0.76 10 6.6e-3 0.25 14 3.74 0.69 5 1.6e-1

10100 0.47 22 2.86 0.77 10 6.0e-3 0.25 13 3.98 0.71 5 1.6e-1
19620 0.42 20 2.83 0.73 11 4.3e-3 0.25 13 4.24 0.72 6 1.7e-1
32276 0.43 22 2.87 0.75 11 5.4e-3 0.25 14 4.54 0.74 6 1.7e-1

Table 5.7
ATM queueing network.

Table 5.7 shows the numerical results for the MCAMG V-cycles. The number of
iterations and operator complexity are bounded and it appears that MCAMG per-
forms optimally for this problem. Note that in our initial implementation of the first
pass of the coarsening routine, ties for C-point choice were broken in lexicographi-
cal order. Due to the particular directionality of the ATM queueing problem, this

17

ordering led to a ‘worst-case’, unusually high number of levels and consequently to
poor operator complexity of MCAMG. Instead, we now break ties in a different way
using the natural ordering of the heap data structure we use, which has resolved this
difficulty, and maintains good convergence properties for the other test problems.

The last test problem we consider is an octagonal mesh problem. This problem
is constructed to have a full spectrum that fills a large part of the unit circle, and
features elements of web traffic modelling, restricted to a specific planar 2D graph.
In what follows, we provide a complete description of how transition matrix B is
constructed. In general, consider graph H, represented by a n× n binary matrix,

Hij =

{
1, if an arc exists from node j to node i
0, otherwise

}

.

We assume that graph H has the following properties:

(P1) Every node has an outgoing arc.
(At least one nonzero entry in every column of H .)

(P2) Every node has an incoming arc.
(At least one nonzero entry of every row of H .)

(P3) There is a directed path between any two nodes.
(H is irreducible.)

Then, for any node j in graph H, we assign the following probabilities:

µ+ Probability of moving forward, distributed equally among outgoing arcs.
(Transition from state j to i for Hij = 1.)

µ0 Probability of staying at current node.
(No transition.)

µ− Probability of moving backward, distributed equally among incoming arcs.
(Transition from state j to i for Hji = 1.)

These values satisfy µ+ + µ0 + µ− = 1. We use matrix H diag(1T H)−1 for transition
along outgoing arcs and matrix HT diag(1T HT)−1 for transition along incoming arcs.
Our final column-stochastic matrix is then given by:

B = µ0I + µ+H diag(1T H)−1 + µ−HT diag(1T HT)−1.

Note that the graph associated with matrix B is the symmetrized version of graph
H. The graph we use to construct B for the numerical test is pictured in Figure
5.2. The transition probabilities used are µ+ = 0.80, µ0 = 0.15, and µ− = 0.05.

MCAMG A-SAM [9] distance-two
n γ it Cop γeff lev Rl γ it Cop γeff lev Rl

1024 0.55 29 4.84 0.88 9 2.4e-2 0.37 18 2.88 0.71 5 1.8e-1
4096 0.55 29 5.41 0.90 11 2.2e-2 0.52 20 3.11 0.81 6 1.7e-1

16384 0.56 29 5.43 0.90 12 2.2e-2 0.60 22 3.17 0.85 6 1.6e-1
32768 0.56 29 5.60 0.90 12 2.2e-2 0.67 24 3.33 0.89 7 1.6e-1
65536 0.56 29 5.46 0.90 13 2.2e-2 0.65 26 3.28 0.88 7 1.6e-1

Table 5.8
Octagonal mesh.

Table 5.8 shows good convergence results for both MCAMG and A-SAM. For each

18

Fig. 5.2. Graph H representing the octagonal mesh.

algorithm it appears that Cop is bounded, and consideration of γ and the number
of iterations suggests that the computational complexity is optimal. Note that the
MCAMG operator complexity can be decreased by only performing the first pass of
the coarsening routine together with a suitably redefined interpolation formula [11].

