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Abstract. The goal of this paper is to introduce a new multilevel solver for two-dimensional
elliptic systems of nonlinear partial differential equations (PDEs), where the nonlinearity is of the type
u∂v. The incompressible Navier-Stokes equations are an important representative of this class and are
the target of this study. Using a first-order system least-squares (FOSLS) approach and introducing a
new variable for ∂v, for this class of PDEs we obtain a formulation in which the nonlinearity appears
as a product of two different dependent variables. The result is a system that is linear within each
variable but nonlinear in the cross terms. In this paper, we introduce a new multilevel method
that treats the nonlinearities directly. This approach is based on a multilevel projection method
(PML [23]) applied to the FOSLS functional. The implementation of the discretization process,
relaxation, coarse-grid correction, and cycling strategies is discussed, and optimal performance is
established numerically. A companion paper [22] establishes a two-level convergence proof for this
new multilevel method.
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1. Introduction. The goal of nonlinear solution techniques is to solve the dis-
cretized nonlinear PDEs efficiently and accurately. Many popular, efficient methods
for this purpose are based on multilevel strategies and all require a linearization pro-
cess somewhere in the algorithm. These methods can be grouped into two broad
categories, depending on when and how they apply the linearization step: global lin-
earization such as Newton-type methods (cf. [14, 24]) and local linearization such as
Brandt’s FAS (Full Approximation Scheme; cf. [6]) or Hackbusch’s similar NMGM
scheme (Nonlinear Multigrid Method; cf. [16]).

Global linearization methods usually involve the solution of large linear systems
of equations. Since substantial multigrid research is directed on developing robust,
fast, and efficient linear solvers, there is an extensive repertoire of algorithms and
knowledge to draw upon in this category of techniques. On the other hand, it is well
known that the basin of attraction for efficient global linearization methods can be
relatively small. Some of these problems might be handled by a full multigrid or nested
iteration process that uses coarse-level processing to provide fine-level initial guesses.
But problems with very small basins of attraction might need more expensive global
search methods. Local linearization methods tend to have a bigger basin of attraction,
but often rely on rediscretizing each of the coarser levels separately. This might result
in some loss of robustness since, for some problems with strong nonlinearities, the
discretization on coarse levels might not accurately reflect the finer-level properties.

Although most research for nonlinear multilevel methods certainly focuses on
these two main categories, there also exist other nonlinear solution techniques. For
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example, Yavneh and Dardyk [13] propose a nonlinear multigrid method that com-
bines global and local linearization. Apparently, it is “at least as good as the more
suitable of these two approaches, and often better than both. [13]”

This paper introduces a new multilevel method that fits into neither of these two
categories, since we do not appeal to a linearization process anywhere in the algorithm.
To achieve this direct approach, we focus on PDEs with nonlinear terms of type u∂v,
especially the incompressible Navier-Stokes equations, that we reformulate as a least-
squares problem. Least-squares methods are based on a minimization principle for
a functional constructed by taking the residual of the governing equations in some
Hilbert norm. The intent is to ensure that the minimizer is the solution of the original
set of equations and that the formulation is well posed.

Least-squares methods for the Navier-Stokes equations have been addressed, for
example, by Bochev and Gunzburger [4], Jiang [18], and Bochev, Cai, Manteuffel,
and McCormick [1, 2]. In this paper, we consider a first-order system least-squares
(FOSLS) method, where the functional is constructed by taking the L2-norm of each
interior first-order equation.

Instead of using FAS, Newton, or Newton-like methods to solve the resulting
algebraic equations, we want to develop a new multigrid algorithm that can treat the
nonlinearity directly and, thus, potentially more effectively. To this end, we consider
a projection multilevel method (PML; cf. [23]) that solves an optimization problem by
correcting a current approximation using projections onto various subspaces. In the
context of FOSLS, the solution to a PDE is the minimizer of the FOSLS functional.
So, naturally, we choose the minimization of the FOSLS functional as the optimization
problem for our projection method. The minimization is done by corrections from
certain finite element subspaces by way of the natural embedding of these spaces into
the fine-grid space. The projection of the error that this defines is orthogonal with
respect to the inner product associated with the functional, because it is defined as
the approximation to the error from the given subspace that is best in the sense of
minimizing the functional.

The multilevel projection method idea is not new. Projection multilevel methods
have been used by Mandel and McCormick for eigenvalue problems (cf. [21]), by Gel-
man and Mandel for constraint optimization problems (cf. [15]), and by McCormick
for parameter estimation, transport equations, general eigenvalue problems, Riccati
equations, finite volume element methods, and image reconstruction (cf. [23]). In
fact, under certain circumstances, these methods relate to specific forms of classical
multilevel methods. Consider, for example, the standard fully-variational multigrid
method applied to the Poisson problem in two dimensions, as given in [26], with Gauß-
Seidel as the smoother, full coarsening, bilinear interpolation, and a 9-point stencil.
This classical algorithm could also be classified as a projection multilevel method. It
can be interpreted, at each stage, as a Rayleigh-Ritz method applied to minimizing
the energy functional, where the optimization is taken as a correction over the con-
tinuous space projected onto certain subspaces of the fine-grid finite element space.
This exemplifies that there exist, under certain circumstances, similarities and rela-
tions between a standard multigrid and a projection multilevel method. In fact, PML
exhibits the same basic principles as any other multilevel algorithm. Such principles
include appropriate discretizations for the fine-grid problem, relaxation, coarsening,
coarse-grid solves, interpolation, and cycling strategies.

The challenge in developing such a scheme is to ensure that the cost of processing
coarse levels is less expensive in total than that of the fine grid. The major task in
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addressing this challenge is to cast the coarse subspace projection in terms of coarse-
level computation. This ability we call coarse-grid realizability. We show below how
this is done for our scheme applied to the Navier-Stokes equations.

To illustrate the basic ideas and principles of this new PML method, we introduce
in Section 2 a projection-based discretization process. Based on this process, we derive
in Section 3 an abstract framework for PML. In Section 4, we discuss how coarse-
grid realizability can be done efficiently for quasilinear PDEs, for which the highest-
order terms are linear. Additionally, we show that this is also feasible for different
relaxation types and higher-order discretizations. We conclude this paper by giving
numerical results (Section 5) for model problems in two dimensions and making a few
general remarks. While the numerical results in Section 5 show optimal convergence
properties, we provide in the companion paper [22] a two-level convergence proof.

2. Embedding Operators and Discretization by Projection. As for any
numerical scheme that discretely approximates continuous problems, the discretiza-
tion process plays an important role. This process is even more important for multi-
level schemes since they use a sequence of coarse-grid discretizations that must in some
sense be compatible with the fine-grid discretization. For our particular PML method,
we want to exploit a natural discretization process by using the same approach on
all levels. Even though this seems to be the most natural and straightforward way
to obtain discretizations for all levels, there exist other methodologies for which it
is more advantageous to use a variational type of discretization process instead. Al-
gebraic multigrid (AMG) is just one example. On coarser levels, AMG applied to a
discretized PDE obtains matrices that often differ from what one would obtain using
a discretization process that is analogous to that used on the finest level. For further
details on AMG, see [7, 9, 25].

