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Abstract. Applying smoothed aggregation multigrid (SA) to solve a nonsymmetric linear sys-
tem, Ax = b, is often impeded by the lack of a minimization principle that can be used as a basis
for the coarse-grid correction process. This paper proposes a Petrov-Galerkin (PG) approach based

on applying SA to either of two symmetric positive definite (SPD) matrices,
√
AtA or

√
AAt. These

matrices, however, are typically full and difficult to compute, so it is not computationally efficient
to use them directly to form a coarse-grid correction. The proposed approach approximates these
coarse-grid corrections by using SA to accurately approximate the right and left singular vectors of
A that correspond to the lowest singular value. These left and right singular vectors are used to
construct the restriction and interpolation operators, respectively. Some preliminary two-level con-
vergence theory is presented, suggesting more relaxation should be applied than for a SPD problem.
Additionally, a nonsymmetric version of adaptive SA (αSA) is given that automatically constructs
SA multigrid hierarchies using a stationary relaxation process on all levels. Numerical results are
reported for convection-diffusion problems in two-dimensions with varying amounts of convection for
constant, variable, and recirculating convection fields. The results suggest that the proposed ap-
proach is algorithmically scalable for problems coming from these nonsymmetric scalar PDEs (with
the exception of recirculating flow). This paper serves as a first step for nonsymmetric αSA. The
long-term goal of this effort is to develop nonsymmetric αSA for systems of PDEs, where the SA
framework has proven well-suited for adaptivity in SPD problems.

Key words. smoothed aggregation, algebraic multigrid, nonsymmetric, adaptive, USYMQR,
Petrov-Galerkin

AMS subject classifications.

1. Introduction. Consider solving a system of linear equations,

Ax = b,(1.1)

where A is a large, real, sparse, nonsingular, and possibly nonsymmetric (A 6= At)
matrix of size n× n, x is an unknown vector, and b is a known vector. Additionally,
assume Re 〈Ax, x〉 > 0. Problems such as this are commonly utilized to obtain
numerical solutions to steady-state, time-dependent, or nonlinear PDEs. For many
applications, the computational time spent on linear problems dominates the total
simulation time. The goal of the methods presented in this paper is to automatically
form an iterative method that solves (1.1) in a computationally efficient way, without
requiring information regarding the origin of the problem.

For a large class of these linear systems, multigrid methods provide optimal solvers
([4], see [11, 24] for introduction). The favorable convergence properties of these
methods stem from combining two complementary error-reduction processes: a local
relaxation process, and a coarse-grid correction, given in stationary two-grid form as

x← x + P (RtAP )−1Rtr, r := b−Ax,(1.2)

with intergrid transfer operators Rt (restriction) and P (interpolation). (Throughout
this paper, we depart from the usual notation by using the transpose, Rt, to denote re-
striction.) Ideally, the relaxation process efficiently attenuates much of the error, with
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the remaining error referred to as algebraically smooth error. If coarse spaces with
much smaller dimension and sparse bases can be constructed to accurately represent
the algebraically smooth error, then an adequate two-grid method results. Approx-
imation of (RtAP )−1 by recursive application of relaxation and coarse-grid correc-
tion results in an efficient multigrid method, provided the sparsity of coarse problem
matrices is controlled. Choosing a relaxation with good smoothing properties and
constructing coarse subspaces with adequate approximation properties (and the asso-
ciated multigrid intergrid transfer operators) are the general goals when designing a
multigrid method.

Geometric multigrid methods assume that algebraically smooth error is also ge-
ometrically smooth. For certain nonsymmetric problems, choosing a specialized re-
laxation can meet this assumption. In [31, 30], it is shown that using a sequential
relaxation method with a down-wind ordering and geometric coarsening yields an
efficient method for two-dimensional convection diffusion problems, including recir-
culating flows. One caveat here is that the relaxation method used in this approach
is sequential, and the orderings are reported to be integral in the success of these
methods. Such orderings may be complicated to automatically calculate for a general
problem and there is potential difficulty to successfully parallelize sequential relaxation
methods. For these reasons, this work seeks to form an optimal multigrid method that
does not rely on an order-dependent, sequential relaxation. Instead, we use nonsta-
tionary relaxation (USYMQR [22]) that only involves matrix-vector multiplies with
A and At. The error that is algebraically smooth with respect to this relaxation is
not geometrically smooth for the general problem and, therefore, we require a more
general approach to coarse grid construction.

Classical algebraic multigrid (AMG [5, 6, 19, 24]) assumes that algebraically
smooth error is geometrically smooth in directions of strong coupling, determined by
the graph of the problem matrix. However, such assumptions do not hold for many
problems of interest, limiting the usefulness of these approaches. Classical AMG
has been successfully applied to two-dimensional convection diffusion problems with
many types of flow [19], where these assumptions hold. The AMG coarse-grid selec-
tion successfully semi-coarsens in portions of the domain where algebraically smooth
error tends to be smooth only in certain directions, and coarsens normally in other
locations.

The coarsening approach proposed in this paper makes no assumption regarding
the geometric smoothness of algebraically smooth error. Instead, this approach fo-
cuses on constructing coarse spaces within the smoothed aggregation (SA [25, 27, 28])
framework. Our SA approach assumes a certain type of relaxation process, based on
residual correction of the form

x← x +M−1r,(1.3)

where M−1 is an inexpensive local approximation to A−1. For such relaxation pro-
cesses, error vectors that are near-kernel components (NK) in the sense that

e 6= 0 such that
‖Ae‖
‖e‖

≈ min
v 6=0

‖Av‖
‖v‖

,(1.4)

are also algebraically smooth and the terms are commonly used interchangeably.
(Throughout this paper, the `2 norm is written ‖z‖ =

√
< z, z > and matrix-induced

vector norms are written ‖z‖B =
√
< Bz, z >.) Interpolation operators are designed
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to have good approximation for NK vectors. SA is particularly attractive for sym-
metric problems obtained by discretizing systems of PDEs, which tend to have richer
sets of NK components and, thus, require interpolation operators that accommodate
such error. The SA framework does so in a more systematic way than classical AMG.
Given a set of algebraically smooth error prototypes, SA forms a multigrid hierarchy
with adequate approximation to the entire set. For this reason, we wish to extend the
SA framework to nonsymmetric problems.

Much of the design of multigrid methods within the literature relies on the prob-
lem matrix, A, being symmetric positive-definite (SPD). For such problems, a method
using Galerkin or variational coarse-grid correction (where R = P ) has a two-grid er-
ror propagation operator that is an energy-orthogonal projection. Thus, coupled with
a relaxation method that is convergent in the energy norm, the two-grid method is
guaranteed to be convergent. However, Galerkin coarsening does not guarantee con-
vergence for nonsymmetric problems. The error propagation operator of Galerkin
two-grid correction with nonsymmetric A is an oblique projection in the sense that
the spaces involved are not orthogonal with respect to any known, practical inner
product. Finding an inner product in which these spaces are orthogonal may require
more computation than the solution to the original problem (1.1), or may not be pos-
sible. Furthermore, designing a relaxation that is convergent in this unknown inner
product seems an equally daunting task. For this reason, we lift the Galerkin coars-
ening restriction and allow Petrov-Galerkin (PG) coarsening, formed with restriction
and interpolation operators that are not equal.

Versions of SA with PG coarse grids have already been developed for nonsymmet-
ric problems. Instead of merely representing NK on coarse-grids, these PG approaches
represent both left and right near-kernel components (LRNK). Restriction is designed
to accurately represent left near-kernel components (LNK), taken here to mean

e 6= 0 such that
‖Ate‖
‖e‖

≈ min
u6=0

‖Atu‖
‖u‖

,(1.5)

and interpolation is designed to accurately represent right near-kernel components
(RNK), which we take to be the same as our definition of near-kernel in (1.4). In [13],
convective parts and diffusive parts of the problem matrix are coarsened separately,
an approach that is not obviously applicable to a general problem. In [20], nonsym-
metric linear systems are solved by using a PG solver hierarchy as a preconditioner
for implicitly restarted GMRES. This method assumes the constant vector to be an
adequate representation of for both LNK and RNK and uses it to build a tentative
interpolation operator. The main feature of [20] is that it employs a different intergrid
transfer operator smoothing for each column of interpolation, and a different smooth-
ing for each row of restriction. On a vector-by-vector basis, columns of interpolation
are individually smoothed to better approximate RNK on coarse grids, while rows of
restriction are smoothed individually to better approximate LNK.

