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Abstract. A significant amount of the computational time in large Monte Carlo simulations of
lattice field theory is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant
finite difference discretizations of the Dirac operator present serious challenges for standard iterative
methods. For interesting physical parameters, the discretized operator is large and ill-conditioned,
and has random coefficients. More recently, adaptive algebraic multigrid (AMG) methods have been
shown to be effective preconditioners for Wilson’s discretization [1] [2] of the Dirac equation. This
paper presents an alternate discretization of the 2D Dirac operator of Quantum Electrodynamics
(QED) based on least-squares finite elements. The discretization is systematically developed and
physical properties of the resulting matrix system are discussed. Finally, numerical experiments are
presented that demonstrate the effectiveness of adaptive smoothed aggregation (αSA ) multigrid as
a preconditioner for the discrete field equations.
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1. Introduction. Quantum Chromodynamics (QCD) is the leading theory in
the Standard Model of particle physics of the strong interactions between color charged
particles (quarks) and the particles that bind them (gluons). Analogous to the way
that electrically charged particles exchange photons to create an electromagnetic field,
quarks exchange gluons to form a very strong color force field. Contrary to the electro-
magnetic force, the strong force binding quarks does not get weaker as the particles
get farther apart. As such, at long distances (low energies), quarks have not been
observed independently in experiment and, due to their strong coupling, perturbative
techniques, which have been so successful in describing weak interactions in Quantum
Electrodynamics (QED), diverge for the low-energy regime of QCD. Instead, hybrid
Monte Carlo (HMC) simulations are employed in an attempt to numerically predict
physical observables in accelerator experiments [6].

A main computational bottleneck in an HMC simulation is computation of the
so-called fermion propagator, another name for the inverse of the discrete Dirac op-
erator. This process accounts for a large amount of the overall simulation time. For
realistic physical parameter values, the Dirac operator has random coefficients and is
extremely ill-conditioned. The two main parameters of interest are the temperature
(β) of the background gauge field and the fermion mass (m). For small tempera-
ture values (β < 5), the entries in the Dirac matrix become extremely disordered.
Moreover, as the fermion mass approaches its true physical value, performance of the
community standard Krylov solvers degrades; a phenomenon known as critical slowing
down. As a result, the development of sophisticated preconditioners for computing
propagators has been a priority in the physics community for some time. Recently,
multilevel preconditioners like algebraic multigrid (AMG) have proved to be espe-
cially effective at speeding up simulation time [1] [2]. While these works have focused
mainly on the task of developing better iterative methods for traditional discretiza-
tions of the continuous Dirac operator, it is also important to investigate alternate
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discretizations as a way to decrease the computational cost of simulation. In [10], a
nonlocal approximation to the continuum normal equations is formulated using tra-
ditional finite difference techniques. In [7], the continuum equations are expanded in
an infinite set of Bloch wave functions, an approximation is obtained by restriction to
the lowest mode wave functions, which are very similar to the finite element functions
employed in this paper. This paper presents an alternate discretization of the Dirac
operator based on least-squares finite elements. The discretization is systematically
developed and physical properties of the resulting matrix system are discussed.

In the remainder of this section, we introduce the general continuum Dirac equa-
tion and its specific extensions to both QED and the full QCD theory. We then
formally describe the simplified 2D Schwinger model of QED, which is the focus of
the rest of this paper. In §2, we discuss the challenges presented by the discrete
Dirac equation, including traditional finite difference discretizations of the field equa-
tions and their undesirable properties. The least-squares discretization of the Dirac
equations is developed and several important properties of the resulting system are
discussed, including gauge covariance of the propagator, chiral symmetry, and the
problem of species doubling. In §3, we describe the use of an adaptive algebraic mul-
tilevel method as a preconditioner for the solution process. Finally, in §4, we make
some concluding remarks.

1.1. The Continuum Dirac Operator. The Dirac equation is the relativistic
analogue of the Schrödinger equation. Depending on the specific gauge theory, the
operator can take on several forms, the most general of which is given by

Dψ =
d∑

µ=1

γµ (∂µ − iAµ)ψ +mψ. (1.1)

Here, d is the problem dimension, γµ is a matrix coefficient, ∂µ is the usual partial
derivative in the xµ direction, m is the particle mass, and Aµ (x) is the gauge field
representing the force carriers. Operator D acts on ψ : Rd 7→ Cns ⊗ Cnc , a tensor
field (multicomponent wavefunction) describing the particle, where ns and nc are the
number of spin and color components, respectively. These symbols take on different
values and dimensions depending on the gauge theory. In full QCD, d = 4 (one time
and three spatial dimensions), γµ are the 4×4 anticommuting complex Dirac matrices,
and Aµ(x) ∈ su(3), the set of 3 × 3, traceless, Hermitian matrices that describe the
gluon fields. The unknown, ψ, is a 12-component wavefunction describing a single
fermion, with each component corresponding to a quark state of a specific color (red,
green, or blue), handedness (right or left), and energy (positive or negative). Here,
handedness, or helicity, is a characterization of a particle’s angular momentum relative
to its direction of motion [8]. Suppose that s represents, for instance, the state of a
quark being red, right-handed, and having positive energy. Then,

∫
V

|ψs|2dV

is the probability that the particle is red, right-handed, has positive energy, and can
be found in the space-time region V [8].

