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Abstract. The projection multilevel method can be an efficient solver for systems of nonlinear
partial differential equations that, for certain classes of nonlinearities (including least-squares formula-
tions of the Navier-Stokes equations), requires no linearization anywhere in the algorithm. This paper
provides an abstract framework and establishes optimal V-cycle convergence theory for this method.
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1. Introduction. The projection multilevel method (PML; cf. [8]) is designed to
solve discretized nonlinear partial differential equations (PDEs) by formulating coarse
levels in a way that is guided by the discretization methodology. The Rayleigh-Ritz
form of PML is designed as an efficient multilevel method for minimizing nonquadratic
functionals that come, for example, from variational principles for nonlinear PDEs. For
some types of PDEs, including those with nonlinear terms of form u∂v (e. g., the Navier-
Stokes equations), PML can be implemented with no need for linearization anywhere
in the algorithm. The ability of PML to treat the nonlinearity directly on all levels is
especially important for problems with small basins of attraction about the solution, as
exemplified by Navier-Stokes equations with high Reynolds numbers.

Numerical performance of the PML method treated here is illustrated in [6] for
Poisson’s equation and so-called Kovasznay flow, which is a particular case of the Navier-
Stokes equations with known solution. The results in [7] establish optimal two-grid
convergence theory for PML in a general setting. The purpose of the present paper is to
extend these results to optimal V-cycle theory. By virtue of the method’s faithfulness to
the minimization principle, the abstract theory is a subtle but otherwise relatively simple
generalization of classical multigrid V-cycle results [9]. The subtlety comes primarily
from our affine representation of the discrete problem and the error decomposition that
we use in the analysis. Application of our abstract theory to the Navier-Stokes equations
rests primarily on the properties of the least-squares functional established in [7].

We begin in Section 4 by developing an abstract framework for PML and a theory
for optimal V-cycle convergence applied to a general minimization principle. We verify
the applicability of two relaxation schemes in this general setting in Section 3. The
applicability of this abstract PML method is illustrated by considering a least-squares
formulation of the Navier-Stokes equation in Section 4.

2. Abstract Setting. Let H be an infinite-dimensional Banach space with norm
‖ · ‖1 (suggesting but not necessarily requiring H to be an H1-type Hilbert space).
Suppose that F is a continuous functional with an isolated minimum at the center,
x∗ ∈ H, of a ball of radius r > 0 :

F : B(x∗; r) :=
{
x ∈ H : ‖x − x∗‖1 < r

}
→ R
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is continuous and has a unique minimum on B(x∗; r) at x∗. We write this last assumption
as

x∗ = argmin
x∈B(x∗;r)

F (x). (2.1)

As a general discretization of (2.1), consider fixed x ∈ B(x∗; r) and a finite-
dimensional subspace, Sh ⊂ H. For any fixed x ∈ B(x∗; r), assume that there exists a
unique minimizer of F (x+xh) over xh ∈ Sh for which x+xh ∈ B(x∗; r). More precisely,
define

Bh
x(x∗; r) :=

{
xh ∈ Sh : x + xh ∈ B(x∗; r)

}
and assume that

x
(h)
∗ := x + argmin

xh∈Bh
x(x∗;r)

F (x + xh) (2.2)

(which exists by continuity and compactness) is unique and is B(x∗; r) (not its closure).
Our aim is to develop a PML method that treats minimization problem (2.2) efficiently.
(Normally, we would take x = 0 in (2.2) so that our target problem is to minimize
F (xh), and this is indeed what we typically mean for the finest level. However, this
more general affine form of (2.2) that we take here instead facilitates induction to coarser
levels.)

To this end, consider a nested sequence of m ≥ 1 subspaces of Sh:

S2mh ⊂ S2m−1h ⊂ · · · ⊂ S2h ⊂ Sh.

Assume that (2.2) holds for each of these spaces for any fixed x ∈ B(x∗; r):

x
(2kh)
∗ := x + argmin

x2kh∈B2kh
x (x∗;r)

F (x + x2kh) (2.3)

is unique and in B(x∗; r), k = 0, 1, . . . , m.