One way to relate a continuous PDE to a discrete problem is to think of the
discretization process as a projection from an infinite-dimensional space onto a discrete
one, with some nodal or finite element representation. (Here we restrict ourselves to a
finite element representation.) To illustrate this process, consider a partial differential
operator, L, which maps between two infinite-dimensional spaces, VVV and VVV

L
(L : VVV →

VVV
L
). For a specific g ∈ VVV

L
and domain Ω, we formally obtain a PDE, which we denote

by

L(x) = g, in Ω. (2.1)

For equation (2.1) to be properly defined, it may need to be taken in the weak
sense, but this would complicate the discussion. We use the strong form here for
simplicity. Note the use of bold face type for unknown x and source term g. We do
this to allow for different types of principal variables, such as pressure, temperature,
and velocity. When we want to emphasize this possibility, we write these variables in
component form, such as x = (x1, . . . , xv)

t.
Now let Sh be a finite-dimensional subset of VVV (e.g., a standard finite element

space associated with an approximate mesh size, h). Then denote the natural em-
bedding operator by Ph : Sh ↪→VVV. This operator leads to a natural discretization of
our functional minimization problem as follows. Consider the least-squares functional
associated with (2.1):

F(x; g) = ‖L(x)− g‖
2

0,Ω
, ∀x ∈ VVV . (2.2)

Note that F( · ; g) is a mapping from VVV to R. A discrete functional is obtained by
defining Fh(xh; g) := F(Phxh; g), with xh ∈ Sh and Phxh ∈ VVV. Discretization is thus
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simply a matter of restricting the functional to the discrete space. This is the essence
of Rayleigh-Ritz. Note that since Fh( · ; g) is a mapping from Sh to R, notations
F(xh; g) and Fh(xh; g) are equivalent. From now on, we refer to F(xh; g) as the
discrete functional.

The abstract discretization process only depends on the choice of the embedding
operator, Ph, and the associated finite element space, Sh. Hence, for coarser levels,
we can define the discrete functional in the same way. Let S2h be a finite-dimensional
space (associated with an approximate mesh size, 2h) and let P2h : S2h ↪→ VVV be the
natural embedding from S2h into VVV. Then the coarse-grid discretization of functional
(2.2) is given by F(x2h; g) := F(P2hx2h; g), with x2h ∈ S2h. In our framework,

for consecutive coarser levels, we typically choose nested spaces, so that S2
Lh ⊂

. . .S2h ⊂ Sh ⊂ VVV. In this way, the interlevel transfer operators are induced in a
natural, straightforward, and advantageous way and are easy to implement within
PML. Furthermore, the coarse-grid problems are ensured to be compatible with the
procedures used to define the fine-level problem, with the difference being that the
coarse-level unknown is an approximation to the fine-level error and not to its solution;
that is, the coarse-level correction is of the form xh + c2h. (Since xh = Phxh for
xh ∈ Sh and c2h = P2hc2h for c2h ∈ S2h, we omit the embedding operators Ph and
P2h here and henceforth.)

Note that relaxation also depends on the choice of subspaces (and, hence, on
the embeddings). We thus have to be particularly careful in picking the underlying
subspaces for relaxation and coarsening.

3. Abstract Framework of PML. To describe the general framework of a
PML method applied to a functional minimization principle, let F(x; g) : VVV → R
and assume that we have a conforming finite element structure in the sense that
S2h ⊂ Sh ⊂ VVV. The aim of this section is to develop a multilevel framework that
applies directly to

F(xh
∗ ; g) = min

xh∈Sh
F(xh; g), xh

∗ ∈ S
h. (3.1)

To do this, we focus on two important ingredients of multilevel methods: relaxation
and coarsening. Relaxation is a generic term for an iterative process that is typically
very inexpensive to use but is effective only at reducing certain ’oscillatory’ error
components. Coarsening refers to the process of determining a coarse-level correction
that hopefully eliminates the ’smooth’ errors that relaxation leaves behind.

We first provide a general framework for a point or nodal relaxation scheme on
the finest level. To maintain a certain form of generality in this section, let {φh

n}
m0

n=1

be a basis for Sh, where m0 is the dimension of Sh. Then write Sh as a direct sum of
the one-dimensional subspaces, Sh

n = span{φh
n}, 1 ≤ n ≤ m0: S

h = Sh
1 ⊕ . . . ⊕ Sh

m0
.

(Higher-dimensional subspaces can be considered for relaxation processes that update
several variables at once, e.g., line or box relaxation. However, we consider only the
one-dimensional case here for simplicity.)

These definitions set the stage for an abstract definition of a relaxation scheme to
approximately solve for xh

∗ ∈ S
h in (3.1) by PML. To do so, we want to improve an

initial guess, xh, by corrections, ch ∈ Sh
n , 1 ≤ n ≤ m0. Thus, one sweep of relaxation

consists of performing the following correction steps for each n = 1, 2, . . . ,m0 in turn:



F(xh + ch

n; g) = min
ch

n∈S
h
n

F(xh + ch
n; g),

xh ← xh + ch
n.

(3.2)
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Next, consider the coarse-grid correction process, first in terms of an exact solve,
then as an iterative process. Let xh ∈ Sh be a random initial guess or a current
iterate for our PML scheme. Then, the exact coarse-grid solve is described by

F(xh + c2h∗ ; g) = min
c2h∈S2h

F(xh + c2h; g), c2h∗ ∈ S
2h. (3.3)

To develop an iterative version of (3.3), we proceed in analogy to fine-grid re-
laxation. Let {φ2hn }

m1

n=1 be a basis for S2h. Then, write S2h as a direct sum of the
one-dimensional subspaces, S2hn = span{φ2hn }, 1 ≤ n ≤ m1: S

2h = S2h1 ⊕ . . . ⊕ S2hm1
.

Then one coarse-grid relaxation sweep consists of performing the following correction
steps for each n = 1, 2, . . . ,m1 in turn:




F(xh + c2hn ; g) = min

c2h
n ∈S2h

n

F(xh + c2hn ; g),

xh ← xh + c2hn .
(3.4)

Our notation is at the crux of our ability to make PML practical. Iterative
methods are commonly formulated as a processes that directly updates the original
approximation, xh. Our choice of the more complicated correction form in (3.2)
was made for consistency with (3.4). We complicate this notation further below by
writing the respective fine- and coarse-level iterative processes as corrections to the
approximate solutions, ch and c2h, of (3.2) and (3.4). (To avoid further complication,
we use ch and c2h to denote either the exact solutions or their approximations, a
distinction that is clear by context.) Furthermore, we use these formulations to allow
the multiple corrections that come from yet coarser levels. Hopefully, the three-term
correction forms that we use in what follows are enough to expose the mechanisms
needed to make the process efficient. The key is to write relaxation on the level 4h
correction as a process that only involves changes to level 4h vectors.