The Dirac equation is not restricted to the behavior of quarks. In general, it
can describe the behavior of any fermion, including electrons. Because of the consid-
erable complexity of the full physical model, when developing algorithms for QCD,



Least-Squares for QED 3

it is common practice to consider the simplified 2D Schwinger model of QED [1],
which models the interaction between electrons and photons. In this case, only two
spatial directions are considered: the particle wavefunction, ψ, has only two compo-
nents (right- and left-handed), and the photon field, Aµ (x), is a real-valued scalar.
Although it is a substantial simplification, the discrete Dirac operator associated with
the Schwinger model presents many of the same numerical difficulties found in the
full physical model.

1.2. Model Problem. Let the domain beR = [0, 1]×[0, 1], and let VC ⊂ H1(R)
be the space of complex-valued, periodic functions on R. We introduce the shorthand
notation ∇µ = (∂µ − iAµ) for the µth covariant derivative. The continuum Dirac
equation for the 2D Schwinger model with periodic boundary conditions is given by

D (A)ψ = [γ1∇x + γ2∇y +mI]ψ = f in R, (1.2)
ψ(0, y) = ψ(1, y) ∀y ∈ (0, 1),
ψ(x, 0) = ψ(x, 1) ∀x ∈ (0, 1),

where A (x, y) = [A1 (x, y) ,A2 (x, y)]t is the periodic real-valued gauge field, and
ψ (x, y) = [ψ

R
(x, y) , ψ

L
(x, y)]t ∈ V2

C
is the fermion field with ψ

R
and ψ

L
representing

the right- and left-handed particles, respectively. In 2D, the γ-matrices correspond to
the Pauli spin matrices of quantum mechanics. They are

γ1 =
[

0 1
1 0

]
, γ2 =

[
0 −i
i 0

]
. (1.3)

Note that (1.2) appears in matrix notation as

[
mI ∇x − i∇y

∇x + i∇y mI

] [
ψ

R

ψ
L

]
=
[
f

R

f
L

]
. (1.4)

A word on notation. In this paper, we use three different types of objects: con-
tinuum functions, finite element functions, and discrete vectors. Continuum functions
are represented by scripted and Greek symbols, as in A, f , and ψ. Finite element
functions are represented by the similar symbols, but with a superscript h, as in Ah,
fh, and ψh. Finally, discrete vectors appear with an underbar, as in A, f , and ψ.
Operators in the continuum are denoted by scripted symbols, as in D, while discrete
operators are represented by bold symbols, as in D. In any case, the nature of the
operator should always be clear from context.

2. The Discrete Dirac Operator. One computationally intensive part of a
QCD simulation is the repeated solution of linear systems of the form

D (A)ψ = f,

where D is a matrix version of the Dirac operator. The dependence on the discrete
gauge field, A, is emphasized here by the notation D(A). We omit showing this
dependence below when it is clear. Solution of systems of this type are needed both
for computing observables and for generating gauge fields with the correct probabilistic
characteristics [2]. In these processes, D must be inverted numerous times with many
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different right-hand sides and gauge configurations. Because the background fields
must be varied, the entries in the matrix themselves change throughout a simulation.

In the discrete setting, R is replaced by an n× n periodic lattice. Let NC be the
space of discrete complex-valued vectors, with values associated with the sites (nodes)
on the lattice. Then, the continuum wavefunction, ψ, becomes ψ = [ψ

R
, ψ

L
]t ∈ N 2

C
,

which specifies complex values of both the right- and left-handed components of
the fermion field at each lattice site. Similarly, the source term, f , becomes f =
[f

R
, f

L
]t ∈ N 2

C
. Let E be the space of discrete real-valued vectors, with values associ-

ated with the lattice links. The continuum gauge field, A, becomes A = [A1, A2]t ∈ E ,
where A1 specifies the values of the gauge field on the horizontal lattice links, and A2

specifies the values of the gauge field on the vertical lattice links.
Traditional discretization methods for the Dirac operator are based on covari-

ant finite differences (CoFD) [13]. Formulations of this type are problematic from a
computational perspective because they frequently introduce numerical instabilities
into the solution process, which are sometimes remedied by adding artificial stabi-
lization terms. Furthermore, the resulting discrete operator is not usually Hermitian
and positive definite. It is standard practice to solve the discrete form of the normal
equations,

D∗Dψ = D∗f, (2.1)

rather than treating the original system directly. This decreases the efficiency of the
simulation since D∗D has a larger stencil than D and a larger condition number. The
proposed discretization, based on least-squares finite elements, requires the solution
of linear systems that are Hermitian positive definite (HPD), but have smaller stencils
than CoFD produces.