A Notational Subtlety. It is important to keep in mind that no change in x on grid h

can change x
(h)
∗ :

x + xh + argmin
yh∈Bh

x+xh (x∗;r)

F (x + xh + yh) = x + argmin
yh∈Bh

x(x∗;r)

F (x + yh),

for any xh ∈ Sh. This is also true on coarser levels:

x + x2h + argmin
y2h∈B2h

x+x2h (x∗;r)

F (x + x2h + y2h) = x + argmin
y2h∈B2h

x (x∗;r)

F (x + y2h),

for any x2h ∈ S2h. Simply said, the solution does not depend on the initial guess.
This observation implies that the coarse-level PML computations do not change the
’oscillatory’ component of the error decomposition we introduce below. This property
simplifies analysis of PML schemes that only use relaxation on the coarse-to-fine phase
of the cycle. Note, however, that a change to x on a given level can (and should!)
change coarser-level solutions:

x + xh + argmin
x2h∈B2h

x+xh (x∗;r)

F (x + xh + x2h) �= x + argmin
x2h∈B2h

x (x∗;r)

F (x + x2h)

2



in general.

Our abstract PML method is based on an abstract relaxation scheme applied to
(2.3), which we denote by

x2kh ← G2kh
x (x2kh), k = 0, 1, · · · , m − 1.

(Note the dependence of G2kh
x on x.) Assume that the coarsest grid uses an exact

solver. (We only really need assume that the coarsest-grid relaxation process yields a
fixed reduction in the error for (2.3) with k = m, but we make this assumption for
convenience.) We use a V(1,0) cycle, which is represented recursively as follows: given
fixed x ∈ B(x∗; r) and initial guess xh = 0 to the argmin in (2.2), compute a correction
by first solving the coarsest-grid problem according to

PML2mh(x) = argmin
x2mh∈B2mh

x (x∗;r)

F (x + x2mh),

and define the successively-finer-grid relaxation steps by

PML2k−1h(x) = G2k−1h
x (PML2kh(x)), k = m, m − 1, · · · , 1.

That is, we start on the coarsest grid with an exact solve, the result of which is used on
the next finer grid as the initial guess for one relaxation step applied to determining the
argmin in (2.3) with k = m− 1; the result is used as the initial guess for one relaxation
step applied to determining the argmin in (2.3) on the next finer level (k = m− 2); and
the process is repeated until the finest level is processed. Note that PML2kh(x) ∈ S2kh

for each k, that the result of the V-cycle (PMLh(x)) is just a correction to x, and that
the final corrected x is obtained via

x ← x + PMLh(x).

Note also that the next cycle of PML would begin with this corrected x and, again, an
initial guess of xh = 0.

To analyze this algorithm, we first introduce some additional notation. Suppose an
approximation in Bh

x(x∗; r) to the argmin of (2.2) is given:

xh ≈ argmin{F (x + xh) : xh ∈ Bh
x(x∗; r)}.

This approximation could come from combining the effects of relaxation on a combi-
nation of grid levels, as our PML scheme does. In practice, we would typically keep
x and its correction on coarser grids separate to avoid the severe expense of interpo-
lating the correction to the finest grid every time we relax on a coarser one. But, to
monitor the evolving error theoretically, it is helpful to combine x and xh even while
xh is evolving on a coarse level (e.g., xh = PML2kh(x)). We thus denote the evolv-
ing error by eh = x + xh − x

(h)
∗ . Note that eh and xh are in Sh even though x and

x
(h)
∗ may not be (hence, the parentheses in x

(h)
∗ ). To measure the size of this error

in x + xh for fixed x and given approximation xh, we use what we call the F -metric
given by F (x + xh) − F (x(h)

∗ ), which is zero when and, by assumption, only when
argmin{F (x + xh + yh) : yh ∈ Bh

x+xh(x∗; r)} (i.e., x + xh = x
(h)
∗ or eh = 0).

To analyze the error in x + xh, we decompose it into coarse-level and fine-level
components as follows:

eh = sh + th, sh = argmin
−sh∈B2h

x (x∗;r)

F (x + xh − sh), th = x + xh − (x(h)
∗ + sh). (2.4)
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Note that this also decomposes the evolving approximation: x + xh = x
(h)
∗ + sh + th.