To compute the corrections in (3.2) and (3.4), we use fine- and coarse-level re-
laxation processes. For xh ∈ Sh fixed and ch ∈ Sh, the current approximation to
the exact correction defined in (3.2), the nth step of a fine-grid relaxation sweep is
defined by solving

s = argmin
t∈R

F(xh + ch + tdh; g), s ∈ R. (3.5)

and forming the update,

ch ← ch + sdh, (3.6)

where dh = φh
n, 1 ≤ n ≤ m0. Note that (3.5) and (3.6) describe a basic line search

method, in direction dh, with optimal step length s. For simplicity, we combine (3.5)
and (3.6) and refer to it as a directional iteration step. For a given xh, ch, and dh,
we denote the operator describing (3.5) and (3.6) by

ch ← Dxh(ch,dh). (3.7)

In an analogous way, coarse-grid relaxation is defined for xh ∈ Sh and c2h ∈ S2h

by c2h ← Dxh(c2h,d2h), where d2h = φ2hn , 1 ≤ n ≤ m1. Successive application of
this process yields an abstract formulation of a general multilevel projection method.
Assume that there are L + 1 distinct grid levels corresponding to mesh sizes 2lh,
l = 0, . . . , L. (We label the finest level by superscript h and the coarsest one by
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superscript 2Lh.) Assume that each level is defined by a finite-dimensional subspace,

S2
lh, that is nested in the sense that S2

l+1h ⊂ S2
lh, l = 0, . . . , L − 1. Suppose

that these spaces are written as a direct sum of one-dimensional subspaces: S2
lh =

S2
lh
1 ⊕ . . .⊕ S2

lh
ml

, l = 0, . . . , L. Then one V (0, 1)-PML cycle is defined as follows:

c2
lh ← 0, l = 0, . . . , L

For l = L, . . . , 1 : (coarse-grid process)



For: n = 0, . . . ,ml

c2
lh ← Dxh(c2

lh,d2
lh

n ), d2
lh

n ∈ S2
lh

n ,

c2
l−1h = c2

lh

For l = 0 : (fine-grid process)
[

For: n = 0, . . . ,m0

ch ← Dxh(ch,dh
n), dh

n ∈ S
h
n ,

xh ← xh + ch.

(3.8)

4. Coarse-grid Realizability, Different Relaxation Types, and Higher-

Order Discretizations. The key to obtaining an efficient multigrid-optimal PML
implementation from (3.8) is the capability to perform the directional iteration step
efficiently on coarse levels. Since the directional iteration step is based on functional
evaluations, we focus now on how to do this efficiently on coarse levels.

4.1. Coarse-grid Realizability. To obtain optimality, our multigrid algorithm
must achieve two key objectives. First, we must be able to compute the FOSLS
functional efficiently. Thus, update c2h and the resulting new functional value must
be computed quickly. Essentially, all level 2h calculations should in effect be performed
on grid 2h, not on grid h. Second, it must be possible to go from level 2h to level 4h
without first updating the approximations on grid h.

To show how the first objective can be achieved, we need some additional notation
and definitions. For simplicity, we choose the discretization to be the space, Sh, of
continuous piecewise-linear functions and the domain, Ω ⊂ R2, to be two-dimensional,
simply-connected, and polygonal so that it can be partitioned into triangles. We con-
sider here only triangulations by standard linear Lagrange triangles (cf. [5]). We need
to maintain a certain block-structured grid in order to obtain an efficient multigrid-
optimal implementation of PML in two dimensions. Each level is defined by a finite-

dimensional subspace, S2
lh, nested in the sense that S2

l+1h ⊂ S2
lh, l = 0, . . . , L− 1.

For this section, we consider xh = (xh
1 , . . . , x

h
v )

t ∈ Sh to be an arbitrary but fixed
fine-grid approximation to the solution of the PDE. The xh components, xh

i : Ω→ R
(i = 1, . . . , v), represent the different principal PDE variables (e.g., pressure, temper-

ature, energy, and velocity). Further, we denote with c2
lh a correction to fine-grid

approximation xh on level l (with approximate mesh size 2lh). Each component of

correction c2
lh = (c2

lh
1 , . . . , c2

lh
v )t ∈ S2

lh is a continuous piecewise-linear function and

can be written, restricted to an element Ω2
lh

j , as a linear function as follows:

c2
lh

i (x, y)
∣∣∣
Ω2

lh
j

= s
(i,j,l)
1 + s

(i,j,l)
2 x+ s

(i,j,l)
3 y. (4.1)
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This representation holds for all i = 1, . . . , v and j = 1, 2, ..., N (l), where N (l) is the

total number of elements on level l. The coefficients, s
(i,j,l)
p with p = 1, 2, 3, are

determined uniquely on level l by solving on each element, Ω2
lh

j (j = 1, 2, ..., N (l)),
and for each i = 1, . . . , v the corresponding linear interpolation problem. In contrast
to standard finite element practice, (4.1) can be seen as an alternative way to obtain
a representation of ch in Sh.

We next show how F(xh+ch; g) is computed for a modifiable fine-grid correction,
ch, and an arbitrary but fixed approximation, xh. This is an essential step towards
a multigrid-optimal algorithm and provides the basis for computing the FOSLS func-
tional efficiently on coarser levels. For simplicity, we focus on one fine-grid element,
Ωh

j . This can be done without any loss of generality, since the sum of all fine-grid

element contributions, FΩh
j
(xh+ch; g), is the functional value, F(xh+ch; g). Further,

we represent the fine-grid correction, ch (level l = 0), as in (4.1) and consider its co-

efficients, s
(i,j,0)
p , as unknowns. In a next step, we use this representations to express

the functional contribution, FΩh
j
(xh + ch; g), in terms of the coefficients, s

(i,j,0)
p . Due

to the nature of our quasilinear first-order system and its L2 least-squares functional,
it is possible that the expansion of FΩh

j
(xh + ch; g), with respect to the coefficients

of ch, includes product terms of the coefficients, s
(i,j,0)
p , of up to order four. In the

context of our new PML method, we regard all these terms as separate unknowns
and store them as a matrix, Ch

j . In this way, we are able to write the expansion of

FΩh
j
(x + ch; g) as a matrix inner product of the form Ah

j :Ch
j . In the following, we

refer to Ah
j as the local functional matrix and to Ch

j as the local coefficient matrix for

element Ωh
j on grid h. Now, whenever ch changes on Ωh

j , we obtain the new functional

value, FΩh
j
(xh + ch; g), by recomputing the local coefficient matrix and by evaluating

the matrix inner product.
To show that we can compute the functional on coarser levels by coarse-grid

calculations (the first objective), we assume a regular-structured grid. We further
assume that four fine-grid elements always form one coarse-grid element. Denote
with C2hk the coefficient matrix for c2h on coarse-grid element Ω2hk . Further, let Ch

j ,

with j ∈ {i|Ωh
i ⊂ Ω2hk }, be the coefficient matrices for c2h restricted to the fine-

grid elements, Ωh
j . The key observation now is to recognize that C2hk = Ch

j for all

j ∈ {i|Ωh
i ⊂ Ω2hk }. Then, we obtain the functional contribution for coarse-grid element

Ω2hk as follows:

FΩ2h
k
(xh + c2h; g) =

∑

j

Ah
j :Ch

j =


∑

j

Ah
j


:C2hk = A2hk :C2hk , (4.2)

where j ∈ {i|Ωh
i ⊂ Ω2hk }. Having all local fine-grid functional matrices available,

we obtain the local coarse-grid functional matrices by a simple element-by-element
addition of the respective fine-grid functional matrices. In this way, we can compute
the functional, F(xh + c2h; g), for fixed fine-grid approximation xh ∈ Sh and any
c2h ∈ S2h, entirely by grid 2h computations. We remark that, because of the nonlinear
nature of our problems, these coarse-grid functional evaluations are only possible

for approximations of the form xh + c2
lh, l = 0, . . . , L, and not, for example, for

approximations of the form xh+c2h+c4h. But, to fulfill the second objective, we would
have to be able to compute approximations of the second type. To circumvent this
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drawback, we simply restrict ourselves to V (0, ν)-cycles. Such a cycle is characterized
for our new PML method by the following steps: fix the current approximation/initial
guess; compute all local fine-grid functional matrices, Ah

j ; calculate the corresponding
local coarse-grid functional matrices for all coarse levels; start the relaxation process

on the coarsest level by applying ν sweeps there to compute the correction, c2
Lh;

interpolate this correction to the next finer level; use the interpolated correction as
an initial value for relaxation on this next finer level; repeat the steps for l = L, . . . , 0;
and update the current approximation, xh, by ch.