2.1. The Least-Squares Discretization. We begin by formulating the solu-
tion to (1.2) in terms of a minimization principle:

ψ = arg min
ϕ∈V2

C

‖Dϕ− f‖20, (2.2)

where VC is the space of continuous, periodic, complex-valued, H1 functions defined
previously. Eq.(2.2) is equivalent to the weak form

Find ψ ∈ V2
C

s.t. 〈Dψ,Dv〉 = 〈f,Dv〉 ∀v ∈ V2
C
, (2.3)

where 〈 · , · 〉 is the usual L2 inner product. If ψ is sufficiently smooth, (2.3) is
formally equivalent to the weak form

Find ψ ∈ V2
C

s.t. 〈D∗Dψ, v〉 = 〈D∗f, v〉 ∀v ∈ V2
C
.

Thus, we can think of the least-squares formulation of the problem as being loosely
equivalent to solving the continuum normal equations, D∗Dψ = D∗f , by the Galerkin
method. Looking at the formal normal operator, D∗D, can often give insight into the
potential success of the least-squares formulation:
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D∗D =
[

mI −∇x + i∇y
−∇x − i∇y mI

] [
mI ∇x − i∇y

∇x + i∇y mI

]

=
[
m2I −∇2

x −∇2
y − i [∇x,∇y] 0

0 m2I −∇2
x −∇2

y − i [∇y,∇x]

]
.

In the Schwinger case, the formal normal has uncoupled Laplacian-like operators on
the main diagonal. The term, ∇2

x + ∇2
y, is known as the gauge Laplacian. Though

these are not simple constant coefficient operators (because they include the ran-
dom background fields), their Hermitian positive definite scalar character should lend
themselves to a more efficient treatment by multigrid methods.

The least-squares solution is obtained by restricting the minimization problem in
(2.2) and, thus, the weak form in (2.3), to a finite-dimensional space, Vh

C
⊂ VC . That

is, our solution must satisfy the weak form

Find ψh ∈
(
Vh

C

)2
s.t.

〈
Dψh,Dvh

〉
=
〈
fh,Dvh

〉
∀vh ∈

(
Vh

C

)2
. (2.4)

In analogy to the nodal setting, each elementary square on the lattice, or plaquette,
is represented by a quadrilateral finite element. We equate any f ∈ N 2

C
with the

bilinear function fh ∈
(
Vh

C

)2, where Vh
C

= span{φj}n
2

j=1 is taken to be the space
of periodic bilinear finite element functions over the complex numbers. Here, φj is
the usual bilinear nodal basis function associated with lattice site xj . Similarly, we
equate any A ∈ E with Ah ∈ Wh, where Wh is the Nédélec space over the real
numbers. In this context, the x-component of the gauge field, Ah1 , is represented by a
linear combination of edge functions associated with the horizontal lattice links. The
corresponding basis functions are constant along the link, and have support only in
the elements above and below. They take on the constant value 1.0 on the link, and
are linear in y, decaying to 0 at the opposite horizontal links in their shared elements
(see Figure 2.1a). The basis for the y-component, Ah2 , is similar, but oriented on the
vertical links (see Figure 2.1b) [9].

y

x

Fig. 2.1: Nédélec elements associated with a horizontal lattice link (left) and a vertical
lattice link (right).

The canonical maps between members of the discrete spaces NC and E and the
finite element spaces Vh

C
and Wh are straightforward. To see this, let
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f =



f1
...
fj
...
fn2

 and fh =
n2∑
j=1

bjφj .

Note that fj is the value of the discrete field at the jth lattice site, and the finite element
field, fh, takes on the value bj at the jth lattice site. For the two field descriptions
to be consistent, we must have fj = bj , j = 1, . . . , n2. Thus, the canonical mapping
between NC and Vh

C
is simply the bijective identity map between the entries of the

nodal vector and the coefficients of the finite element function. A similar analysis
shows that the same relationship holds between the gauge field edge values of A ∈ E
and the coefficients of the Nédélec representation of the gauge field Ah ∈ Wh.

We wish to use the least-squares formalism described above to approximate the
solution of (2.1). This process should accept source data, f , defined on the nodes, and
gauge field data, A, prescribed on the lattice links, and return the discrete wavefunc-
tion ψ, defined at the nodes. We do this by mapping f and A into their respective
finite element spaces , solving the weak formulation (2.4), and mapping the resulting
finite element solution back to N 2

C
. This process is summarized in Algorithm 1:

ALGORITHM 1: Least-Squares Dirac Solve
• Input: Gauge field A, source term f .
• Output: Wavefunction ψ.

1. Map A 7→ Ah ∈ Wh.
2. Map f 7→ fh ∈

(
Vh

C

)2.

3. Find ψh ∈
(
Vh

C

)2 s.t.
〈
Dψh,Dvh

〉
=
〈
fh,Dvh

〉
∀vh ∈

(
Vh

C

)2,
where A = Ah.

4. Map ψh 7→ ψ ∈ N 2
C

.

It is not immediately obvious how to best implement the weak form (2.4), which
appears in Step 3 of Algorithm 1. Using the nodal basis for Vh

C
, we can establish the

following matrix equation for this process:

Lu = Gb,

where the entries in vectors u and b are the coefficients in the expansions of ψh and
fh, respectively, and the elements of the matrices are given by

[L]j,k = 〈Dφk,Dφj〉 ,
[G]j,k = 〈φk,Dφj〉 .