To provide motivation for our approach, we first consider existing convergence
theory for multigrid [3, 16] and SA [26] for SPD problems with variational coarse
grids based on either of the following approximation properties.

Assumption 1.1. (Symmetric Weak Approximation Property): An in-
terpolation operator, P , satisfies the weak approximation property with constant Kw

if, for any e on the fine grid, there exists an ec on the coarse grid such that

‖e− Pec‖2 ≤
Kw

‖A‖
〈Ae, e〉 .(1.6)
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Assumption 1.2. (Symmetric Strong Approximation Property): An
interpolation operator, P , satisfies the strong approximation property with constant
Ks if, for any e on the fine grid, there exists an ec on the coarse grid such that

‖e− Pec‖2A ≤
Ks

‖A‖
〈Ae, Ae〉 ,(1.7)

where ‖ . ‖A is the well-known energy norm. Generally, if either one of these approxi-
mation properties holds on all levels of the multigrid hierarchy with constants that are
bounded by K (with some additional assumptions), then convergence of the multi-
grid hierarchy is bounded by 1−O(K−1). The weak approximation property is easier
to enforce locally here, so theory that assumes the weak approximation property is
preferred to theory that assumes the strong approximation property. However, ad-
ditional assumptions may be required for convergence when the weak approximation
property is utilized. Some theory has been developed for nonsymmetric problems for
multigrid methods and variational coarse grids in [1, 2, 15, 29]. Instead, we develop
a nonsymmetric generalization to the strong approximation property for PG coarse
grids that, with an additional assumption, guarantees two-grid convergence with a
sufficient amount of relaxation.

Previously, adaptive smoothed aggregation (αSA [9]) was applied to symmetric
applications where a representative set of NK vectors is neither obvious nor supplied.
First, a primary near-kernel vector is developed by applying a multilevel version of
relaxation to the homogeneous problem, Ax = 0. The resulting initial vector is used
to create a SA multigrid solver hierarchy. The solver hierarchy is used in place of
relaxation to test the current method on the homogeneous problem. If convergence is
inadequate, then the remaining error is used as a secondary near-kernel vectors. The
two near-kernel vectors are used to create a new SA multigrid solver hierarchy that
attempts to satisfy the weak approximation property locally with a smaller approxi-
mation constant. The process is repeated: test the current solver and develop a better
NK representation if the solver is not yet adequate. αSA has been employed to develop
optimal solvers for symmetric (or Hermitian) problems with applications to quantum
dynamics [7], linear elasticity [28], and other applications involving systems PDEs.
Although no provisions are made here for systems of PDEs, the accommodation of
such problems is the long term goal of the effort presented in this paper.

To adaptively develop a PG multigrid hierarchy, representations of LNK must be
developed along with the RNK representation. In [23], an eigenvector corresponding
to eigenvalue zero (a nontrivial solution to Ax = 0) is approximated for a singular
M-matrix, with applications to stochastic problems. The left kernel is known a-priori
and is perfectly represented on coarse grids, while the accuracy of right kernel is
improved with each iteration. In essence, the scheme developed in [23] is a version of
the nonsymmetric adaptive setup phase of this paper for a specific problem type with
known left kernel. Here, we further generalize αSA to develop LNK as well as RNK.

This paper is organized in the following manner. The rest of this section discusses
the importance of singular vectors as near kernel representatives. Section 2 presents
the theoretical framework and a two-grid convergence result. Section 3 describes the
algorithms and details of their development. Section 4 presents numerical results
for two-dimensional convection diffusion problems. Section 5 presents concluding
remarks.

1.1. Singular Vectors as Near Kernel. For the SPD setting, it was observed
in [17, 18] that the range of interpolation must represent an eigenvector with accuracy
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on the same order as the size of the corresponding eigenvalue. This suggests that it
is of fundamental importance for the range of interpolation to accurately represent
eigenvectors corresponding to very small eigenvalues. How does this generalize to
the nonsymmetric setting? The following discussion suggests that the coarse spaces
involved in a multigrid hierarchy coupled with a relaxation such as (1.3) should aim to
represent singular vectors that correspond to the smallest singular values rather than
eigenvectors that correspond to small magnitude eigenvalues. Singular vectors are at
least as near-kernel as eigenvectors and are, therefore, more algebraically smooth with
respect to (1.3).

Recall the definition of left and right eigenvectors: for any right eigenvector, di,
of A, there exists an eigenvalue, λi ∈ C, such that

Aidi = λidi,(1.8)

and, for any left eigenvector, ci, of A, there exists λi ∈ C, such that

Atci = λici.(1.9)

Define minimal eigenvalues as

λj such that |λj | = min
i
|λi| ,(1.10)

and their corresponding eigenvectors, cj and dj , as minimal left and right eigenvectors.
Recall the singular value decomposition:

A = UΣV t,(1.11)

where Σ is a non-negative diagonal matrix and U and V are orthogonal matrices.
The diagonal entries of Σ, σi > 0, are singular values, while columns of U , ui, are
left-singular vectors of A and columns of V , vi, are right singular vectors. Note that

Avi = σiui and Atui = σivi.(1.12)

Define minimal singular values as

σ1 such that σ1 = min
i
σi,(1.13)

and correspondingly, the vectors, u1 and v1, as minimal left and right singular vectors.
The following version of a standard result, which we present without proof, sug-

gests that minimal singular vectors are at least as near-kernel as the minimal eigen-
vectors.

Theorem 1.1. (Eigenvalue Inclusion Annulus). Any eigenvalue, λ, of
matrix A is located inside an annulus with inner radius σ1 and outer radius σn:

σ1≤ |λ| ≤ σn.(1.14)

This theorem emphasizes that a minimal singular vector may be much more near-
kernel than a minimal eigenvector:

‖Av1‖ ≤ ‖Ad1‖ for ‖v1‖ = ‖d1‖ = 1.(1.15)
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The following example illustrates this result.
Example 1.1. Consider matrix A, obtained by applying upwinded finite dif-

ferences to convection-dominated convection-diffusion in one dimension, scaled by
h = 1

n−1 . Matrix A is an n× n tridiagonal matrix:

A = tridiag[−1, 1, 0] +
ε

h
tridiag[−1, 2,−1].(1.16)

For sufficiently weak diffusion (ε << h) all eigenvalues of A are O(1), yet the lowest
singular value is O(h). If h << 1, then an error vector that is a minimal right
singular vector corresponds to a relatively small residual vector and is algebraically
smooth with respect to (1.3). A minimal right eigenvector, however, has a relatively
significant residual and is not algebraically smooth.

With this theorem and example in mind, an adaptive multilevel method is de-
signed that concentrates on preserving left and right minimal singular vectors on
coarse spaces.

2. Theoretical Framework. Consider the sparse SPD matrices AtA and AAt

with their eigendecompositions:

AtA = V Σ2V t and AAt = UΣ2U t,(2.1)

where U and V are the left and right singular vector bases from the singular value
decomposition (1.11). Because the matrices involved are sparse and SPD, the obvious
approaches arise: form a method to solve either the normal equations (AtAx = Atb)
or normal residual equations (AAty = b with x = Aty). There are two caveats to
these approaches. First, the complexity of the problem matrices has been significantly
increased, especially for problems coming from PDEs with high spatial dimension.
Second, and of more significance, the singular values in these operators have been
squared. Essentially, approximation properties (1.6) and (1.7) are more difficult to
attain with respect to AtA or AAt, even if the complexity issue could be tolerated or
fixed.