Moreover, sh and th are in Sh and, with x + xh = x
(h)
∗ + sh + th fixed, we have

x
(2h)
∗ = x

(h)
∗ + th. These relations yield the following F -metric decomposition (obtained

by simply adding and subtracting F (x(2h)
∗ ) = F (x(h)

∗ + th)):

F (x + xh) − F (x(h)
∗ ) = [F (x + xh) − F (x(2h)

∗ )] + [F (x(h)
∗ + th) − F (x(h)

∗ )]. (2.5)

Both bracketed terms are nonnegative because, by definition,

F (x + xh) ≥ F (x(2h)
∗ ) = F (x(h)

∗ + th) ≥ F (x(h)
∗ ).

The first term on the right of (2.5) represents coarse-grid error, which we assume by
induction is reduced by PML coarse-grid cycling. The second term can be thought of
as oscillatory error that relaxation presumably reduces. More precisely, the Smoothing
Property assumed below can be interpreted as bounding error reduction in proportion
to F (x(h)

∗ + th) − F (x(h)
∗ ), which is the size of th as measured by the F -metric. Our

first theorem in effect shows that these reductions do not substantially conflict and thus
combine to yield optimal convergence of the PML cycle.

To confirm optimal V-cycle convergence, we impose what we show later is a natural
smoothing property on relaxation. In fact, it is a straightforward generalization of the
condition introduced in [9]. We describe this property here only on grid h, although we
assume that the identical relation holds on all coarser levels.

Smoothing Property. Assume that there exists an r1 ≤ r such that

Gh
x : Bh

x(x∗; r1) → Bh
x(x∗; r),

for any fixed x ∈ B(x∗; r), and that there exists a γ < 1 such that

F (x + Gh
x(xh)) − F (x(h)

∗ ) ≤ [F (x + xh) − F (x(2h)
∗ )] + γ[F (x(h)

∗ + th) − F (x(h)
∗ )],

(2.6)

for any fixed x ∈ B(x∗; r) and for all xh ∈ Bh
x(x∗; r1). (Compare with (2.5).)

We need to impose an additional property on F that holds, for example, when the
associated metric is equivalent to ‖ · ‖2

1 (cf. [7]).

Quasi-Monotonicity Property. Assume that there exists an r0 ≤ r1 such that
F (x) < F (y) for all x ∈ B(x∗; r0) and y ∈ B(x∗; r) − B(x∗; r1).

Theorem 1. Assume that the Smoothing Property holds on all levels and that the
Quasi-Monotonicity Property also holds. Then, for any x ∈ B(x∗; r0), the corrected x

remains in B(x∗; r1) and converges optimally to x
(h)
∗ in the F -metric:

F (x + PMLh(x)) − F (x(h)
∗ ) ≤ γ(F (x) − F (x(h)

∗ )).

Proof. We first argue that if x ∈ B(x∗; r0), then all PML iterates must be such that
the corrected x remains in B(x∗; r1). First note that x + PML2mh(x) ∈ B(x∗; r) and
F (x+PML2mh(x)) ≤ F (x) by definition, so the Quasi-Monotonicity Property confirms
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that x + PML2mh(x) ∈ B(x∗; r1). The Smoothing Property thus allows us to conclude
that

x + PML2m−1h(x) = x + G2m−1h(PML2mh(x)) ∈ B(x∗; r)

and

F (x + PML2m−1h(x)) ≤ F (x),

so the Quasi-Monotonicity Property also confirms that x + PML2m−1h ∈ B(x∗; r1).
Continuing in this way to finer levels shows that x + PMLh(x) (the corrected x) is in
B(x∗; r1).

It remains to prove the convergence bound, which we do by induction on the number
of levels, m. This bound clearly follows when m = 1 because the first term on the right
of (2.6) is zero by the assumption that the coarsest-grid uses an exact solver. Assuming
that the bound is true for m = m0 − 1 for some m0 ≥ 2, we prove now that it must be
true for the case of m = m0 levels. Since stopping the V-cycle at level 2h for this case
actually corresponds to the case of m0 − 1 levels, our induction hypothesis translates to
the assumption that

F (x + PML2h(x)) − F (x(2h)
∗ ) ≤ γ(F (x) − F (x(2h)

∗ )). (2.7)

But the definition of PMLh(x) and property (2.6) imply that

F (x + PMLh(x)) − F (x(h)
∗ )

= F (x + Gh
x(PML2h(x))) − F (x(h)

∗ )

≤ [F (x + PML2h(x)) − F (x(2h)
∗ )] + γ[F (x(h)

∗ + th) − F (x(h)
∗ )].