Then, Step 3 in Algorithm 1 can be replaced by computing

u = L−1Gb.



Least-Squares for QED 7

and setting

ψh =
n2∑
j=1

ujφj .

Recalling the relationship between the entries of ψ and f , and the coefficients in the
expansion of ψh and fh, we see that Steps 2-4 in Algorithm 1 can be replaced by

ψ = L−1Gf. (2.5)

It is easy to see that, for m > 0, both L and G are nonsingular. For L, note that
by construction, L is Hermitian positive semi-definite and, if it were singular, then
the original Dirac operator would be singular on some element of

(
Vh

C

)2. Note also
that L is block diagonal. Specifically, L and G have the form

L :=

»
Lxx + Lyy + i(Lxy − Lyx) + m2M 0

0 Lxx + Lyy − i(Lxy − Lyx) + m2M

–
, (2.6)

G :=
[

mM Bx − iBy
Bx + iBy mM

]
, (2.7)

where

(Lxx)j,k =< ∇xφk,∇xφj > (M)j,k =< φk, φj >
(Lyy)j,k =< ∇yφk,∇yφj > (Bx)j,k =< φk,∇xφj >
(Lxy)j,k =< ∇xφk,∇yφj > (By)j,k =< φk,∇yφj >
(Lyx)j,k =< ∇yφk,∇xφj > .

G is a skew-Hermitian matrix shifted by mI. Thus, all eigenvalues of G are of the
form m+ is for some s ∈ R.

2.2. Gauge Covariance of the Fermion Propagator. A desirable property
of any QED (or QCD) theory is that the fermion propagator must transform covari-
antly under local gauge transformations. These local transformations can be thought
of as redefining the coordinate system of the background gauge field at different points
in space. In full QCD, for instance, applying a gauge transformation to wavefunction
ψ at position x changes the color reference frame at that particular point. A trivial
example would be if the roles of blue and red particles where switched at one or several
points in the domain.

Suppose we have a fermion field, ψ, defined in a color reference frame, C. Now
suppose we are given a gauge transformation, Ω (x) ∈ SU(3), the set of 3× 3, unitary
matrices, with determinant 1. Suppose the field is transformed into a new reference
frame, C̃, according to ψ 7→ Ω (x)ψ. Propagator D−1 transforms covariantly if, given
Ω (x), it is possible to specify a modified propagator, D̃−1, such that applying D̃−1

to a field in C̃ is equivalent to applying the original propagator to the field in C and
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then transforming the result to C̃. In other words, given Ω (x), we must be able to
specify D̃−1 such that

D̃−1Ω (x)ψ = Ω (x)D−1ψ.

It should not be surprising that the correct transformation of D−1 requires mod-
ifying the background gauge fields that the Dirac operator is built upon. It is helpful
to look at an example of this concept in the 2D Schwinger model of QED, where the
gauge transformation comes from U(1), that is, Ω (x, y) is a complex scalar with unit
magnitude.

Example 2.1. Consider the continuum 2D Schwinger model. From (1.1), the
Dirac operator is

D = [γ1∇x + γ2∇y +mI] =
[

mI ∇x − i∇y
∇x + i∇y mI

]
,

where ∇x and ∇y are the covariant derivative in the x and y directions, respectively.
Let Ω (x) = eiθ(x,y) be a transformation from the gauge group, U(1). Here, θ is a real-
valued, periodic, continuous function in H1. We denote the space of such functions by
VR ⊂ VC . We want to show that, given transformation Ω, we can modify the covariant
derivative operators, ∇x, ∇y, so that the propagator, D−1, transforms covariantly.
To see this, set

eiθ [γ1∇x + γ2∇y +mI]−1
ψ = ζ,

implying

ψ = [γ1∇x + γ2∇y +mI] e−iθζ,
= γ1∇x

(
e−iθζ

)
+ γ2∇y

(
e−iθζ

)
+me−iθζ,

= γ1 (∂x − iA1)
(
e−iθζ

)
+ γ2 (∂y − iA2)

(
e−iθζ

)
+me−iθζ,

= e−iθ [γ1 (∂x − i{A1 + θx}) + γ2 (∂y − i{A2 + θy}) +mI] ζ,

where θx = ∂xθ and θy = ∂yθ. Thus,

[
γ1∇̃x + γ2∇̃y +mI

]−1

eiθψ = ζ,

implying

[
γ1∇̃x + γ2∇̃y +mI

]−1

eiθψ = eiθ [γ1∇x + γ2∇y +mI]−1
ψ.

This shows that if fermion field ψ is transformed according to ψ 7→ eiθ(x,y)ψ, a neces-
sary and sufficient condition for obtaining covariance is that the gauge field transforms
according to A 7→ A+∇θ.
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A simple consequence of these facts is the following. Suppose we are given con-
tinuum data A and f . Then we define the related gauge field and and rotated source
term Ã = A + ∇θ and f̃ = eiθf . It is easy to check, using the principle of gauge
covariance, that if ψ is the solution to the continuum Dirac equation with data A and
f , then the solution with the modified data should be ψ̃ = eiθψ. We use this fact as
a basis for a test of the gauge covariance of our discrete algorithm.