Instead, we consider methods for SPD matrices
√
AtA or

√
AAt because they

have the same singular value distribution as A. Define the orthogonal matrix

Q := V U t.(2.2)

Like A, matrix Qt maps the ith right singular vector onto the ith left singular vector,
but without scaling by the corresponding singular value:

Qtvi = ui, and Qui = vi.(2.3)

SPD matrices are given by
√
AtA := V ΣV t = QA and

√
AAt := UΣU t = AQ.(2.4)

Due to symmetry,

QA = AtQt and AQ = QtAt.(2.5)

Matrix Q is used to rewrite the original system, Ax = b, as two different symmetric
systems:

QAx = Qb(2.6)



Towards Nonsymmetric αSA 7

or

AQy = b for x = Qy.(2.7)

QA and AQ may be full, so it is important to note that we use neither of these
operators directly in the algorithm, but only to guide the theory and algorithm de-
velopment.

Now, consider applying a smoothed aggregation, two-level, coarse-grid correction
to either SPD linear system, (2.6) or (2.7). To satisfy either symmetric approximation
property, (1.6) or (1.7), minimal eigenvectors should be well-represented by the coarse
grids. The minimal eigenvectors of QA are the minimal right singular vectors of A
and minimal eigenvectors of AQ are the minimal left singular vectors of A. For
this reason, the SA framework is employed to form interpolation operators based on
approximations to the minimal left and right singular vectors.

Assumption 2.1. We assume that the minimal left and right singular vectors
of A, u1 and v1, are either available or well-approximated using an efficient iterative
method. For many problems of interest, adequate methods are formed using the
vector of all ones to approximate both the left and right kernel components (LRNK).
Additionally, efficient methods are formed from adaptively developed LRNK. See the
results in Section 4.

We next introduce some notation. Let nf = n be the number of fine-level degrees
of freedom, nc the number of coarse-level degrees of freedom, 1f the vector of ones
with length nf , and 1c the vector of ones with length nc.

As in the standard SA framework, formation of the coarse-grid employs an nf×nc
aggregation matrix, T , composed of zeros and ones. Each column of T corresponds to
an aggregate of the fine-grid degrees of freedom, placing a 1 at each row associated
with a member of that aggregate. Thus, each row contains one and only one nonzero
term. See Section 3.4 or [28] for more explanation of the structure and computation
of T . This is an unsmoothed partition of unity. Section 3.4 also discusses a smoothed
partition of unity in which the elements of T lie in [0, 1], and for which the property
1f = T1c holds. The following discussion applies to either unsmoothed or smoothed
partitions of unity.

To form a two-grid correction for system (2.6), an interpolation operator is defined
using T , so that v1 is preserved in the range:

P := diag(v1)T, so v1 ∈ R(P ).(2.8)

The coarse-grid correction is given by

x← x + P (P tQAP )−1P tQr,(2.9)

where residual vector is r = b − Ax, which satisfies the residual equation, Ae = r.
Then, the corresponding error-propagation operator is given by

e← (I − P (P tQAP )−1P tQA)e =: (I −Π1)e.(2.10)

Operator (I − Π1) is a QA-orthogonal projection that projects onto N (P tQA) in a
direction in R(P ).

For system (2.7), u1 is preserved in the range of its respective interpolation op-
erator:

R := diag(u1)T, so u1 ∈ R(R).(2.11)
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A coarse-grid correction, as an iteration in x, is given by

y ← y +R(RtAQR)−1Rt(b−AQy),
Qy ← Qy +QR(RtAQR)−1Rt(b−AQy), (x = Qy),

x ← x +QR(RtAQR)−1Rtr.
(2.12)

The error propagation operator of this iteration is

e← Q(I −R(RtAQR)−1RtAQ)Qte =: (I −Π2)e.(2.13)

Using orthogonality (QtQ = QQt = I), this projection is rewritten as

(I −Π2) = Q(I −R(RtAQR)−1RtAQ)Qt

= I −QR(RtQtQAQR)−1RtQtQA
= I − [QR]([QR]tQA[QR])−1[QR]tQA.

(2.14)

Operator (I − Π2) is also a QA-orthogonal projection, but one that projects onto
N (RtA) in a direction in R(QR).

Remark 2.2. Projections (I −Π1) and (I −Π2) are both orthogonal in the QA
inner product, and this inner product is used for the convergence results in this paper.
Unfortunately, the QA-norm of the error components is not computable for problems
of practical size.

Again, neither projection leads to an acceptable two-grid method, because it
involves full, nf×nf matrices that would yield a method of extremely high complexity.
Instead, an oblique projection that involves sparse matrices is used to approximate
these orthogonal projections.

2.1. Approximating (I−Π1) and (I−Π2). In (2.10), matrix QtP is full, so we
replace both occurrences by R to give a two-grid correction of standard complexity:

QtP = Qtdiag(v1)T ←− diag(Qtv1)T = diag(u1)T = R.(2.15)

Note that QtP1c = R1c = u1. The action of these two operators is identical for
coarse representation of prototypical algebraically smooth error. Ideally, the action
of these two operators will be similar for algebraically smooth error components that
are well represented by P .

Similarly, in (2.13), we use P in place of QR:

QR = Qdiag(u1)T ←− diag(Qu1)T = diag(v1)T = P.(2.16)

These replacements allow us to approximate both (I − Π1) and (I − Π2) with a
projection involving sparse intergrid transfer operators and a non-variational coarse-
grid,

(I −Πa) := (I − P (RtAP )−1RtA),(2.17)

corresponding to the PG coarse-grid correction

x←− x + P (RtAP )−1Rtr.(2.18)

Operator (I − Πa) is an oblique projection (not orthogonal with respect to any
obvious inner product) that projects onto N (RtA) in a direction from R(P ). A
summary of the spaces involved is given in Table 2.1 and a simple cartoon is given
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(I −Πa) (I −Π1) (I −Π2)
Orthogonality none 〈., .〉QA 〈., .〉QA

Range N (RtA) N (P tQA) N (RtA)
Nullspace R(P ) R(P ) R(QR)

Table 2.1
Various projections and the spaces involved

in Figure 2.1. The reader is warned that the low dimensionality of the figure creates
many misleading over-simplifications. For one, the correction ea − e is in the same
space as correction e1 − e, namely, R(P ). However, these two corrections are not
necessarily in the same direction, as they appear in the cartoon.

Remark 2.3. When A is SPD, Q = I, u1 = v1, and R = P . All three projections
are equal, (I −Π1) = (I −Π2) = (I −Πa), and represent Galerkin coarsening.

For our purposes, we consider (I − Πa) to be a good approximation to either of
the other two projections if the effect on algebraically smooth error is comparable.
We present theoretical results to this end in the next section.

Fig. 2.1. Two-dimensional cartoons of projections Π1, Π2, and Πa in the QA inner product.
The outcome of the projections are labeled as e1 := (I−Π1)e, e2 := (I−Π2)e, and ea := (I−Πa)e.
The figure on the left represents a possibility where ea is smaller than e2 in the QA norm, while
the figure on the right shows a possibility where ea is bigger than e2. Note that ea is always greater
than (or possibly equal to) e1 in the QA norm.

2.2. Proof of Two-Grid Convergence. This section presents some prelimi-
nary two-level convergence theory for non-symmetric smoothed aggregation multigrid.
Here, (I − Π1) and (I − Π2) are used as theoretical tools, and (I − Πa) is the actual
projection used. The construction in the previous section gives the following useful
relationships.

Lemma 2.1. (Projection Identities).

Π1Πa = Πa, ΠaΠ1 = Π1,
Π2Πa = Π2, ΠaΠ2 = Πa,

(2.19)
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Proof. These identities follow from definitions (2.10), (2.13), and (2.17).�

The strong approximation property (SAP) is generalized within this nonsymmet-
ric framework.

Assumption 2.1. (Nonsymmetric Strong Approximation Property): P
satisfies the strong approximation property with constant Ks if, for any e on the fine
grid, there exists an ec on the coarse grid such that

‖e− Pec‖2QA ≤
Ks

‖QA‖
〈QAe, QAe〉 .(2.20)

Note, due to the QA-orthogonality of Π1 and QtQ = I, that (2.20) is equivalent to

‖(I −Π1)e‖2QA ≤
Ks

‖A‖
〈Ae, Ae〉(2.21)

for all e on the fine grid.