By introducing local functional matrices and restricting ourselves to structured
grids and V (0, ν)-cycles, we can fulfill all the objectives for an efficient and multigrid
optimal algorithm. Note that the same efficiency and optimality is retained if, in-
stead of regular-structured grids, we use block-structured grids. Such grids allow the
coarsest level to be unstructured, while the subsequent finer levels exhibit a regular
structure.

4.2. Relaxation. The description of a V (0, 1)-PML cycle defines relaxation in

general as c2
lh ← Dxh(c2

lh,d2
lh

n ), with n = 0, . . . ,ml, where x
h is the current fine-

grid approximation, c2
lh is a coarse-grid correction on level 2lh, d2

lh
n ∈ S2

lh
n is a search

direction, and S2
lh

n , n = 0, . . . ,ml, are spaces that decompose S2
lh. We clearly see

that picking S2
lh

n characterizes the type of relaxation. Before illustrating relationships

between S2
lh

n and different relaxation types, we first comment on issues concerning the
realization and implementation of directional iteration or relaxation steps in general.

The classical approach for relaxation schemes, such as Gauß-Seidel or damped Ja-
cobi, are based on a finite number of either explicitly given linear equations, typically
written in matrix form, or nonlinear equations. Since relaxation for our PML method
is based on a nonlinear functional minimization principle, we cannot use them in the
same way that most standard approaches present them. To implement relaxation so
that we keep the overall promise of avoiding linearization while obtaining an efficient
algorithm, we restrict ourselves to a first-order system least-squares functional for
quasilinear PDEs. For this class of PDE formulations, the nonlinearity appears in the
functional as a cross product of two different variables, which implies linearity of the
weak form with respect to each variable.

To illustrate this linearity, consider a least-squares functional consisting of the
product of two variables: F([u, v]t; 0) = ‖uv‖

2

0,Ω
. (For clarity, we use u and v instead

of x1 and x2.) Let Sh be a standard finite element space with approximate mesh
size h. Then choose a relaxation direction for each variable: dh

1 = [dh
uh , 0]

t ∈ Sh and
dh
2 = [0, dh

vh ]
t ∈ Sh. Relaxing on each variable of F([uh, vh]t; 0) separately, we obtain

for xh = [uh, vh]t ∈ Sh the following relaxation process:





s1=argmin
t∈R

F(xh + tdh
1 ; 0)= argmin

t∈R

F([uh + tdh
uh , v

h]t; 0) =: argmin
t∈R

F̄1(t),

uh ← uh + s1d
h
1 ,

(4.3)
and





s2 = argmin
t∈R

F(xh + tdh
2 ; 0) = argmin

t∈R

F([uh, vh + tdh
2 ]

t; 0) =: argmin
t∈R

F̄2(t),

vh ← vh + s2d
h
1 .

(4.4)
For our class of PDEs, functions F̄1(t) and F̄2(t) defined in (4.3) and (4.4) are
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quadratic polynomials in the scalar, t. To obtain the quadratic formulation for F̄1(t)
(or F̄2(t)), we evaluate F̄1(t) (or F̄2(t)) at three different locations and fit the func-
tional values quadratically. In this way, the quadratic polynomial fits F̄1(t) (or F̄2(t))
exactly. Actually, we only need to evaluate F̄1(t) (or F̄2(t)) at two locations because
the current functional value (t = 0) is known. Also, after computing the optimal step
length, which is the minimum of the quadratic polynomial, we obtain the new current
functional value by plugging s1 (or s2) into our quadratically-fitted curve.

Even though we only illustrated one fine-grid relaxation step for two scalar un-
knowns, we can apply the same techniques for more than two variables, for unknowns
that are vector functions, and on coarser levels. Moreover, at this point, we see why it
is extremely important to be able to compute functional values on all levels efficiently.
Relaxation is the main contributor to the overall computational cost and is almost
solely based on functional evaluations.

We can relax on the unknowns in an alternating fashion, as described by (4.3) and

(4.4), for almost any choice of relaxation subspaces, S2
lh

n , and discretization. These
choices only affect the type of relaxation. In what follows, we give two examples for
different relaxation types, a Richardson-like scheme and a Gauß-Seidel-like scheme.
Although we describe the different relaxation types as if the functional had only one
unknown, we still relax on the unknowns in an alternating way.

To obtain a Richardson-like relaxation scheme, we choose ml = 1 on all levels.
This means that there is only one relaxation step per sweep. As the single direction,

d2
lh
1 ∈ S2

lh
1 = S2

lh, we make the natural choice of ’steepest’ descent given by the
gradient of the functional with respect to the unknown. We compute the gradient
of our nonlinear functional numerically: its value at node n is determined by the

forward-difference formula,
(
F(x2

lh+s e2
lh

n ; g)−F(x2
lh; g)

)
/s, where e2

lh
n is the n-th

nodal finite element basis function (with value one at grid point n and zero elsewhere)

and s is sufficiently small; the discrete representation of the gradient, d2
lh
1 , is then

just the continuous piecewise polynomial in S2
lh that has these nodal values.

If we now choose our relaxation subspaces as the span of individual basis or
nodal finite element basis functions (with a value of one at a single node and zero
at all other nodes), we obtain a coordinate minimization or nonlinear Gauß-Seidel
relaxation process. Hence, we choose ml to be equal to the number of nodes on level

l, d2
lh

n as the nodal finite element basis function, and S2
lh

n as the space spanned by
the nodal basis function of node n. This means that we minimize consecutively over

all nodes, n, by computing the step length, s = mint∈R F(x
h + c2

lh + td2
lh

n ; g), and

the resultant update, c2
lh ← c2

lh + sd2
lh

n . Note that this is a local process in that
the approximation, xh, only changes at one node per step of the sweep.

Gauß-Seidel is typically a more efficient smoother than a gradient or Richardson-
type process. This is confirmed numerically for our application in Table 5.1 of Section
5.2.