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

real axis

im
ag

in
ar

y
ax

is

Tandem queueing network, n = 1024

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

real axis

im
ag

in
ar

y
ax

is

Stochastic Petri net, n = 1496

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

real axis

im
ag

in
ar

y
ax

is

ATM queueing network, n = 1940

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

real axis

im
ag

in
ar

y
ax

is

Octagonal mesh, n = 1024

Fig. 5.3. Complex spectra Σ(B).

One further observation is that the number of levels used by A-SAM is always less
than the number of levels used by MCAMG. This is a consequence of the fact that A-
SAM coarsens faster than MCAMG, especially when distance-two aggregation is used,
since this results in larger aggregates. The number of levels grows logarithmically with
problem size, since we coarsen until the coarsest problems are below a fixed size rather
than up to a fixed number of levels, which would not ultimately yield a near-optimal
method. For different problems with the same problem size, the number of levels

19

depends of the problem (different problems have different strong connections).
Figure 5.3 shows the unit circle in the complex plane and the spectrum of B for

each test problem. Figure 5.4 shows log-log plots of 1− |λ2| as a function of problem
size n. We observe that p ≈ 1 for the tandem queueing network and octagonal mesh
problems, p ≈ 2

3 for the stochastic Petri net problem, and p ≈ 1
2 for the ATM queueing

network problem.

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

problem size n

1−
|λ

2|

Tandem queueing network, p = 1.1586

10
2

10
3

10
4

10
−4

10
−3

10
−2

problem size n

1−
|λ

2|

Stochastic Petri net, p = 0.68121

10
3

10
4

10
5

10
−3

10
−2

10
−1

problem size n

1−
|λ

2|

ATM queueing network, p = 0.48508

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

problem size n

1−
|λ

2|

Octagonal mesh, p = 0.99453

Fig. 5.4. Magnitude of subdominant eigenvalue as a function of problem size.

6. Conclusions and future work. We demonstrated how multiplicative al-
gebraic multigrid with lumping and a modified interpolation formula can be used
to find the stationary probability vector of a Markov chain. It was shown that the
coarse-level operators are irreducible singular M-matrices on all levels, resulting in
strictly positive coarse-level corrections. It was also shown that the exact solution is
a fixed point of our algorithm. We performed numerical testing for a wide variety
of test problems, and considered problems with both real and complex spectra. For
each test case, we observed that MCAMG V-cycles lead to optimal or nearly opti-
mal multigrid efficiency, that is, the effective convergence factor, γeff , was bounded
uniformly by a constant less than one as the problem size increased. We observed
that MCAMG was competitive with Algebraic Smoothed Aggregation Multigrid for
Markov chains (A-SAM) from [9] and, in most cases, outperformed A-SAM. Further-
more, it was shown that the multilevel method performed well on problems for which
traditional one-level iterative methods are slow to converge, i.e., problems for which
the magnitude of the subdominant eigenvalue approaches 1 rapidly as the problem
size increases.

Further possible avenues of research include parallel implementations of MCAMG,
acceleration of AMG V-cycle convergence using combinations of previous iterates as
in Krylov methods [20], and use of acceleration on all recursive levels as in K-cycle
methods [16].

20

REFERENCES

[1] Falko Bause and Pieter Kritzinger, Stochastic Petri Nets, Verlag Vieweg, Germany, 1996.
[2] Abraham Berman and Robert J. Plemmons, Nonnegative Matrices in the Mathematical

Sciences, SIAM, Philadelphia, 1987.
[3] Achi Brandt, Stephen F. McCormick, and John W. Ruge, Algebraic multigrid (AMG)

for sparse matrix equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge
University Press, Cambridge, 1984.

[4] Achi Brandt and Dorit Ron, Multigrid solvers and multilevel optimization strategies, in Mul-
tilevel Optimization and VLSICAD, J. Cong and J. R. Shinnerl, editors, Kluwer, Boston,
pp. 1-69, 2003.