Example 2.2. Consider the continuum Dirac equation with gauge field A, which
we write as

D (A)ψ = f. (2.8)

Consider a Helmholtz decomposition of the gauge field A:

A = A0 +∇ω,

where A0 is divergence free and ω ∈ VR . Then (2.8) becomes

D (A0 +∇ω)ψ = f, (2.9)

to which the solution is

ψ = [D (A0 +∇ω)]−1
f. (2.10)

Rewriting the source function as f = eiωg for some g ∈ VC , then (2.10) becomes

ψ = [D (A0 +∇ω)]−1
eiωg. (2.11)

But, from gauge covariance of the propagator, we know that

ψ = eiω [D (A0)]−1
g,

implying

ψ = eiω [D (A0)]−1
e−iωf.

Now, suppose that we wish to solve the same problem but with rotated data. In this
case, the Dirac equation becomes

D(Ã)ψ̃ = f̃ .

The Helmholtz decomposition of Ã is

Ã = A0 +∇ (ω + θ) ,
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and the Dirac equation becomes

D (A0 +∇ (ω + θ)) ψ̃ = f̃ .

Writing the source term as f̃ = ei(ω+θ)g̃, the solution becomes

ψ̃ = [D (A0 +∇ (ω + θ))]−1
ei(ω+θ)g̃.

Again, by gauge covariance, the solution becomes

ψ̃ = ei(ω+θ) [D (A0)]−1
g̃,

implying

ψ̃ = ei(ω+θ) [D (A0)]−1
e−i(ω+θ)f̃

= eiθ{eiω [D (A0)]−1
e−iωf}.

Thus, ψ̃ = eiθψ, as desired.

The key to retaining this property in the discrete setting is that the quark propa-
gator, computed in both cases, is constructed with the same gauge field, A0, and the
same source term, e−iωf . As such, we must be able to efficiently compute a discrete
Helmholtz decomposition of the gauge field, Ah. Fortunately, the choice to represent
the gauge field by Nédélec elements makes this fairly easy. Given Ah ∈ Wh, there
exists a unique qh ∈ Vh

R
such that

Ah = Ah0 +∇qh,

where qh ∈ Vh
R

is a bilinear function and Ah0 ∈ Wh is characterized by the property
that

〈
Ah0 ,∇vh

〉
= 0 ∀vh ∈ Vh

R
. (2.12)

A vector in Wh that satisfies (2.12) is known as a weak curl [9]. The decomposition
can be computed by solving the least-squares problem

qh = arg min
vh∈Vh

R

‖Ah −∇vh‖20,

which is equivalent to the weak form

〈
∇qh,∇vh

〉
=
〈
Ah,∇vh

〉
∀vh ∈ Vh

R
.

This weak formulation yields a linear system that is equivalent to that involved in
the solution of Poisson’s equation with periodic boundary conditions using a Galerkin
finite element method. It is easily solved by standard geometric multigrid methods.
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We are now ready to construct a new discrete algorithm that is gauge covariant.
First, given q ∈ NR ⊂ NC defined on the lattice sites, let Ωq be the n2 × n2 complex-
valued matrix with eiqj in the jth diagonal position and 0 elsewhere. Notice that Ω∗q
is also diagonal, with e−iqj in the jth diagonal position. Both Ωq and Ω∗q are unitary
matrices.

ALGORITHM 2: Gauge Covariant Least-Squares Dirac Solve
• Input: Gauge field A, source term f .
• Output: Wavefunction ψ.

1. Map A 7→ Ah ∈ Wh.
2. Compute Ah = Ah0 +∇qh.
3. Map qh → q.
4. Set g

R
= Ω∗q f

R
and g

L
= Ω∗q f

L
.

5. Build L, G based on A = Ah0
6. Solve Lφ = Gg for φ
7. Set ψ

R
= Ωq φR

and ψ
L

= Ωq φL
.

Note also that Steps 5-6 can then be replaced by the familiar matrix operation

φ = L−1Gg (2.13)

where matrices L and G were constructed using the grad-free gauge field, Ah0 .
Through our development of the gauge covariant algorithm, we have shown a

natural relationship between two gauge fields that differ only by a gradient. That
is, they represent the same physical system, but in a different color reference frame.
Thus, any gauge field is physically equivalent to an infinite number of other fields.
Rather than consider a specific gauge field, we instead consider the equivalence class
that it belongs to. Formally, given q ∈ NR , define [∆xq,∆yq]T ∈ E such that

[
∆xq

]
(k+1/2,l)

=
q(k+1,l) − q(k,l)

h
,

where q(k,l) is the value of q associated with the kth lattice site in the x-direction and
the lth lattice site in the y-direction. Subscript (k+ 1/2, l) indicates that the value is
associated with the lattice link between the lattice sites (k, l) and (k+1, l). Similarly,
define

[
∆yq

]
(k,l+1/2)

=
q(k,l+1) − q(k,l)

h
.

Definition 2.3. We say that pairs (ψ,A) and (ψ̃, Ã) are in the same equivalence
class if there exist q ∈ NR such that

ψ̃ =
[
ψ̃

R
, ψ̃

L

]t
=
[
ΩqψR

, ΩqψL

]t
,

and
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Ã =
[
Ã1, Ã2

]t
=
[
A1 + ∆xq, A2 + ∆yq

]t
.