Because projection (I −Πa) is oblique, it is necessary to extend the SAP to this
specific projection. The following assumption allows us to do so.

Assumption 2.2. (Πa stability):

‖Πa‖QA < C,(2.22)

independent of mesh spacing.

Remark 2.4. It is not entirely clear how to enforce Assumption 2.2 within a
discretization process and respective choice of intergrid transfer operators. However,
we have observed Assumption 2.2 for small C (less than 2) for many small convection
diffusion problems, using the discretization techniques and grid-transfer operators
from this paper. See the Appendix in [21] for more details.

Lemma 2.2. If Assumptions 2.1 and 2.2 hold, then

〈(QA)(I −Πa)e, (I −Πa)e〉 ≤ C2Ks

‖A‖
〈Ae, Ae〉 , ∀e.(2.23)

Proof. From Lemma 2.1, we have

(I −Πa) = (I −Πa)(I −Π1).(2.24)

Together with the fact that a projection has the same norm as its complement, this
gives

〈(QA)(I −Πa)v, (I −Πa)v〉 = 〈(QA)(I −Πa)(I −Π1)v, (I −Πa)(I −Π1)v〉
≤ ‖I −Πa‖2QA 〈(QA)(I −Π1)v, (I −Π1)v〉

≤ C2Ks

‖A‖
〈(QA)v, (QA)v〉 .

This yields the result. �
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For the following convergence result, define G to be the error propagation operator
of ν iterations of Richardson for the normal equations (see Sections 3.4 for the actual
iteration used in our numerical tests):

G :=
(
I − 1
‖A‖2

AtA

)ν
.(2.25)

Theorem 2.3. (Two-Level QA-Convergence). Under the assumptions of
Lemma 2.2,

‖(I −Πa)Ge‖2QA ≤
16C2Ks

25
√

4ν + 1
‖e‖2QA,(2.26)

where Ks is the constant from the approximation property.

Proof. Applying Lemma 2.2 to Ge yields

‖(I −Πa)Ge‖2QA = 〈(QA)(I −Πa)Ge, (I −Πa)Ge〉(2.27)

≤ C2Ks

‖A‖
〈(QA)Ge, (QA)Ge〉(2.28)

=
C2Ks

‖A‖
‖(QA)1/2Ge‖2QA.(2.29)

Decomposing the error in the eigenbasis of QA, e =
∑n
j=1 βjvj , where (QA)vj =

σjvj , we obtain

‖(QA)1/2Ge‖2QA =

∥∥∥∥∥∥
n∑
j=1

σ
1/2
j

(
1−

σ2
j

‖A‖2

)ν
βjvj

∥∥∥∥∥∥
2

QA

≤ s‖e‖2QA(2.30)

where

s = sup
σ∈[0,‖A‖2]

σ

(
1− σ2

‖A‖2

)2ν

.(2.31)

The sup occurs at σ̂ = ‖A‖/
√

4ν + 1, which yields

s =
‖A‖√
4ν + 1

(
4ν

4ν + 1

)2ν

≤ 16‖A‖
25
√

4ν + 1
for ν ≥ 1.(2.32)

This yields the result. �

The main implication of this theorem is that O(K2
s ) relaxation steps guarantee

convergence of the two-level method. A similar result for a symmetric problem and
relaxation (I − 1

‖A‖A)ν implies that O(Ks) steps guarantee two-level convergence.
This observation is reflected in the multigrid tests on convection-diffusion problems
in Section 4, where more relaxation is required for highly nonsymmetric problems
than would be for symmetric problems.
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Fig. 3.1. Primary kernel development for nonsymmetric problems.

Setup Phase
Algorithm 1
LRNK Setup
(αSA for NS)

⇒
Algorithm 2

Hierarchy Setup
(PG-SA)

⇒

Solve Phase
Algorithm 3

(PG-AMG)

Algorithm 1 (αSA Initialization for Nonsymmetric Problems).

input: Level l problem matrix Al, pre- and post- relaxation counts for the
setup phase, µ1 and µ2, and initial guesses for ũl and ṽl.
output: LNK and RNK primary representations, ũl and ṽl.
function: [ũl, ṽl] = LRNKSetupl(µ1, µ2, ũl, ṽ1)

1. Pre-relax equations Atl ũl = 0 and Alṽl = 0 µ1 times with a sta-
tionary relaxation method (see section 3.2).

2. If no aggregation is available, build an aggregation {Alj}
Jl
j=1 as in

Section 3.1.
3. Build intergrid transfer operators, Rll+1 and P ll+1 (see Section 3.4),

coarse-grid LRNK, ũl+1 and ṽl+1 (see Section 3.5), and coarse-grid
problem matrix Al+1 = (Rll+1)tAlP ll+1.

4. If nl+1 is small enough to solve directly, then set L = l + 1 and
move to Step 6. Otherwise, set

[ũl+1, ṽl+1] = LRNKSetupl+1(µ1, µ2, , ũl+1, ṽl+1).(3.1)

5. Interpolate, ũl = Rll+1ũl+1 and ṽl = P ll+1ṽl+1.
6. Post-relax equations Atl ũl = 0 and Alṽl = 0 µ2 times with a sta-

tionary relaxation method (see section 3.2).

3. αSA for Nonsymmetric Problems. This section describes the αSA frame-
work and its extension to nonsymmetric problems. Three algorithms are presented
with a brief explanation of their use. The discussion of the algorithms includes sev-
eral references to further parts of this section, where motivation and details of the
algorithmic components are discussed without distracting from the purpose of these
algorithms.

Like typical algebraic multigrid algorithms, αSA has a setup phase, where rel-
evant information is extracted from the problem matrix, A, to build a solver, and
a solve phase, where the solver is employed to improve approximate solutions in an
iterative fashion. Here, the setup phase is composed of two stages, the left and right
near-kernel (LRNK) setup (called initialization setup phase in [9]) and the hierarchy
setup (called standard SA setup phase in [9]). First, assuming no LRNK approxima-
tions are available, a multilevel technique is used to develop an LRNK representation.
The technique used here is similar to the initialization setup phase described in [9],
extended to nonsymmetric problems. Second, after an LRNK representation is ob-
tained, a nonsymmetric version of the standard setup phase is employed to build a
PG solver hierarchy consisting of intergrid transfer operators and problem matrices
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Algorithm 2 (PG-SA Hierarchy Setup).

input: LNK and RNK primary representations, ũ1 and ṽ1, as prescribed
in Section 3.2.
output: PG multigrid solver hierarchy {Al, Rl, Pl}Ll=1.
function: HierarchySetup(L)

1. for l = 1, ..., (L− 1) do steps (a)-(c)
(a) If no aggregation is available, build {Alj}

Jl
j=1 as in Section 3.1.

(b) Build intergrid transfer operators, Rll+1 and P ll+1 (see Sec-
tion 3.4), coarse-grid LRNK, ũl+1 and ṽl+1 (see Section 3.5).

(c) Build coarse-grid matrix, Al+1 = (Rll+1)tAlP ll+1.

Algorithm 3 (PG-AMG).

input: PG multigrid solver hierarchy {Al, Rl, Pl}Ll=1 including algebraic
pre- and post- relaxation methods, initial guess, xl, and right-hand side, bl.
output: updated iterate, xl.
function: xl = AMGl(xl,bl)

1. Pre-relax ν1 times with relaxation method from Section 3.3.
2. Set bl+1 = (Rll+1)t(bl −Alxl).
3. If l = L, then set ẽl+1 = A−1

l+1bl+1. Otherwise, set ẽl+1 =
AMGl+1(0l+1,bl+1).

4. Correct xl ← xl + P ll+1ẽl+1.
5. Post-relax ν2 times with relaxation method from Section 3.3.

on all levels. Finally, the solver hierarchy is applied as a PG-AMG V-cycle to (1.1)
to obtain an approximate solution. The use of these algorithms is summarized in
Figure 3.1.