4.3. Higher-Order Discretizations. Many engineering problems require more
than just a linear finite element discretization. For example, the numerical solution to
the Navier-Stokes equations obtained by using linear finite elements and a triangular
discretization in a FOSLS formulation usually does not conserve mass very well. This
section shows the potential of using higher-order finite elements in our framework of
PML. For simplicity, however, we limit ourselves in this section to standard quadratic
Lagrange triangles, which generate the space, Sh

Q, of continuous piecewise-quadratic
finite elements. It should be noted that any other higher-order discretization or other
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element type can be implemented in a similar way. Mimicking the representation
of linear functions over elements, we describe approximations or corrections in Sh

Q

restricted to an element (in this case, we use a less cumbersome notation as we restrict
our correction to a reference element, Ωh

ref ) by

ch(x, y)
∣∣∣
Ωh

ref

= sh
0 + sh

1x+ sh
2y + sh

3xy + sh
4x
2 + sh

5y
2. (4.5)

Similar to fine-grid level h, we introduce quadratic finite element spaces on coarser

levels: S2
lh

Q , l = 1, . . . , L. The subscript Q indicates the use of quadratic ansatz
functions to generate the space. We stress that the lack of such a subscript signifies
linear ansatz functions. For the multilevel implementation with quadratic finite ele-
ments, we use an unstructured triangulation for the coarsest level. All finer levels are
obtained by subdividing each coarser-grid-level triangle into four equal triangles. To
this end, we consider two different coarse-grid correction processes that differ by the
choice of the coarse-grid correction subspaces:

1. On all levels, corrections are obtained from the quadratic finite element sub-

spaces, S2
lh

Q (l = 0, . . . , L).

2. Only Sh
Q is used for the fine-grid corrections, while the coarse-grid process

uses corrections from the linear finite element subspaces, S2
lh (l = 1, . . . , L).

To achieve for both approaches an efficient or even multigrid-optimal algorithm for
quadratic finite elements, we mimic ideas and techniques from previous discussions
on linear finite elements. There, we introduced local functional matrices, which led
to an efficient way of handling modifications to coarse-grid corrections. These local
functional matrices can be computed for quadratic finite elements in a similar way.
The key observation, which led to multigrid-optimality, is to recognize the need to
use V (0, ν)-cycles instead of V (µ, ν)-cycles for our PML method.

For the first approach, coarse-grid functional matrices are obtained as in the case
for linear finite elements by adding up the respective fine-grid functional matrices.
At the end of each cycle, we update the current approximation of the solution, xh

Q,

by ch
Q, compute the new local functional matrices, and repeat the cycle. For the

second approach, we first alter the triangulation from quadratic Lagrange triangles
to linear Lagrange triangles. Then we apply a standard V (0, ν)-cycle that involves
relaxation on corrections represented by continuous piecewise-linear functions. At
the end of this V (0, ν)-cycle, we project the current (piecewise-linear) correction onto
the original triangulation with quadratic Lagrange triangles. We continue the cycle
by performing ν further relaxation sweeps on the correction, now represented by
continuous piecewise-quadratic functions, by updating the current approximation of
the solution, xh

Q, by c
h
Q, and by computing the new local functional matrices to repeat

the cycle.
Compared to the first approach, the second has two advantages. First, it allows

reuse of most of the code for linear finite elements. Second, the coarsening process
is independent of the order of the fine-grid discretization. This property becomes
increasingly important as we choose increasingly higher-order discretizations on the
finest level. To illustrate this, recall that our PML method treats the nonlinearity
directly, without any kind of linearization process. Thus, our local functional matrices
are growing rapidly in complexity for higher-order discretizations. (The complexity
grows for quasilinear problems even more than for linear ones.) With the second
approach, we use a multilevel strategy to compute a piecewise-linear approximation
to the fine-grid correction. Having this approximation on the finest level available,

10



we have the advantage of no longer being constrained to use local functional matrices
or the same relaxation process as on coarser levels. In principle, we could consider
the fine-level correction as a separate minimization process, with the advantage of
having a good coarse-grid corrected initial guess. This is very appealing in particular
for high-order finite elements.

However, low-order spaces do not always provide an effective coarse-level cor-
rection for high-order spaces in the same elements. An alternative is to partition
the elements defining the high-order discretization into several smaller elements that
could then be used to define the linear correction space (cf. [17, 20]). In our context
of standard quadratic finite elements, we could split each quadratic Lagrange triangle
into four linear Lagrange triangles. Although, this would violate our assumption of
nested finite-dimensional subspaces, we would still obtain a good low-order approxi-
mation to the (high-order) correction on the finest level. This is very appealing for
high-order element types, in particular, since this allows us, again, to consider the
(high-order) fine-level problem as a separate minimization process.

5. Numerical Results. Here we report on numerical results for some test prob-
lems. First, for verification, we compare PML convergence factors for different types
of relaxation, discretization, and cycling strategies applied to (linear) Poisson prob-
lems. We then study performance on a set of nonlinear test problems by adding a
simple nonlinear term to the Laplace operator, using a coefficient, α, that allows us
to adjust the strength of nonlinearity. We finish this section by presenting numerical
results for our target application, the incompressible Navier-Stokes equations, with
particular focus on the so-called Kovasznay flow.

5.1. Measuring Convergence Factors. Before we provide numerical results
on some test problems, we first address the issue of how to measure convergence
factors for our method since they play an especially important role in analyzing and
evaluating a multigrid iteration.

Let F(x2
lh; g) be the discrete nonlinear functional for a nonlinear PDE written in

first-order system least-squares form, and let x2
lh
∗ be the minimizer of F(x2

lh; g) on
level l. Superscript 2lh does not play an essential role here, but we use it anyway to
emphasize that the operator stems from a discretization on a certain level, l. Taking
our cue from the linear case, we write the functional norm defect of our current
approximation as

δ̂2
lh

k =
√
F(x2

lh
k ; g)−F(x2lh

∗ ; g), (5.1)

where x2
lh

k is the approximation to the exact solution, x2
lh
∗ , after the k-th itera-

tion step. Note that δ̂2
lh

k is a positive real number because x2
lh
∗ is the minimizer

of F(x2
lh; g). In analogy to computing convergence factors for linear systems (cf.

[9, 27]), we define the convergence factor for the k-th iteration step on level l by

ĈF
(l)

k :=
δ̂2

lh
k

δ̂2
lh

k−1

=

√
F(x2

lh
k ; g)−F(x2lh

∗ ; g)

F(x2
lh

k−1; g)−F(x
2lh
∗ ; g)

. (5.2)

Since F(x2
lh
∗ ; g) is unknown, equation (5.2) cannot be used directly to compute

the convergence factor. Thus, instead of considering the defect, δ̂2
lh

k , as in (5.1), we
take the approach of defining the defect of two consecutive approximations:

δ2
lh

k =
√
F(x2

lh
k−1; g)−F(x

2lh
k ; g). (5.3)
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The attendant convergence factor estimate is then given by

CF
(l)
k :=

δ2
lh

k

δ2
lh

k−1

=

√√√√ F(x
2lh
k−1; g)−F(x

2lh
k ; g)

F(x2
lh

k−2; g)−F(x
2lh
k−1; g)

. (5.4)

Note, this measures requires care with respect to machine precision and numerical

cancellation. For example, if F(x2
lh

k−1; g) and F(x
2lh
k ; g) in (5.4) are the same up to near

machine precision, then convergence factors can give the impression of degenerating
performance.