Appealing now to induction hypothesis (2.7) and decomposition (2.5) proves the result.

Nearness Assumption. For a typical fine-grid problem, x would be in Sh and would
in fact represent the current approximation to the minimizer of F (xh). To ask that
x be close to x∗ for this case, then, implicitly assumes that h must be so small that
Bh

x(x∗; r0) �= ∅ or, equivalently, that Bh
0 (x∗; r0) = B(x∗; r0) ∩ Sh �= ∅.

3. Relaxation. The objective here is to establish the Smoothing Property for two
specific relaxation schemes. We limit this development to grid h only because treatment
of the coarser levels is identical.

Assume now that H is an H1 Hilbert space equipped with L2 inner product < ·, · >
and H1 norm ‖ · ‖1, and that F is twice-continuously differentiable on B(x∗; r). Let
∇hF (x) denote the discrete gradient of F at x ∈ B(x∗; r), defined as the unique element
of Sh satisfying

F ′(x)[yh] =< ∇hF (x), yh >, ∀yh ∈ Sh.

Define the discrete L2 norm of F ′′(x), x ∈ B(x∗; r), by

‖F ′′(x)‖h = sup
0 �=yh∈Sh

∣∣F ′′[yh, yh]
∣∣

<yh, yh>
.
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Our two relaxation schemes are defined in terms of Gh
x as follows.

Steepest Descent Iteration. This method uses the discrete gradient as the descent direc-
tion and the optimal step size for which the iterate remains in B(x∗; r):

Gh
x(xh) ≡ xh − s∇hF (x + xh),

where

s = argmin{F (x + xh − s∇hF (x + xh)) : s ∈ R � x + xh − s∇hF (x + xh) ∈ B(x∗; r)}.

Nonlinear Richardson Iteration. This method also uses the discrete gradient as the
descent direction, but chooses a fixed step size based on the discrete norm of F ′′ and a
sufficiently small fixed damping parameter, ω > 0:

Gh
x(xh) ≡ xh − ω

‖F ′′(x + xh)‖h
∇hF (x + xh).

Similar to what we imposed on the discretization, here we assume that these re-
laxation schemes are well defined and remain in Bh

x(x∗; r) provided xh ∈ Bh
x(x∗; r1).

Specifically, we assume, for steepest descent, that its argmin is attained so that
x+xh − s∇hF (x+xh) stays in Bh

x(x∗; r) and, for nonlinear Richardson, that its iterate
remains in Bh

x(x∗; r). (By imposing continuity on F ′′′, the restriction that ω > 0 be
sufficiently small could be relaxed to the assumption that ω < 1.)

Next, we introduce general conditions on our problem and finite element space that
allow us to establish the Smoothing Property. Rather than being specific here, we
simply assume that the property holds in the bilinear case.

To this end, let a : H × H → R be a bilinear form that satisfies the following
H1-equivalence property:

c‖y‖2
1 ≤ a(y, y) ≤ C‖y‖2

1, (3.1)

for all y ∈ H and for some constants c and C. (We use c and C as generic constants
that may change meaning with each occurrence, but are independent of h and other
obvious quantities.) Assume further that, for every yh ∈ Sh, there exists a y2h ∈ S2h

such that

a(yh − y2h, yh − y2h) ≤ δ
‖∇ha(yh, yh)‖2

‖a′′(yh, yh)‖h
, (3.2)

where δ is a constant that does not depend on yh or h. We emphasize that a′′(yh, yh)
here denotes the second Fréchet derivative of a(yh, yh) as a function of yh ∈ Sh. This
bound follows from standard finite element theory (cf. [3, 4, 5]) for the case that a
corresponds to a linear H2-regular PDE and Sh is a conventional finite element space
associated with a quasi-uniform grid.

In particular, we assume that (3.2) holds when a is the bilinear form whose discrete
gradient agrees with ∇hF (x) for fixed x ∈ B(x∗; r). To articulate this assumption, first
note that optimality of x

(h)
∗ implies that ∇hF (x(h)

∗ ) = 0, so we can write

< ∇hF (x), yh >=< ∇hF (x) −∇hF (x(h)
∗ ), yh >= F ′′(x̃)[x − x

(h)
∗ , yh],
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for some x̃ ∈ B(x∗; r) and for all yh ∈ Sh. Now define

a(yh, yh) =
1
2
F ′′(x̃)[yh, yh].