Theorem 2.4. Suppose (f,A) and (f̃ , Ã) are in the same equivalence class. Then
Algorithm 2 yields ψ and ψ̃ such that

ψ =
[
ψ

R
, ψ

L

]t =
[
Ωq ψ̃R

, Ωq ψ̃L

]t
.

Proof. The proof follows directly from Definition 1 and the development of Algo-
rithm 2.

2.3. Chiral Symmetry. In the broadest sense, chiral symmetry is a global
symmetry property that, in the massless case, independent transformations of the
right- and left-handed fields do not change the physics of the model. This property
is manifested mathematically by the property that, when m = 0, the inner product
< ψ, γ1Dψ > remains invariant under transformations of the form ψ̂ = Ωψ, where γ1

is as defined in (1.3) and

Ω =
[
eiθR 0

0 eiθL

]
(2.14)

for θ
R
, θ

L
∈ R. Thus, we require that, in the massless case,

< ψ̂, γ1Dψ̂ > = < ψ, γ1Dψ > . (2.15)

It is important to note the differences between the requirements of chiral symme-
try and that of gauge covariance. First, chiral symmetry is a global symmetry, which is
why θ

R
and θ

L
in Ω do not have spatial dependence. All right- and left-handed fields

are rotated by the same transformation at each point. Second, we are not permitted
to alter D to make (2.15) hold.

A little algebra shows that a sufficient condition for (2.15) is that the term γ1Dψ̂
transforms as Ωγ1Dψ. This, in turn, is equivalent to the statement that if m = 0,
Dψ = f , and ψ̂ = Ωψ, then Dψ̂ = f̂ , where f̂ = γ1Ωγ1f . To see this, let

γ1Dψ̂ = Ωγ1Dψ,

implying that

γ1f̂ = Ωγ1f,

and the result immediately follows. We make the following definition of chiral sym-
metry.

Definition 2.5. D preserves chiral symmetry if, for any θ
R

, θ
L
∈ R used to

define Ω in (2.14) and any ψ, f ∈ V2
C

such that,
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Dψ = f

for m = 0, then

ψ̂ = Ωψ, f̂ = γ1Ωγ1f,

satisfy

Dψ̂ = f̂ .

It is clear from (1.4) that this holds for the continuum Dirac operator. In the discrete
case, operators Ω and γ1 become matrices, which we denote by

Ω =
[
eiθR I 0

0 eiθL I

]
,

Γ1 =
[

0 I
I 0

]
,

where I is the identity operator on NC . We state Chiral symmetry of the least-squares
operator in the following lemma

Lemma 2.6. (Chiral symmetry for the discrete least-squares operator) Given any
θ

R
, θ

L
∈ R, and any ψ, f ∈ N 2

C
such that

Lψ = Gf

for m = 0, then

ψ̂ = Ωψ, f̂ = Γ1ΩΓ1f,

satisfy

Lψ̂ = Gf̂ .

Proof. Recalling (2.6) and (2.7), it is easy to see that L and G are of the form

L =
[

L11 0
0 L22

]
, (2.16)

G =
[

mM G12

−G∗12 mM

]
. (2.17)
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From (2.16), we see that, for any m,

LΩ = ΩL.

From (2.17), we also see that, for m = 0, we have

GΓ1ΩΓ1 = ΩG.

Thus,

Lψ̂ = LΩψ = ΩLψ,
Gf̂ = GΓ1ΩΓ1f = ΩGf,

which yields the result.

2.4. Species Doubling. A concern in the numerical analysis of the field equa-
tions for QCD is the problem of species doubling. We illustrate this phenomenon
by turning to the 1D Schwinger model. In CoFD formulations, the discrete Dirac
operator is given by

D = γ1 ⊗∇hx +mI,

where I is the 2n2×2n2 identity matrix. The so-called naive discretization corresponds
to approximating covariant derivative ∇x using central differences. In the absence of
a gauge field, this becomes

∇hx =
ψ (x+ h)− ψ (x− h)

2h
.

We write the discrete Dirac operator, DN , as

DN =
[
mI 1

hN
1
hN mI

]
,

where N is the periodic Toeplitz matrix with stencil [−1/2 0 1/2]. Assume that the
lattice has n×n cells, meaning that it has (n+ 1)× (n+ 1) periodic lattice sites, and
that n is even. The eigenvalues of N are given by

νk = i sin
(

2πk
n

)
(2.18)

for k = −(n/2 − 1), . . . , n/2. Note that νk and ν−k, for k = 1, . . . , n/2, are complex
conjugate pairs. From the form of DN , we see that the eigenvalues of the discrete
propagator, D−1

N , are given by

κk =
h

mh± i sin (2πk/n)
,
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with corresponding eigenvectors

vk =


[1, 1, . . . , 1, 1]t k = 0,

[. . . , cos (2πk`/n)± sin (2πk`/n) , . . .]t k = ±1, . . . , n/2− 1,
[1,−1, . . . , 1,−1]t k = n/2,

(2.19)

where ` = 1, . . . , n. Notice the symmetry of κk. For every low frequency eigenvector,
there is a corresponding high frequency eigenvector that shares the same eigenvalue.
The physics community is especially concerned with the correspondence between the
eigenvalues of the k = 0 and k = n/2 modes. In the naive discretization, the eigenval-
ues of the propagator, D−1

N , associated with these modes both approach∞ as m→ 0.
Loosely speaking, this represents two particles of different momenta with the same
energy, which is impossible. Hence, this phenomenon is referred to as species doubling.