5.2. Verifying Uniformly-Bounded Linear Convergence for a Poisson

Problem. We begin our numerical tests on Poisson problems to confirm that we get
optimal standard multigrid performance and optimal finite element approximation
properties using linear finite elements. The Poisson problem with pure Dirichlet
boundary conditions on Ω = [0, 1]× [0, 1] is given by

−∆p = f
Ω

in Ω,

p = f
Γ

on ΓΩ.
(5.5)

A first-order system least-squares (FOSLS) formulation for (5.5) is given by

∇p− u = 0 in Ω,

−∇· u = f
Ω

in Ω,

∇× u = 0 in Ω,

p = f
Γ

on ΓΩ,

n× u = n×∇f
Γ

on ΓΩ,

(5.6)

where n is the unit outward normal on the boundary, Γ
Ω
. For further details on

this formulation, see [10] and [11]. For all of our tests, we use Dirichlet boundary
conditions, strongly enforced by imposing them on the finite element space. We
construct the first-order system least-squares functional by taking the L2-norm of
each interior equation:

F(p,u; g) = ‖p−∇u‖
2

0,Ω
+ ‖∇· u+ f

Ω
‖
2

0,Ω
+ ‖∇× u‖

2

0,Ω
, (5.7)

where g = (0, f
Ω
, 0)t is the combined right side of the FOSLS formulation.

We start by examining asymptotic V -cycle convergence factors with a varying
number of post-smoothing relaxation sweeps. To facilitate this test, we choose the
homogeneous Laplace problem with zero boundary conditions (f

Ω
(x, y) = 0 and

f
Γ
(x, y) = 0 in (5.6)). The triangulation of the unit square consists of a regular grid

with 2 113 nodes and 4 096 elements. For the discretization, we use standard piecewise-
linear finite elements. Table 5.1 depicts numerical results for our PML scheme using
different V(0, ν)-cycles. We use either a Richardson-like or Gauß-Seidel-like relaxation
method. The initial guess is chosen randomly and we iterate with 20 V-cycles to en-

sure sharp estimates of the asymptotic convergence factors, CF
(l)
20 , which we measure

according to (5.4). In addition, we report in Table 5.1 on the effective convergence

factor, defined as the ν-th root of CF
(l)
20 . Our Gauß-Seidel process uses a C/F order-

ing of the nodes, where we first sweep over all coarse-grid points, and then over the
remaining fine-grid points.
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V (0, ν)-Cycle Asymptotic convergence factor (CF
(l)
20 )

Richardson-like Relaxation Gauß-Seidel-like Relaxation

CF
(l)
20 effective CF CF

(l)
20 effective CF

ν = 1 0.696 0.696 0.418 0.418
ν = 2 0.395 0.628 0.250 0.500
ν = 4 0.288 0.732 0.133 0.603
ν = 6 0.256 0.796 0.089 0.668
ν = 8 0.245 0.838 0.067 0.713

Table 5.1

Comparison of asymptotic convergence factors for our nonlinear PML scheme using Richardson
and Gauß-Seidel smoothers.

These results show typical multigrid convergence behavior. As expected, a Gauß-
Seidel-like scheme performs better than Richardson-like relaxation. Also, we note that
increasing the number of post-relaxation sweeps decreases the convergence factors,
although with diminishing returns as is typical of multigrid solvers. This is reflected
for both smoother types in an increase of the effective convergence factors. Although
the effective convergence factors favor V (0, 2)-cycles for a Richardson-like relaxation
and V (0, 1)-cycles for a Gauß-Seidel-like relaxation, they neglect the overhead of our
PML method for computing new local functional matrices. In fact, from our numerical
experiments, we observed the best results in terms of efficiency for V (0, 2) or V (0, 4)-
cycles, with a Gauß-Seidel-like smoother.

Next, we are interested in how our method performs for the Laplace problem
with a nonzero right side. For the exact solution, we choose p(x, y) = x2 + y2. Since
this solution cannot be represented exactly by our finite element space, the functional
cannot converge to zero, but rather stagnates as the scheme reaches the level of
discretization error on each grid. For piecewise linear finite elements with sufficiently
smooth solution, we expect functional reduction by an asymptotic factor of about 2 as
the resolution doubles. (This is consistent with finite element approximation theory.)
For this test, we start with a regular triangulation (level l = 6) of 41 nodes and 64
elements. Each finer grid is obtained by dividing each triangle into four equal triangles.
This leads to the finest level (l = 0) with 131 585 nodes and 262 144 elements. To step
through the grid levels, we use a nested iteration approach, in the sense that we fix the
number of V-cycles per level and use, as initial guess on each grid, the interpolated
approximation from the previous (coarser) grid level (except for the coarsest grid,
on which we use a random initial guess). On each level, we perform 5 V (0, 4)-cycles
with Gauß-Seidel as the smoother. Table 5.2 reports, for each level l = 0, . . . , 6, the

functional norm, F(p2
lh
5 ,u2

lh
5 ; g)

1
2 , after 5 cycles, the functional reduction factor as

the resolution doubles defined by

β(l)n =

√
F(p2l+1h

n ,u2l+1h
n ; g)

F(p2lh
n ,u2lh

n ; g)
, l = 0, . . . , L− 1, (5.8)

and the convergence factor, CF
(l)
5 , defined as in (5.4). The purpose of this test is

to give numerical evidence that we recover uniform convergence factors and optimal
finite element approximation properties.

The last column in Table 5.2 show that the convergence factors are approximately
the same on all levels. This property of approximate grid-independent convergence
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Level l Nodes/Elements Functional norm Functional reduc- CF
(l)
5

F(p2
lh
5 ,u2

lh
5 ; g)

1
2 tion factor β

(l)
5

6 41/64 1.416285e-01 0.054
5 145/256 7.174930e-02 1.975 0.091
4 545/1 024 3.602167e-02 1.992 0.108
3 2 113/4 096 1.803306e-02 1.998 0.116
2 8 321/16 384 9.019794e-03 2.000 0.117
1 33 025/65 536 4.510366e-03 2.000 0.096
0 131 585/262 144 2.255249e-03 2.000 0.098

Table 5.2

Convergence history for Poisson problem (5.6) with f
Ω
(x, y) = −4, linear finite elements, and

a standard V (0, 4)-cycle.

is one key characteristics of multigrid that we aim to achieve. Note that the grid
used to generate Table 5.1 is identical to that used for level l = 3 in Table 5.2. On
this level, we see similar convergence factors, with a slight difference (0.133 versus
0.116) due to earlier termination here of the sequence of V-cycles. We also seem
to have achieved optimal finite element approximation properties. On each level, the
functional norm stagnates at the level of discretization error. The fact that we reached
the level of discretization error is also supported by the functional reduction factors.
For continuous piecewise-linear finite elements for our problem, standard theory (cf.
[12]) establishes asymptotic O(h) H1 error bounds, so H1 ellipticity of our functional
yields an O(h) functional-norm bound. We might, thus, expect about a factor of 2
in functional-norm reduction from one level to the next finer one. The numerically

computed functional reduction factors, β
(l)
5 , are reported in column 4 of Table 5.2

and coincide with the theoretical results. For this test problem, we reach the level of
discretization error most of the time after 2 or 3 V-cycles. By performing 5 V-cycles,

we ensure that the measured factors, CF
(l)
5 , give us a better approximation to the

asymptotic convergence factors.

5.3. A Nonlinear Model Problem. Section 5.2 shows typical numerical be-
havior of a multilevel algorithm applied to a Poisson problem. The next step is to test
the new algorithm in the presence of nonlinearities. We, thus, modify the PDE given
in (5.5) by adding a nonlinear term, ppx. Additionally, we introduce parameter α to
allow variation of the strength of the nonlinearity. This model represents a simple
nonlinear PDE with a type of nonlinearity that is at the focus of this research. Its
first-order system least-squares formulation is given as follows:

∇p− u = 0 in Ω,

−
1

α
∇· u+ pu1 = f

Ω
in Ω,

1

α
∇× u = 0 in Ω,

p = f
Γ

on ΓΩ,

n× u = n× f
Γ

on ΓΩ.