In the description of these three algorithms, we use the following definitions and
multilevel notation. A solver hierarchy is a collection of various objects that exist on
L different levels, with level l = 1 being the finest and l = L being the coarsest. Each
level contains nl degrees of freedom and associated problem matrices, Al, which are
nl × nl sparse matrices. The fine-level matrix is the original problem matrix from
(1.1). Additionally, interpolation operators, P ll+1, are nl × nl+1 sparse matrices used
to move information from level l + 1 to level l and restriction operators, (Rll+1)t, are
nl+1 × nl sparse matrices used to move information from level l to level l + 1. Here,
the solver hierarchy includes a nonstationary relaxation method.

We describe the setup phase that develops the solver hierarchy and then describe
the solve phase that uses it. If no LRNK vectors are available, we must first develop
them. Algorithm 1 gives the process for automatically generating ũ1 and ṽ1. This
is a natural nonsymmetric PG generalization to the initialization setup phase for
symmetric matrices from [9]. First, random initial guesses are made for ũ1 and ṽ1.
We then use a stationary relaxation technique that smoothes with respect to singular
value decomposition (see Section 3.2) on At1ũ1 = 0 to develop LNK and A1ṽ1 = 0 to
develop RNK. An aggregation is built using the technique from Section 3.1. Then,
temporary intergrid transfer operators, coarse-grid LRNK representations (see Section
3.4), and coarse problem matrices are all built. The stationary relaxation technique is
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used on the coarser level, and the whole process is repeated until the next-to-coarsest
level is reached. Stationary post-relaxation is then performed on coarse LRNK, which
are brought to the finer level by interpolation. The post-relaxation and interpolation
process is repeated until the LRNK is back to the finest level, which is post-relaxed
and output as the LRNK representation.

When adequate LRNK vectors are available, we use Algorithm 2 to build the
solver hierarchy. This is a PG version of the SA framework [27], as used in [13, 20]. If
no aggregation is available, aggregation is built using the technique from Section 3.1.
Then, SA is used to build intergrid transfer operators, coarse-grid LRNK representa-
tions (see Section 3.5), and coarse problem matrices. This process is repeated until
the level L problem matrix is built, giving a full solver hierarchy.

Once a solver hierarchy is built, we use Algorithm 3 to solve (1.1). This is a PG
version of an AMG V-cycle iteration. First, nonstationary pre-relaxation from Section
3.3 is applied to the iterate, and then the residual is computed and restricted to the
coarse grid . The pre-relaxation and restriction process repeats until the coarsest level
is reached, where the error equation is exactly solved. The error is then interpolated
and added to the iterate as a correction, and the iterate is post-relaxed with the
nonstationary method from Section 3.3. The interpolation, correction, and post-
relaxation is repeated until the finest level is reached, completing the V-cycle. The
whole V-cycle process is repeated until the iterate has adequately converged.

Remark 3.1 When the performance of the solver hierarchy is not adequate for
a symmetric problem, additional stages could be applied within the setup phase that
test and modify the solver hierarchy to improve performance. Specifically, additional
secondary kernel vectors may be included in the kernel representation, and intergrid
transfer operators are formed locally to have good approximation properties for this
set of vectors. For example, see the description of the general setup phase in [9]. Such
a process is of considerable research interest in the nonsymmetric context, because it
applies to problems coming from nonsymmetric systems PDEs. However, the devel-
opment of secondary kernel for nonsymmetric problems will be addressed in future
research and not further discussed here.

The rest of this section discusses the details of the various components of these
three algorithms. In the following subsections, we abandon the multilevel notation
and use a two-level notation that essentially applies to any two adjacent levels in the
solver hierarchy. Level l is called the fine grid and level l+ 1 the coarse grid. Symbols
with subscript c represent properties or objects on the coarse grid. Symbols without
a subscript or with subscript f describe fine-grid objects. For example, nf is the
number of degrees of freedom on the fine grid and nc is the number on the coarse
grid.

3.1. Absolute-Symmetrized Aggregation. An aggregation is a list of sets,
{Aj}nc

j=1, that form a disjoint covering of the fine-grid degrees of freedom, Aj∩Ai = ∅
and

⋃nc

j=1Aj = {1, ..., nf}. Each Aj is called an aggregate and is a local group in the
sense that any two degrees of freedom in the set are close within the graph of matrix
A. Here, we represent the aggregation as an nf × nc matrix,

Tij =
{

1 i ∈ Aj
0 i 6∈ Aj

,(3.2)

whose columns form a partition of unity, having properties 1f = T1c and T ≥ 0.
Our aggregates are based on a measure of connection strength within the graph

of matrix A that we call absolute-symmterized, distance-one connection. Points i and
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j are considered to be strongly connected if

|bij | ≥ ζ
√
biibjj with B =

1
2
(
|A|+ |At|

)
,(3.3)

where ζ ∈ [0, 1) is chosen to filter out weak connections. The partitioning algorithm
employed ensures that each aggregate contains at least all points strongly connected
to a central seed point. See [28] for details of the aggregation algorithm.

(a) Grid-Aligned (b) Non-Grid-Aligned

0 0.5 1
0

0.5

1

 x

 y

0 0.5 1
0

0.5

1

 x

 y

Fig. 3.2. First level aggregations for convection dominated versions of Example 4.1 of Section
4 on a 30 × 30 grid. Black dots represent fine-level nodes. Each gray shape enclosing dots is an
aggregate, representing a coarse node. For the aggregation technique in this paper, semi-coarsening
occurs for strong, grid-aligned coupling but not for strong, non-grid-aligned coupling.

Note that this aggregation scheme tends to result in semi-coarsening for problems
exhibiting strong numerical anisotropies as displayed in Figures 3.2 and 4.3.

3.2. LRNK Representation. Algorithm 2 requires LRNK approximations, ũ1

and ṽ1. These could simply be the constant vector, as was used in original SA methods
[25] and in some recent nonsymmetric versions [20]. More generally, however, this
should be done in an adaptive way to accurately represent LRNK.

In Section 4, numerical results are presented for three types of NK approximations,
which are described in the next several paragraphs.

(K0) Constant Near-Kernel. For discretized differential operators, constant
vectors often provide sufficiently accurate approximations to LRNK (the row sum is
equal to zero for all equations that do not involve boundary nodes). For this reason,
constant vectors are a common choice for LRNK approximations:

ũ←− 1f and ṽ←− 1f(3.4)

Note that the solvers formed using these LRNK approximations skip the αSA NK
setup given in Algorithm 1. Such an approach uses a priori knowledge regarding the
nature of A, namely that it is a discretized differential operator. For problems where
constants are not adequate LRNK approximations, using constants for LRNK may
result in poor convergence of the resulting multigrid hierarchies.
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(K1) Adaptive Near-Kernel. Algorithm 1 is employed to develop LRNK:

[ũ, ṽ]←− LRNKSetup1(µ1, µ2,1f ,1f ).(3.5)

The relaxation techniques used in this algorithm are stationary iterations that
smooth with respect to the singular value decomposition. Specifically, we use Richard-
son iteration on the normal equations for Ax = 0 and Richardson iteration on the
normal-residual equations for Aty = 0.

For the normal equations and zero right-hand side, Richardson iteration is

x←− (I − αAtA)x,(3.6)

where α is chosen for good smoothing properties. For the normal-residual equations
with zero right-hand side, Richardson iteration is

y←− (I − αAAt)y,(3.7)

Parameter α is the same for both iterations:

α =
8

5‖A‖2
,(3.8)

which best attenuates the singular vectors that correspond to singular values in the
interval [‖A‖/2, ‖A‖], for a general distribution of singular values.

(K2) Singular Vector Near-Kernel. Finally, consider using minimal left and
right singular vectors, u and v, as LRNK approximations. Assume that accurate
approximations to singular vectors can be computed efficiently. We use the term ”ac-
curate” to mean that the solver built with the near-kernel approximations is optimal.
The work in [10] suggests that this assumption is reasonable.

Methods based on minimal singular vectors are investigated to assert that approx-
imate minimal singular vectors are LRNK representations of interest. We compute
these with the matlab function svds for the small test problems in Section 4.