[5] Marian Brezina, Robert D. Falgout, Scott MacLachlan, Thomas A. Manteuffel,
Stephen F. McCormick, and John W. Ruge, Adaptive algebraic multigrid, SIAM J.
Sci. Comp. 27:1261-1286, 2006.

[6] William L. Briggs, Van Emden Henson, and Stephen F. McCormick, A Multigrid Tutorial,
SIAM, Philadelphia, 2000.

[7] Gary Chartrand and Linda Lesniak, Graphs & Digraphs, Chapman and Hall/CRC, Boca
Raton, 2005.

[8] Hans De Sterck, Robert D. Falgout, Josh Nolting, and Ulrike Meier Yang, Distance-
two interpolation for parallel algebraic multigrid, Numerical Linear Algebra with Applica-
tions 15, 115-139, 2008.

[9] Hans De Sterck, Thomas A. Manteuffel, Stephen F. McCormick, Killian Miller,
James Pearson, John Ruge, and Geoffrey Sanders, Smoothed aggregation multigrid
for Markov chains, SIAM J. Sci. Comp., accepted, 2009.

[10] Hans De Sterck, Thomas A. Manteuffel, Stephen F. McCormick, Quoc Nguyen, and
John Ruge, Multilevel adaptive aggregation for Markov chains with application to web
ranking, SIAM J. Sci. Comp. 30:2235-2262, 2008.

[11] Hans De Sterck, Ulrike Meier Yang, and Jeffrey J. Heys, Reducing complexity in parallel
algebraic multigrid preconditioners, SIAM J. Matrix Anal. Appl. 27:1019-1039, 2006.

[12] Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge University Press,
New York, 1985.

[13] Graham Horton and S.T. Leutenegger, A multi-level solution algorithm for steady-state
Markov chains, ACM SIGMETRICS 191-200, 1994.

[14] Irene Livshits, An algebraic multigrid wave-ray algorithm to solve eigenvalue problems for
the Helmholtz operator, Numer. Linear Algebra Appl. 11:229-239, 2004.

[15] Michael K. Molloy, Performance analysis using stochastic Petri nets, IEEE Transactions on
Computers C-31:913-917, 1982.

[16] Yvan Notay and Panayot S. Vassilevski, Recursive Krylov-based multigrid cycles, Numer.
Linear Algebra Appl. 15:473-487, 2008.

[17] Bernard Philippe, Yousef Saad, and William J. Stewart, Numerical methods for Markov
chain modeling, Operations Research 40:1156-1179, 1992.

[18] John W. Ruge, Algebraic multigrid (AMG) for geodetic survey problems, in Proceedings of
the International Multigrid Conference, Copper Mountain, CO, 1983.

[19] John W. Ruge and Klaus Stueben, Algebraic Multigrid (AMG) in Multigrid Methods, Fron-
tiers in Applied Mathematics, S. F. McCormick, editor, SIAM, Philadelphia, pp. 73-130,
1987.

[20] Yousef Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.
[21] Herbert A. Simon and Albert Ando, Aggregation of variables in dynamic systems, Econo-

metrica 29:111-138, 1961.
[22] William J. Stewart, An Introduction to the Numerical Solution of Markov Chains, Princeton

University Press, Princeton, 1994.
[23] William J. Stewart, MARCA Models, Retrieved August 5, 2008, from http://www4.ncsu.

edu/~billy/MARCA_Models/MARCA_Models.html.
[24] Klaus Stueben, Algebraic multigrid (AMG): an introduction with applications, GMD Report

70, Institut für Algorithmen und Wissenschaftliches Rechnen, November 1999.
[25] Yukio Takahashi, A lumping method for numerical calculations of stationary distributions

of Markov chains, Research Report B-18, Department of Information Sciences, Tokyo
Institute of Technology, 1975.

[26] Eran Treister and Irad Yavneh, Square and stretch multigrid for stochastic matrix eigen-
problems, submitted, 2009.

[27] Elena Virnik, An algebraic multigrid preconditioner for a class of singular M-matrices, SIAM
J. Sci. Comp. 29:1982-1991, 2007.