(5.9)

where ∇p = (u1, u2)
t, n is the unit outward normal on boundary Γ

Ω
, and Ω is the

unit square. We choose p(x, y) = x2 + y2 as the exact solution and thus obtain
f
Ω
= −4/α+(2x3+2xy2) as the right side. For all of our experiments, we use Dirich-
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let boundary conditions derived from the exact solution. We enforce the boundary
conditions strongly by imposing them on the finite element space. Note that (5.9)
arises from a more favorable scaling of the first-order system derived from the PDE,
∆p + αppx = f̃

Ω
. Hence, parameter α allows us to vary the strength of nonlinear

term ppx. Its first-order system least-squares functional is constructed by taking the
L2-norm of each interior equation:

F(p,u; g) = ‖∇p−u‖
2

0,Ω
+‖−

1

α
∇·u+pu1+

4

α
−(2x3+2xy2)‖

2

0,Ω
+‖

1

α
∇×u‖

2

0,Ω
, (5.10)

where g = (0, f
Ω
, 0). The grids are based on a regular triangulation of Ω by 16 ele-

ments and 13 grid points. This coarsest level is denoted by l = 7, with an approximate
mesh size 2lh, where h is the approximate mesh size with respect to the finest level.
Level 6 is formed by taking every element of level 7 and subdividing it into 4 equal
triangles. The midpoint of the coarse-grid element sides are the new fine-grid points.
Successively finer levels are constructed in the same way. This refinement leads to
131 585 nodes (with 3 degrees of freedom per node) and 262 144 elements on level 0.
A nested iteration algorithm with 10 V (0, 4)-Gauß-Seidel relaxation sweeps on each
level is used to minimize F(p,u; g) in (5.10) over the space consisting of continuous

piecewise-linear functions. Table 5.3 depicts the functional norms, F(p2
lh
10 ,u

2lh
10 ; g)

1
2 ,

obtained on each level for the linear Poisson problem and α varying between 1 and

10 000. Table 5.4 reports on the corresponding final convergence factors, CF
(l)
10 , com-

puted according to (5.4). Here, we choose again to report the convergence factor of
the last iteration, since it tends to be the worst in our numerical tests.

Linear Nonlinearity parameter α
Poisson 1 10 100 1 000 10 000

Level Functional Functional Functional Functional Functional Functional
norm norm norm norm norm norm

7 2.7635e-01 2.7635e-01 2.6843e-01 2.5509e-01 2.5357e-01 2.5342e-01
6 1.4162e-01 1.4207e-01 1.4046e-01 1.3540e-01 1.3460e-01 1.3452e-01
5 7.1749e-02 7.1800e-02 7.1545e-02 7.0292e-02 7.0032e-02 7.0007e-02
4 3.6021e-02 3.6027e-02 3.5992e-02 3.5762e-02 3.5714e-02 3.5710e-02
3 1.8033e-02 1.8033e-02 1.8029e-02 1.8007e-02 1.8032e-02 1.8036e-02
2 9.0197e-03 9.0198e-03 9.0193e-03 9.0259e-03 9.0756e-03 9.0822e-03
1 4.5103e-03 4.5103e-03 4.5103e-03 4.5160e-03 4.5750e-03 4.5833e-03
0 2.2552e-03 2.2552e-03 2.2552e-03 2.2583e-03 2.3232e-03 2.3331e-03

Table 5.3

Measured functional norm (5.10), F(p2l
h

10 ,u2l
h

10 ; g)
1
2 , for different α using a linear finite element

discretization and 10 V (0, 4)-cycles with Gauss-Seidel as smoother.

Note that, on each level, we obtain accuracy close to discretization level within 10
V (0, 4)-cycles. We have not used any special technique (e.g., streamline relaxation) to
address the changing character of the operator as α increases. Thus, as expected, the
final convergence factors degrade as the nonlinearity increases in dominance, but they
remain grid-independent. Though one might argue that the convergence factors in
the last column of Table 5.4 (α = 10 000) do not exhibit grid-independent convergence
factors, it is believed that grid-independent convergence factors are obtained once a
sufficiently small mesh size is reached.

Table 5.5 depicts the functional reduction factors, β
(l)
10 , as defined in (5.8) for dif-

ferent levels and strengths of nonlinearity. For all levels and strengths of nonlinearity,
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Linear Nonlinearity parameter α
Level Poisson 1 10 100 1 000 10 000

CF
(l)
10 CF

(l)
10 CF

(l)
10 CF

(l)
10 CF

(l)
10 CF

(l)
10

7 0.031 0.029 0.128 0.258 0.272 0.274
6 0.054 0.063 0.318 0.602 0.632 0.635
5 0.091 0.068 0.443 0.776 0.809 0.812
4 0.108 0.092 0.538 0.825 0.865 0.866
3 0.116 0.098 0.581 0.872 0.891 0.893
2 0.117 0.097 0.595 0.893 0.926 0.928
1 0.117 0.090 0.599 0.908 0.944 0.946
0 0.108 0.096 0.599 0.918 0.955 0.957

Table 5.4

Convergence factors, CF
(l)
10 , for the same experiments as in Table 5.3

Linear Nonlinearity parameter α
Poisson 1 10 100 1 000 10 000

Level β
(l)
10 β

(l)
10 β

(l)
10 β

(l)
10 β

(l)
10 β

(l)
10

7 — — — — — —
6 1.95 1.95 1.91 1.88 1.88 1.88
5 1.97 1.98 1.96 1.93 1.92 1.93
4 1.99 1.99 1.99 1.97 1.96 1.96
3 2.00 2.00 2.00 1.99 1.98 1.98
2 2.00 2.00 2.00 2.00 1.99 1.99
1 2.00 2.00 2.00 2.00 1.98 1.98
0 2.00 2.00 2.00 2.00 1.97 1.97

Table 5.5

Functional reduction factors, β
(l)
10 , based on functional norms reported in Table 5.3

we observe functional reduction factors of about 2, which is consistent with the use
of continuous piecewise-linear finite elements.

Next, we analyze error reduction factors as we step through the different levels.
Consider again the same FOSLS formulation, levels, and number of V-cycles per level
used for the results in Table 5.3. We now compare the numerically obtained solution,

p2
lh, with the exact solution, p = x2 + y2, for each level and for each α (α = 1,

10, 100, 1 000, and 10 000), measured by the H1 and L2 norms. In Figure 5.1, we
depict the H1-error norm versus the number of elements. The L2-error norm versus
the number of elements is shown in Figure 5.2. Since we use a regular refinement
strategy to step through the levels (with each refinement, we increasing the number
of elements by a factor of 4 and, therefore, halve our mesh size), reporting on the
number of elements is the same as reporting on the mesh size. For both figures,
we use a logarithmic scale for the number of elements (abscissa) and the error-norm
(ordinate). For each α, the H1-error norm (or L2-error norm) is measured for each
level and indicated with marks, which are connected in such a way that each line
displays one nested iteration process for some α. Additionally, we include in Figure
5.1 a supporting line with slope 1 and in Figure 5.2 two supporting lines with slopes
1 and 2. These supporting lines should help retrieving an estimate of the error-
reduction factors directly out of the graph. Note that a slope of s in Figures 5.1
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and 5.2 means that
‖p−p2

lh‖

‖p−p2
l+1h‖

≈
(
2l+1h
2lh

)s

= 2s. Hence, slope s translates to an

error-reduction factor of 2s. Analyzing Figure 5.1, the error-reduction factor from
one level to the next is about 2 for every α. This coincides well with the reported

functional reduction factors, β
(l)
10 , in Table 5.5, and are considered to be optimal for

linear finite elements. From the excellent agreement of the FOSLS functional norm
and the H1-error reduction factors, we conclude that the functional in (5.10) appears
to be H1-elliptic. This numerical observation coincides with the theoretical results of
the companion paper [22], where we establish H1-ellipticity of the FOSLS functional
based on the Navier-Stokes equations and anticipate it for other quasilinear PDEs of
that class.