Remembering that x − x
(h)
∗ ∈ Sh, we may then take yh = x − x

(h)
∗ and conclude that

∇ha(x − x
(h)
∗ , x − x

(h)
∗ ) = ∇hF (x),

as intended.
Here, we implicitly assume that this particular choice for a satisfies (3.1). This

H1-equivalence property is exhibited for the class of PDEs that we have in mind, as
confirmed for the Navier-Stokes example of the next section by Theorem 1 in [7]. The
additional assumption expressed in (3.2) holds when the PDE is H2 regular, which
follows for our Navier-Stokes example by what we imposed on the domain.

We collect these assumptions on our functional as follows.

Functional Properties. Assume that

c‖y‖2
1 ≤ F ′′(x)[y, y] ≤ C‖y‖2

1, (3.3)

for all x ∈ B(x∗; r) and y ∈ H, and that there exists a constant, δ, such that

F ′′(x̃)[x − x
(h)
∗ − y2h, x − x

(h)
∗ − y2h] ≤ δ

‖∇hF (x)‖2

‖F ′′(x̃)‖h
, (3.4)

for all x ∈ B(x∗; r), for some x̃ ∈ B(x∗; r), and for some y2h ∈ S2h.

We can now easily establish the following simpler estimate.

Lemma 3.1. Assume that the Functional Properties hold. Then there exists a
constant, η > 0, independent of h and x ∈ B(x∗; r), such that

‖∇hF (x)‖2

‖F ′′(x)‖h
≥ η

(
F (x(h)

∗ + th) − F (x(h)
∗ )

)
.

Proof. Let y2h be the element of S2h guaranteed to satisfy (3.4). Then optimality
of x

(h)
∗ + th with respect to coarse-grid correction of x and a Taylor series expansion

using the fact that ∇hF (x(h)
∗ ) = 0 yield

F (x(h)
∗ + th) − F (x(h)

∗ ) ≤ F (x − y2h) − F (x(h)
∗ )

=
1
2
F ′′(x̂)[x − x

(h)
∗ − y2h, x − x

(h)
∗ − y2h], (3.5)

for some x̂ ∈ B(x∗; r). Equivalence bound (3.3) shows that

F ′′(x̂)[x − x
(h)
∗ − y2h, x − x

(h)
∗ − y2h] ≤ C

c
F ′′(x̃)[x − x

(h)
∗ − y2h, x − x

(h)
∗ − y2h] (3.6)

and, similarly, that

‖F ′′(x)‖h ≤ C

c
‖F ′′(x̃)‖h. (3.7)
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The lemma now follows from (3.4)-(3.7) with η = 2c2

δC2 .

This result sets the stage for establishing optimal convergence of PML based on
either relaxation scheme.

Theorem 2. Assume that the Functional Properties hold. Then both steepest
descent and nonlinear Richardson satisfy the Smoothing Property.

Proof. It is enough to prove that nonlinear Richardson iteration satisfies this prop-
erty because, by definition, steepest descent cannot give a larger functional value. To
this end, first note that we may assume that xh = 0 without loss of generality, for
otherwise we simply replace x by x + xh. We now use Taylor series to conclude that

F (x + Gh
x(xh)) − F (x(h)

∗ )

= F
(
x − ω

‖F ′′(x)‖h
∇hF (x)

)
− F (x(h)

∗ )

= F (x) − F (x(h)
∗ ) − ω

‖F ′′(x)‖h
F ′(x)[∇hF (x)]

+
ω2

‖F ′′(x)‖2
h

F ′′(x̃)[∇hF (x),∇hF (x)],

for some x̃ ∈ B(x∗; r). Now, using bound (3.7) with x and x̃ reversed, choosing ω ≤
c/(2C), and appealing to relation F ′(x)[∇hF (x)] = ‖∇hF (x)‖2

, we thus have

F (x + Gh
x(xh)) − F (x(h)

∗ ) ≤ F (x) − F (x(h)
∗ ) − ω‖∇hF (x)‖2

2‖F ′′(x)‖h
.