Remark 3.1. As it is currently implemented, using left and right minimal sin-
gular vectors as LRNK as in (K2) is currently not efficient, unless a discretization
package has provided them. A sparse, multilevel singular-value solver (similar to the
eigensolvers in [10, 14]) should be implemented when these vectors are not readily
available. Nevertheless, tests involving (K2) are presented to assert that minimal
singular vectors used as LRNK are sufficient to form acceptable multigrid hierarchies
and are used for comparison with the computationally reasonable methods, (K0) and
(K1).

3.3. USYMQR: Solve Phase Relaxation. We use a different relaxation in
the near-kernel setup (Algorithm 1) than in the solve phase (Algorithm 3). The
solve phase uses a small number (2 to 10) of iterations of a nonstationary Krylov-like
method, USYMQR [22], based on spaces of adjoint powers of A in a MINRES-type
algorithm. We expect the nonstationary USYMQR to work better as a smoother in
the final solver, and rely on stationary Richardson for the normal equations when
developing LRNK. First, for a current approximation, we rewrite (1.1) in terms of the
error, Ae = r, and apply USYMQR to this equation. We use r for both generating
vectors, as suggested (see [22] for details). This form of USYMQR chooses a vector
of minimal residual in the affine space

Sk := e + span
{
AtAe, ..., (AtA)ke, Ae, AtAAe, ..., (AtA)kAe

}
,(3.9)



Towards Nonsymmetric αSA 17

which is rewritten as

e + span
{
AtAe, ..., (AtA)ke

}
⊕ span

{
Ae, AtAAe, ...(AtA)kAe

}
,(3.10)

to emphasize that multiple applications of Richardson on the normal equations pro-
duce a vector in Sk:

(I − αAtA)ke ∈ e + span
{
AtAe, ..., (AtA)ke

}
⊂ Sk.(3.11)

Thus, in terms of residual error, USYMQR gives a better vector than Richardson
iteration for the normal equations with the same number of matrix-vector evaluations.

Filtered-Graph-Laplacian smoothing Unfiltered Smoothing

Fig. 3.3. Interpolation (or restriction) for grid-aligned anisotropies. Black dots represent fine-
level nodes, light gray groupings represent a single aggregate, and dark gray groupings represent the
support of a single column of interpolation (or a row of restriction). Compare the support of the
filtered Graph-Laplacian smoothing (which only spreads in the direction of strong connection) to that
of standard, unfiltered smoothing (which spreads weakly in the direction of weak connection). The
unfiltered smoothing leads to high complexities, as seen in Figure 3.4

3.4. Filtered-Graph-Laplacian Operator Smoothing. One-dimensional ag-
gregates are formed in solver hierarchies for problems with strong coupling in grid-
aligned directions. Such aggregates can cause original SA to create a solver hierarchy
with unacceptable operator complexity, unless special measures are taken to curb
complexity growth [28, 8, 12]. This section presents a new approach to matrix filter-
ing that differs from previous matrix filtering approaches. We smooth the partition
of unity directly, instead of smoothing a tentative interpolation operator as is done in
the original SA framework. Interpolation has the form

P ←− diag(ṽ)SG T,(3.12)

and restriction

R←− diag(ũ)SG T,(3.13)

where SG is a smoothing operator that preserves the partition-of-unity properties
(1f = SGT1c and SGT ≥ 0). The form of SG used in this work is

SG = I − 2
3
D−1
G G,(3.14)

where G is a filtered-graph-Laplacian of A (defined below) and DG is the diagonal
part of G.
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Filtered-graph-Laplacian smoothing Unfiltered smoothing

Fig. 3.4. Coarse-grid stencils for problems with grid-aligned anisotropies. Compare the increase
of complexity for the filtered-graph-Laplacian smoothing (5-pt to 9-pt) to that of standard, unfiltered
smoothing (5-pt to 17-pt). The operator complexity of the unfiltered case grows unboundedly with
the number of levels, L, in the hierarchy.

Matrix G is defined in terms of the strong connections within the graph of matrix
A, as determined by (3.3):

Gij =
{

−1 i 6= j, i is strongly connected to j∑
k 6=iGik i = j

}
(3.15)

This matrix has the important property that G1f = 0f , which in turn implies that
1f = SGT1c. Under this construction, SGT is a partition of unity (SG ≥ 0, so
SGT ≥ 0 ).

This approach is a novel way to avoid unbounded operator complexities for prob-
lems with grid-aligned anisotropies that generalizes nicely to nonsymmetric matrices.
The standard filtering techniques of [28] use AF , a filtered version of the original
matrix, to smooth interpolation. The filtering lumps small off-diagonal entries onto
other large entries within the same row in a manner that preserves the near kernel
property of ṽ. Standard-filtered interpolation is given by

(I − αAF )diag(ṽ)T.(3.16)

We do not use this filtering technique here because the smoothing does not neces-
sarily preserve the minimal singular vector in the range of interpolation. For example,
if no filtering was necessary (AF = A), then Av1 = σ1u1 and

(I − αAF )diag(ṽ)T1c = v1 − ασ1u1,(3.17)

which mixes the left and right singular vectors unless σ1 = 0. In general, the minimal
left and right singular vectors are not linearly dependent and the NK representation
has been slightly distorted.

3.5. Coarse-Grid LRNK Representation. Coarse representations are set to
match the fine LRNK vectors exactly:

ũ = Rũc and ṽ = P ṽc,(3.18)

when vectors ũc = ṽc = 1c. Typically, scaling the columns of R and P by diagonal
matrices NR and NP is necessary. Intergrid transfer operators are scaled:

R←− RNR and P ←− PNP ,(3.19)



Towards Nonsymmetric αSA 19

while the coarse LRNK representation is scaled accordingly so that (3.18) holds:

ũc ←− N−1
R 1c and ṽc ←− N−1

P 1c.(3.20)

4. Numerical Results. We investigate the performance of αSA on two-dimensional
convection-diffusion problems with various convection fields. The results in [20] show
that classical unsmoothed and smoothed aggregation methods were far from optimal
for problems of this type.

The convection-diffusion operator is posed on the unit square with Dirichlet
boundaries:

−ε∆u+ b · ∇u = f in Ω = (0, 1)2

u = 0 in ∂Ω,(4.1)

where ε is a diffusion parameter and b is a divergence-free convection field, ∇ · b =
0. The examples in this section consider three types of convection fields: constant
(Example 2), variable (Example 3), and recirculating (Example 4).

Equation (4.1) is discretized with 5-point finite difference stencils with upwinding.
The so-called mesh-Péclet number, or grid-Reynolds number,

γ =
|b|h
ε
,(4.2)

characterizes what quantity of upwinding is necessary for a stable discretization. Lo-
cations of the domain for which γ >> 1 are convection dominated, and a significant
amount of upwinding must be applied. The stencil for this discretization is from [19]
and is given by

1
h2

 −ε+ bhµy
−ε+ ah(µx − 1) −Σ −ε+ ahµx

−ε+ bh(µy − 1)

 ,(4.3)

where

µx =

 ε/2ah if ah > ε
1 + ε/2ah if ah < −ε
1
2 if |ah| ≤ ε

(4.4)

and

µy =

 ε/2bh if bh > ε
1 + ε/2bh if bh < −ε
1
2 if |bh| ≤ ε.

(4.5)

Various tests were performed for different levels of convection with Péclet numbers
γ = 10−1 (diffusion-dominated), γ = 101 (mildly convection-dominated), and γ = 103

(convection-dominated). Note that two problems with equal γ and different mesh
sizes are approximating two different continuous problems with convection fields of
different magnitude.

The methods used for Examples 2, 3, and 4 are reported in the next several
paragraphs. Three types of LRNK representation are used in each example: (K0)
constant kernel, (K1) αSA kernel from Algorithm 1, or (K2) SVD kernel. Then
Algorithm 2 is used to create a PG-AMG multigrid hierarchy based on these various



20 Brezina, et al.

kernel types. Finally, Algorithm 3 is applied to the homogeneous problem, Ax = 0,
with initial guess of random entries in [−.5, .5].