In the applied mathematics community, doubling is known as a red/black in-
stability. There are a number of successful approaches for handling the issue [12].
However, the issue is not only removal of the spurious high frequency components in
the discrete solution, but overall accuracy of the discretization process. The addition
of the complex gauge field further complicates the situation. The traditional rem-
edy in the physics community is to add an artificial stabilization term to DN , which
we demonstrate below. Later in this section, we demonstrate that the least-squares
approach also eliminates this difficulty.

The addition of the artificial stabilization term to DN is the basis for the Dirac-
Wilson operator, which is given, in the 1D, gauge-free case, by

DW = DN − I ⊗
h

2
∆h, (2.20)

where ∆h is the usual 1D Laplacian operator and I is the 2 × 2 identity matrix. In
block form, we have

DW =
[

1
2H +mI 1

hN
1
hN 1

2H +mI

]
,

where N is as before, and H is the periodic Toeplitz matrix constructed via the 3-point,
periodic, Laplacian stencil 1

h [−1 2 − 1]. The eigenvalues of H are

αk =
2
h

[
1− cos

(
2πk
n

)]
. (2.21)

Consequently, the eigenvalues of the propagator, D−1
W , are given by

λk =
[
m+

1
2
αk ±

1
h
νk

]−1

,

=
[
m+

1
h

{
1− cos

(
2πk
n

)
± i sin

(
2πk
n

)}]−1

,

with the corresponding eigenvectors again given by (2.19). Note that, in this formu-
lation, the eigenvalue corresponding to the lowest frequency mode, λ0, still goes to
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∞ as m → 0, but the eigenvalue corresponding to the highest frequency, λn/2, now
approaches h. Thus, the Dirac-Wilson operator does not suffer from species doubling.
This comes at a high price, however. To avoid doubling, a nonphysical term was added
to the operator. Furthermore, the additional term appears on the main diagonal of
DW , which breaks chiral symmetry.

Species doubling does not occur with the least-squares discretization. To see
this, consider the general form of (2.5) in one dimension. The effective least-squares
discrete operator is given by

DLS = G−1L.

In the 1D, gauge-free case, we have

L =
[

H +m2M 0
0 H +m2M

]
,

G =
[
mM N
N mM

]
,

where N and H are as defined above, and M is the periodic Toeplitz matrix with
stencil h [1/6 2/3 1/6] . The eigenvalues of M are given by

µk =
h

3

[
2 + cos

(
2πk
n

)]
. (2.22)

Using Fourier analysis as above, we see that the eigenvalues of the least-squares
propagator, D−1

LS , are given by

τk =
mµk ± νk
m2µk + αk

. (2.23)

Substituting (2.18), (2.21), and (2.22) for µk, νk, and αk into (2.23) and simplifying,
we have

τk =
m h2 [2 + cos (2πk/n)]± 3i h sin (2πk/n)
m2h2 [2 + cos (2πk/n)] + 6 [1− cos (2πk/n)]

.

Again, we are concerned with the lowest frequency mode, τ0, and the highest frequency
mode, τn/2. Setting k = 0, and taking the limit as m → 0, we see that τ0 → ∞, as
expected. Then, setting k = n/2, and taking the limit to the massless case, we see that
τn/2 approaches 0, not ∞, as in the naive case. Thus, the least-squares formulation
for the 1D Dirac operator does not suffer from species doubling. The generalization
of this analysis to the 2D case is straightforward.
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3. Numerical Experiments. In this section, we explore the use of a multilevel
iterative method for solving the matrix system (2.13) appearing in Step 6 of Algorithm
2. To avoid working in complex arithmetic, we solve the equivalent real formulation
of Eq. (2.13):

[
X −Y
Y X

] [
x
y

]
=
[
a
b

]
, (3.1)

where X,Y are real-valued matrices satisfying L = X+iY, φ = x+iy, and Gg = a+ib.
Note that Y is skew-Hermitian so that (3.1) is a symmetric real system. Moreover,
since the complex matrix is HPD, the real system is SPD.

Finally, we compare the computational cost of applying a multilevel iterative
method to both (2.13) and the two-dimensional analogue of the Dirac-Wilson matrix
described in (2.20), which, in 2D, becomes

DW =
2∑

µ=1

γµ ⊗∇hµ − I ⊗
h

2
∆h, (3.2)

where ∇hµ and ∆h are the CoFD representations of the µth covariant derivative and
the gauge Laplacian, respectively, and I is the 2 × 2 identity matrix. For a more
in-depth description of DW , see, for example, [1], [2] or [13]. A difficulty in working
with DW directly is that it is non-Hermitian. To apply standard multilevel techniques
to the inversion of DW , we appeal to the discrete normal equations, with D∗WDW as
the coefficient matrix. Furthermore, DW has complex entries, so we formulate the
normal equations in an equivalent real way:

[
U −V
V U

] [
u
v

]
=
[
c
d

]
, (3.3)

where U,V are real-valued matrices satisfying DW ∗DW = U + iV, φ = u + iv, and
DW ∗g = c+ id.