The result now follows with γ = 1 − ηω/2 from Lemma 3.1 and decomposition (2.5).

4. Navier-Stokes Example. We introduce the least-squares formulation of the
Navier-Stokes equations here to provide a concrete example for the abstract setting
of the previous sections. Consider the first-order velocity-flux formulation of these
equations (see [1] and [2]) represented by

L(x) = g :=



∇ut − U = 0 in Ω,

−(∇· U)t + ∇p + Re Utu = f in Ω,

∇· u = 0 in Ω,

∇× U = 0 in Ω,

∇
(
trU

)
= 0 in Ω,

(4.1)

where f ∈ L2(Ω)n and domain Ω ⊂ Rn (n = 2, 3) is either convex polygonal or has a
C1,1 boundary, ∂Ω. Without loss of generality, we take the boundary conditions to be
u = 0 and n × U = 0 on ∂Ω, where n is the outward unit normal on ∂Ω. Writing the
unknowns as x = (u,U, p), a minimization principle can then be obtained by taking
the L2 norm of each interior equation:

F(x; g) = ‖L(x) − g‖2

0,Ω
, x ∈ VVV, (4.2)

where g = (0, f , 0,0,0)T and the space is defined by

VVV = H1
0 (Ω)n × V0 × (H1(Ω)/R),
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with

V0 = {U ∈ H1(Ω)n2
: n × U = 0 on ∂Ω}.

Our target differential problem is then to minimize F(x; g) in (4.2) over VVV.
In many practical examples, most solutions of (4.1) are isolated in the sense that

neighborhoods exist in which the solutions are unique. Assume, therefore, that we are
in a closed neighborhood, B(x∗, r), of an isolated solution, x∗ ∈ VVV, to (4.1), that is, a
global minimum of (4.2), for which F(x∗; g) = 0. The neighborhood is taken to be an
H1-ball around x∗ of radius r > 0 defined as

B(x∗; r) :=
{
x ∈ VVV : ‖x − x∗‖1,Ω < r

}
,

where

‖x‖2

1,Ω
≡ ‖u‖2

1,Ω
+ ‖U‖2

1,Ω
+ ‖p‖2

1,Ω
.

For the discretization, consider a quasi-uniform finite element partition of Ω with
approximate mesh size h and let Hh(Ω) be the corresponding conforming finite element
subspace of H1(Ω) consisting of piecewise polynomials: a function in Hh(Ω) is con-
tinuous on Ω and polynomial within each element. Let Hh

0 (Ω) denote the subspace of
Hh(Ω) of functions that are zero on ∂Ω. Then define

Sh = Hh
0 (Ω)n × Vh

0 × (Hh(Ω)/R) ⊂ VVV,

with

Vh
0 = {Uh ∈ Hh(Ω)n2

: n × Uh = 0 on ∂Ω}.

The discrete problem is now to minimize F(x; g) in (4.2) over Sh.
Results established in [7] support the assumptions made in the previous sections on

this functional. In particular. letting F ′(x; g) and F ′′(x; g) denote the respective first
and second Fréchet derivatives of F(x; g), then Theorem 1 of [7] establishes continuity
and coercivity of F ′′(x; g): for small enough r > 0, there exist positive constants, c and
C, which depend only on Re, r, and Ω, such that

F ′′(x; g)[y, z] ≤ C‖y‖1,Ω‖z‖1,Ω (4.3)

and

c‖y‖2

1,Ω
≤ F ′′(x; g)[y,y], (4.4)

for any x ∈ B(x∗; r) and all y ∈ VVV. Theorem 2 of [7] establishes continuity and coercivity
of F(x; g): for small enough r > 0, there exist positive constants, c and C, which depend
only on Re, r, and Ω, such that

c‖x−x∗‖
2

1,Ω
≤ F(x; g) ≤ C‖x−x∗‖

2

1,Ω
, (4.5)

for all x ∈ B(x∗, r). Results in [7] also establish that the discrete problem has a
unique solution in B(x∗; r) provided r is small enough and that relaxation applied to
the discrete problem stays in B(x∗; r) provided the initial guess is close enough to the
discrete solution. These results confirm that this important example satisfies all of the
assumptions that we make in the abstract setting above.
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