The aggregation technique used in all tests is symmetrized, strength-of-connection
based, distance-one aggregation (as discussed in Section 3.1) with ζ = .05 (see (3.3)).
The first-level aggregations are displayed for small, convection-dominated problems
in Figure 3.2, for the grid-aligned and non-grid-aligned cases (Example 2), and in
Figure 4.3, for variable and recirculating convection fields (Example 3 and 4). Semi-
coarsening is achieved in portions of domain with grid-aligned dominant convection, as
expected. The coarsening in portions of the domain with non-grid-aligned dominant
convection is similar to that of a diffusion-dominated problem.

The intergrid operator smoothing technique used in all tests was filtered-graph-
Laplacian smoothing, as discussed in Section 3.4. This technique gave bounded opera-
tor complexities below 2 in all cases. See the examples for specific operator complexity
bounds.

The relaxation used in Algorithm 1 for the αSA-developed LRNK in each example
is Richardson on the normal and normal-residual equations, as discussed in Section
3.1. For most tests, µ1 = µ2 = 5 (number of pre- and post- relaxation steps on each
level of the adaptive setup). When more relaxation was used in the adaptive phase,
it is reported in the description of the specific example.

In all tests, the relaxation used for the solver was USYMQR [22], as discussed in
Section 3.3. It was observed that V(ν1, 0)-cycles give the best performance in terms
of work units per digit accuracy. Various numbers of pre-relaxation sweeps were used,
based on the mesh-Péclet number. See the examples for specific values ν1 used for
each problem type.

The performance of each solver formed is reported as work units per digit of
accuracy, η, a function of asymptotic convergence factor and operator complexity.
Asymptotic convergence factors are estimated by taking the geometric average of the
residual reduction for the last 5 of 25 V-cycles:

ρ ≈
(
‖r(25)‖
‖r(20)‖

)1/5

.(4.6)

Operator complexities are reported as the sum of non-zeros in the problem matrices
on each level, divided by the number of nonzeros in the original problem matrix,

σA =
∑L
l=1 nz(Al)
nz(A1)

.(4.7)

These two values are used to report a measure, η, which is defined below to quantify
how much work is necessary for a certain amount of error reduction.

Definition 4.1 (Work units per digit of accuracy) A measure of compar-
ison for several different methods with different numbers of relaxation steps, different
types of relaxation, and on very different algebraic grids is required. The time taken
to reach a desired relative residual would be the preferred measure for gauging the
success of these methods, however, our high-level matlab implementation is not an
environment that is reasonable for timing. Instead, we compare all these methods
with an estimation of computational cost required to increase the accuracy of an
approximate solution by one order of magnitude (work units per digit of accuracy):

η = σA(ων1 + ων2 + 1)
log .1
log ρ

,(4.8)



Towards Nonsymmetric αSA 21

where ω is the number of work units per relaxation step and ν1 and ν2 are the
numbers of pre- and post-relaxation steps, respectively. We set ω = 2 for USYMQR,
because each iteration applies both A and At. Term (ων1 +ων2 + 1) is the number of
residual evaluations required per level for pre-relaxation, coarse-grid correction, and
post-relaxation.

As a frame of reference, Table 4.1 lists values of η for various asymptotic con-
vergence factors, Gauss-Seidel relaxation (ω = 1), and V(1,1)-cycles with σA = 2.25,
which we considered as a typical operator complexity for classical AMG for Poisson-
like problems with two-dimensional finite difference stencils (see Stuben’s appendix
in [24]).

Remark 4.2. Note that the measure, η, only considers residual evaluations on
each level, or matrix-vector multiplies with Al. It does not factor the cost of inter-
polation, restriction, and other computational costs, whereas monitoring the timing
would.

ρ 0.05 0.1 0.2 0.3 0.4 0.5
η (5.19) (6.75) (9.67) (12.91) (16.96) (22.42)
ρ 0.6 0.7 0.75 0.8 0.85 0.9
η (30.43) (43.58) (54.03) (69.65) (95.63) (147.52)

Table 4.1
WU-per digit accuracy, η, for methods of certain asymptotic convergence factors, ρ, with Gauss-

Seidel relaxation, V(1,1) cycles, and operator complexity of 2.25. To be used as a frame-of-reference
to gauge how well the methods are performing. Typical AMG convergence factors for Poisson prob-
lems are ρ = 0.1 [24].

Example 4.1. (Constant Convection Field) Consider Problem (4.1) with
diffusion ε = 1 and a constant convection field. Tests were performed with different
problem sizes, mesh-Péclet numbers, and angles of convection. The convection field,
b = [b1, b2]t, is of the form,

b1 =
γε

h
cos θ, b2 =

γε

h
sin θ, θ = {0o, 22.5o}.(4.9)

The angles were chosen to show how the method handles the cases of grid-aligned
and non-grid-aligned convection: θ = 0o is a grid-aligned case and θ = 22.5o is a
non-grid-aligned case. Due to the use of ordering-independent relaxation methods,
these are the only two directions for which we report results. An ordering-dependent
relaxation method, such as Gauss-Seidel, would need a larger sample of directions.

Different numbers of pre-relaxation sweeps were used for different orders of con-
vection: tests with γ = .1 used V(2,0)-cycles; tests with γ = 10 used V(5,0)-cycles;
and tests with γ = 1000 used V(5,0)-cycles.

For the methods formed with αSA LRNK, asymptotic convergence factors were
found to be under 0.26 for γ = .1 (where V(2,0) cycles were used), under .09 for γ = 10
problems (with V(5,0) cycles), and under .02 for γ = 1000 (with V(5,0) cycles).

The operator complexities of the solvers created were under 1.91 for γ = 103 with
grid-aligned convection and under 1.37 for all other problems.

Figure 4.1 reports work units per digit of accuracy (as calculated with Formula
(4.8)) for various problem sizes, convection magnitudes, and convection directions.
For the diffusion-dominated problems, considerable improvement is made by using
αSA kernel development, versus using constant LRNK.
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Fig. 4.1. Work units per digit of accuracy, η, for Example 4.1 across parameters θ, γ, and n.
(K0) dash-dotted lines with square markers stand for solvers formed using constants as LRNK. (K1)
solid lines with circle markers stand for solvers formed using αSA LRNK. (K2) dashed lines with
triangle markers stand for solvers formed using SVD LRNK. The left column of graphs presents
results for grid-aligned convection, the right column for non-grid-aligned. The first row presents
results for mesh-Péclet number .1, the second 10, and the third 1000. Problem sizes ranged from
625 to 40000. Number of levels used ranged from 3 to 7. Operator complexities were below 1.37 in
every case except the convection-dominated grid-aligned case, where the complexity was below 1.91.

For the problems where αSA was used to approximate LRNK, measure η was less
than 14, which is comparable to a typical classical AMG Poisson-like rate of 0.33 (see
Table 4.1).

Example 4.2. (Variable Convection Field) Next, consider Problem (4.1)
with ε = 1 and variable convection fields. Again, the various tests have different
problem sizes and mesh-Péclet numbers of various order. For each problem, the angle
of convection changes throughout the domain, giving both grid-aligned and non-grid-
aligned cases. The convection field is from [19] and is given by

b1 =
γε

h
(2y − 1)(1− x2), b2 =

γε

h
2xy(y − 1).(4.10)

Note that maxΩ |b| = γεh−1. Similar problems are seen in [20] and referred to there
as bent-pipe problems. See Figure 4.2(a) for an example.

Different numbers of pre-relaxation sweeps were used for different orders of con-
vection: tests with γ = .1 used V(2,0)-cycles; tests with γ = 10 used V(5,0)-cycles;
and tests with γ = 1000 used V(7,0)-cycles.

The operator complexities of the solvers created were under 1.35 for γ = 10−1, 10,
and under 1.48 for γ = 103.