In Figure 5.2, we display the L2-error norms in the same way as the H1-error
in Figure 5.1. We now observe strongly deteriorating L2-error reduction factors with
increasing strength of nonlinearity. One possible explanation for this might involve
the Nitsche Trick (cf. [8]), which relates two different error norms to each other
(in this case, the H1-error norm and the L2-error norm). Its proof is based on the

assumption that the exact solution, x2
lh
∗ is found on each level. With a nested iteration

scheme, we compute on each level only an approximation to x2
lh
∗ ; here, for example,

we approximate x2
lh
∗ by x2

lh
10 . In separate experiments, we have been able to recover

near-optimal L2-error reduction factors by using 100 V-cycles instead of 10 on each
level. This shows that better algebraic accuracy is needed on each level to control
the L2-error. This should be expected since greater L2 accuracy is obtained from
the discretization on each level, so nested iteration should have to work harder than
for H1 accuracy to achieve it. Development of effective criteria for a nested iteration
strategy that efficiently produces small H1 and L2 errors is still an open question.

5.4. Kovaszany Flow. While system (5.9) provides an important problem to
test the behavior of the algorithm, our ultimate goal is to solve the Navier-Stokes
equations. For concreteness, we focus on the steady-state incompressible Navier-
Stokes equations in velocity-pressure formulation given as follows:

−
1

Re
∆u+ u · ∇u+∇p = 0 in Ω,

∇· u = 0 in Ω.
(5.11)

Velocity vector variable u = (u1, u2)
t and pressure scalar variable p are non-

dimensionalized. Re denotes the Reynolds number defined as Re = (UrefL)/ν, where
L is a reference length, Uref a reference velocity, and ν the kinematic viscosity (see
[18]). Note that the source terms in this system are all zero. We could easily in-
corporate nonzero terms, but choose this simplification instead because our primary
focus is on the algebraic solver and because inhomogeneities are incorporated in the
boundary conditions in any case.

To obtain a first-order system from (5.11), we introduce a new velocity-flux tensor
variable, U = (Ui,j)2×2 = (∂uj/∂xi)2×2 = ∇u

t. (See [1] for details on the FOSLSiza-
tion of equations (5.11).) We thus obtain the following first-order velocity-flux form
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of the Navier-Stokes equations:

∇ut −U = 0 in Ω,

−
1

Re
(∇·U)t + Utu+∇p = 0 in Ω,

∇· u = 0 in Ω,

2

Re
∇×U = 0 in Ω.

(5.12)

The difference between this system and that proposed in [1] is the factor of 2 in the
last equation and the missing trace term, ∇tr(U). The additional factor is a simple
weighting of this equation that, by our empirical observations, results in slightly
better numerical results. Concerning the trace term, because of the incompressibility
condition expressed by ∂xu1 + ∂yu2 = U11 + U22 = 0, we are able to eliminate one
of the variables by setting U11 = −U22, which in turn enforces ∇tr(U) = 0 and
therefore makes this trace equation unnecessary. Of course, system (5.12) offers but
one approach to reducing the second-order problem to first order. Other choices are
given, for example, in [3] and [18]. In any case, the solution of our first-order system
is the minimizer of the least-squares functional given by

F(u,U, p ; g) = ‖∇ut −U‖
2

0,Ω
+ ‖ −

1

Re
(∇·U)t +Utu+∇p‖

2

0,Ω

+ ‖∇· u‖
2

0,Ω
+ ‖

2

Re
∇×U‖

2

0,Ω
, (5.13)

where g = (0,0, 0) is the combined right side of the equations in (5.12).
As a model problem for our algorithm applied to the Navier-Stokes equations,

we turn to Kovasznay flow. This particular system is named after L.I.G. Kovasznay,
who derived in [19] an analytic solution for the steady-state incompressible Navier-
Stokes equations for a special laminar flow problem. We choose this problem as a
test case, since it is posed on a rectangular domain, Ω = [−.5, 2.0]x[−.5, 1.5], has a
smooth solution, and exhibits no singularities. Knowledge of the analytical solution
allows us to impose the exact boundary conditions strongly. Actually, for accurate
error estimates, we need not appeal to an exact analytic solution, since the FOSLS
functional itself provides naturally a sharp error measurement. But use of an exact
solution gives a somewhat tighter estimate of any error measure we choose to use.

In Table 5.6, we give the convergence history using continuous piecewise-quadratic
functions for the Kovasznay flow problem with a Reynolds number of 40. For the
cycling strategy, we choose to use quadratic finite elements for the fine-grid corrections
and linear finite element subspaces for the coarse-grid process (see the second approach
of Section 4.3). The grids are based on a regular triangulation of Ω by 16 elements and
41 nodes. Again, we use a nested iteration approach to step through the levels. On
each level, we apply 10 V (0, 4)-PML cycles, with Gauß-Seidel as smoother. For each

level, we report on final functional norm values, F(x2
lh
10 ; g)

1
2 , the functional reduction

factor, β
(l)
10 , defined as in (5.8), and the final convergence factor, CF

(l)
10 , defined as in

(5.4).
The results in Table 5.6 show that we also obtain approximate grid-independent

convergence factors for the FOSLS formulation of the Navier-Stokes problem and
nearly optimal finite element approximation properties. The fact that the functional

reduction factor, β
(l)
10 , is hovering around 3.7 instead of an optimal factor of 4 for
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Level Nodes/Elements Functional norm Functional red- CF
(l)
10

l F(x2
lh
10 ; g)

1
2 uction factor β

(l)
10

5 41/16 4.212367e+00 0.713
4 145/64 1.635538e+00 2.57 0.788
3 545/256 4.854122e-01 3.37 0.854
2 2 113/1 024 1.379767e-01 3.51 0.880
1 8 321/4 096 3.760596e-02 3.67 0.892
0 33 025/16 384 9.993762e-03 3.78 0.897

Table 5.6

Convergence summary for Kovasznay flow with Re = 40, a nested-iteration PML approach with
10 V (0, 4)-cycles per level, Gauß-Seidel as smoother, and quadratic finite elements.

quadratic Lagrange finite elements is probably due to mostly the approximations not
yet being in the asymptotic range. Note the increase in these factors with decreasing
h. (Our tests that increased the number of V -cycles showed only marginal increase
in the functional reduction factors.)

Though we report here only on results for Re = 40 (the classical setting for the
Kovasznay flow), we have done experiments for much higher Reynolds numbers. We
obtained similar results, although the convergence factors naturally degraded since
the PML scheme was not designed for convection-dominated problems.
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