Table 4.2 reports asymptotic convergence estimates, work units per digit of accu-



Towards Nonsymmetric αSA 23

(a) bent-pipe field (b) recirc field
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Fig. 4.2. Convection fields for Examples 4.2 and 4.3 on a 30× 30 grid.
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Fig. 4.3. First level aggregations for Examples 4.2 and 4.3 on a 30 × 30 grid with γ = 103.
Black dots represent fine-level nodes. Each gray shape enclosing dots is an aggregate, representing
a coarse node. For the aggregation technique in this paper, semi-coarsening occurs for areas in the
domain with strong, grid-aligned coupling but not for areas with strong, non-grid-aligned coupling.

racy (as calculated with Formula (4.8)), and number of levels used for various problem
sizes, convection magnitudes, and LRNK approximation types.

Example 4.3. (Recirculating Convection Field) Next, consider Problem
(4.1) with ε = 1 and variable convection fields. Again, we run tests on many problems
with different magnitudes of convection, γ = 10−1, 101, 103. The convection field is
from [19] and is given by

b1 =
γε

h
4x(x− 1)(1− 2y), b2 = −γε

h
4y(y − 1)(1− 2x).(4.11)

Again, maxΩ |b| = γεh−1 and similar problems are seen in [20, 31], referred to there
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Constant LRNK αSA LRNK SVD LRNK
n2 γ ρ η L ρ η L ρ η L

10−1 0.194 (9.15) 2 0.115 (6.94) 2 0.129 (7.33) 2
162 101 0.013 (7.58) 2 0.016 (8.00) 2 0.020 (8.48) 2

103 0.002 (8.04) 3 0.002 (7.64) 3 0.002 (8.01) 3
10−1 0.321 (13.37) 3 0.229 (10.29) 3 0.133 (7.53) 3

322 101 0.032 (9.76) 3 0.029 (9.48) 3 0.045 (10.75) 3
103 0.012 (11.27) 3 0.009 (10.66) 3 0.009 (10.74) 3
10−1 0.373 (15.66) 4 0.246 (11.03) 4 0.210 (9.91) 4

642 101 0.059 (12.03) 4 0.032 (9.92) 4 0.061 (12.16) 4
103 0.025 (13.78) 4 0.019 (12.77) 4 0.017 (12.40) 4
10−1 0.330 (13.84) 4 0.278 (12.01) 4 0.238 (10.69) 4

1282 101 0.084 (13.68) 4 0.095 (14.38) 4 0.108 (15.24) 4
103 0.047 (16.63) 5 0.047 (16.62) 5 0.045 (16.35) 5

Table 4.2
Variable convection field results. Operator complexities were under 1.35 for γ = 10−1, 10, and

under 1.48 for γ = 103.

as called recirc problems. See Figure 4.2(b) for an example.
Different numbers of pre-relaxation sweeps were used for different orders of con-

vection: tests with γ = .1 used V(2,0)-cycles; tests with γ = 10 used V(5,0)-cycles;
and tests with γ = 1000 used V(9,0)-cycles.

The operator complexities of the solvers created were under 1.35 for γ = 10−1, 10,
and under 1.48 for γ = 103.

Table 4.3 reports asymptotic convergence estimates, work units per digit of accu-
racy (as calculated with Formula (4.8)), and number of levels used for various problem
sizes, convection magnitudes, and LRNK approximation types.

Constant LRNK αSA LRNK SVD LRNK
n2 γ ρ η L ρ η L ρ η L

10−1 0.263 (11.52) 3 0.139 (7.80) 3 0.125 (7.41) 3
162 101 0.130 (16.63) 3 0.082 (13.60) 3 0.068 (12.63) 3

103 0.028 (16.16) 2 0.029 (16.27) 2 0.021 (14.80) 2
10−1 0.327 (13.62) 4 0.136 (7.62) 4 0.155 (8.16) 4

322 101 0.243 (23.73) 4 0.143 (17.25) 4 0.128 (16.28) 4
103 0.108 (28.00) 3 0.111 (28.37) 3 0.085 (25.34) 3
10−1 0.384 (16.16) 5 0.211 (9.93) 5 0.196 (9.49) 5

642 101 0.435 (40.83) 5 0.283 (26.96) 5 0.264 (25.52) 5
103 0.210 (40.67) 4 0.217 (41.65) 4 0.214 (41.20) 4
10−1 0.466 (20.11) 5 0.238 (10.70) 5 0.234 (10.56) 5

1282 101 0.643 (76.55) 5 0.499 (48.76) 5 0.388 (35.79) 5
103 0.392 (68.61) 5 0.397 (69.45) 5 0.376 (65.81) 5

Table 4.3
Recirculating convection field results. Operator complexities were under 1.35 for γ = 10−1, 10,

and under 1.48 for γ = 103.

4.1. Comparison with AMG. Next, we show how AMG performs in compar-
ison on various instances of Examples 2, 3, 4. The AMG results are reported in [19]
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on 642 grids, and we plugged the estimated convergence factors and operator com-
plexities from this book into (4.8) with ω = 1 to get values for η, which are displayed
in Table 4.4.

classical AMG αSA for NS
problem ε γ ρ σA η ρ σA η
θ = 0o 10−5 1.54e+03 4e-4 2.30 (2.03) 5e-4 1.89 (8.45)
θ = 22.5o 10−5 1.54e+03 .005 4.45 (5.80) .003 1.34 (8.10)
θ = 45o 10−5 1.54e+03 5e-5 4.63 (4.21) .002 1.34 (7.59)

10−1 1.54e-01 .060 2.21 (5.43) .229 1.34 (10.47)
bent-pipe 10−3 1.54e+01 .055 3.68 (8.76) .034 1.35 (10.08)

10−5 1.54e+03 .030 3.57 (7.03) .029 1.47 (14.33)
10−1 1.54e-01 .056 2.21 (5.30) .259 1.34 (11.44)

recirc 10−3 1.54e+01 .160 3.76 (14.17) .412 1.34 (38.30)
10−5 1.54e+03 .173 3.72 (14.65) .233 1.45 (43.60)

Table 4.4
A comparison with classical AMG versus solvers built with αSA LRNK for various instances

of Examples 2, 3, and 4 on a 64× 64 grid. The AMG methods use V(1,1) cycles with Gauss-Seidel
C/F Relaxation. The αSA methods use the approach presented in this paper with different amounts
of relaxation for each respective example: V(2,0) cycles for γ = .154, V(5,0) cycles for γ = 15.4,
and V(7,0) cycles for γ = 1540 (with the exception of the recirc problem, where V(9,0) cycles were
used for γ = 1540).

5. Conclusion. This paper presents a nonsymmetric smoothed aggregation ap-
proach with several new features. The method is based on a Petrov-Galerkin coars-
ening that uses approximations to the minimal left and right singular vectors to form
restriction and interpolation, respectively. Coarsening uses an aggregation technique
that involves a new strength of connection measure. We present a new approach
to intergrid transfer operator smoothing that only smoothes in strongly coupled di-
rections within the graph of the problem matrix. Our V-cycles use a nonstationary
relaxation, USYMQR [22]. We also present a preliminary two-level convergence result
that implies that more relaxation should be used in our framework for nonsymmetric
systems than in the SPD setting. The numerical results show that this approach leads
to convergent, stand-alone multigrid cycles for many instances of two-dimensional
convection-diffusion problems. Moreover, the method is algorithmically scalable for
problems that do not have recirculating flow.

Additionally, we present a method to form SA solvers adaptively for nonsymmetric
problems, and numerical results show that the adaptive method tends to improve the
performance of the multigrid hierarchy. In its current form, nonsymmetric αSA is
only implemented to develop primary left and right near-kernel (LRNK) components.
However, the long term goal of our efforts is to have an adaptive method that is
suitable for nonsymmetric problems that arise from discretizing systems of PDEs,
which would involve augmenting the sets of LRNK vectors with secondary kernel.

The numerical results suggest that the multigrid hierarchies formed by classical
AMG is more suitable for nonsymmetric problems obtained from discretizing scalar
convection-diffusion equations. The intention of our efforts is not to solve all problems
more efficiently than classical AMG, but rather to form an adaptive SA method that
may be further developed to handle nonsymmetric problems from systems of PDEs,
a setting where the adaptive SA methods have excelled for symmetric problems.
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