3.1. Smoothed Aggregation Multigrid. In this section, we compare the per-
formance of adaptive smoothed aggregation (αSA ) applied to (3.1) and (3.3). De-
tailed results for system (3.3) appear in [1].

Multigrid methods rely on two complementary processes to reduce the error in
each successive iterate. Relaxation is a local process that reduces a large portion of
the error in a relatively inexpensive way. Error that relaxation fails to adequately
reduce is called algebraically smooth. Coarse-grid correction is a global process that is
designed to complement relaxation by reducing the algebraically smooth error. These
two processes work in tandem, with relaxation performed on the fine grid until only
algebraically smooth error remains, allowing coarse-grid correction to be effective.
The coarse-grid approximation to the error is then taken back up to the fine grid
through an interpolation process and used to correct the approximate there. The
success of the coarse-grid correction process depends on how accurately algebraically
smooth error modes can be represented on the coarse-grid.

For many problems in the physical sciences, the algebraically smooth error modes
are geometrically smooth as well. Standard geometric multigrid methods are usually
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very effective at solving these problems. Unfortunately, due to the random nature of
the background gauge fields in field theory, the algebraically smooth error modes are
not at all geometrically smooth. In Figure 3.1, we see that both the real and imaginary
components of the algebraically smooth error are highly oscillatory. These plots were
obtained by applying 100 iterations of Gauss-Seidel on the problem Lφ = 0 with a
random initial guess and rescaling the result. This process exposes the algebraically
smooth error associated with L.
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Fig. 3.1: Real and complex components of algebraically smooth error of L for m = 0.1,
β = 2, and N = 16. Error was computed using 100 iterations of Gauss-Seidel on
Lφ = 0 with a random initial guess

Smoothed aggregation multigrid (SA [11]) is a multilevel solver that is based
on algebraic smoothness as an abstraction of the property of geometric smoothness
used in conventional multilevel algorithms. Given prototype representations of al-
gebraically smooth error, SA automatically builds intergrid transfer operators that
attempt to represent all algebraically smooth error modes on coarser grids, regardless
of their geometric smoothness. Unfortunately, this requires a priori knowledge of the
prototype modes. Randomness of the background fields in field theory applications
causes the nature of the algebraically smooth error to vary widely between different
gauge configurations and, in any case, little is known about their local character.
We turn instead to adaptive smoothed aggregation multigrid (αSA [3]), which uses a
setup procedure to first expose these problematic error components, and then builds
a multigrid process to effectively reduce them.

3.2. Results. Table 3.1 reports average convergence factors of a conjugate gra-
dient iteration (CG) preconditioned by αSA applied to the homogeneous version of
(3.1) for various values of the particle mass, m, and gauge field temperature β. In
each case, averages were taken over 20 distinct gauge fields. The αSA preconditioner
was based on V(2,2)-cycles with 3 grid levels, and an algebraic aggregation process.
The relaxation scheme was nodal Gauss-Seidel, meaning that the lattice sites were
swept over in a lexicographic fashion, and all unknowns on a lattice site were updated
simultaneously. Finally, 8 prototype error components were found during the adaptive
setup process and used to define the intergrid transfer operators in the V-cycle. A
single V(2,2)-cycle was used as the preconditioner in the CG solve. For comparison,
convergence factors for diagonally preconditioned CG are also provided in Table 3.1.
Notice that, as mass parameter m is decreased, the performance of the αSA solver
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remains static. This is an important result because it means that the problem of
critical slowing down has been eliminated.

β/m .01 .1 .3
2 .16 / .98 .18 / .94 .17 / .94
3 .17 / .98 .17 / .95 .16 / .94
5 .15 / .97 .15 / .94 .18 / .93

β/m .01 .1 .3
2 .16 / .98 .15 / .96 .15 / .94
3 .16 / .99 .16 / .95 .17 / .95
5 .17 / .96 .15 / .94 .17 / .92

Table 3.1: Average convergence factors for αSA -preconditioned CG and diagonally
preconditioned CG applied to (2.13) on 64× 64 (top) and 128× 128 (bottom) lattices
with varying choices of mass parameter m and temperature β.

Table 3.2 compares the performance of αSA -preconditioned CG applied to the
equivalent real formulation of the least-squares problem, given in (3.1), and the dis-
crete normal equations of the Dirac-Wilson operator given in (3.3). Numerical results
presented for (3.3) were taken from [1]. In both cases, 8 prototype error components
were found during the adaptive setup process and used to define the intergrid transfer
operators in the V-cycle.

β/m .01 .1 .3
2 .16 / .33 .15 / .31 .15 / .31
3 .16 / .42 .16 / .40 .17 / .31
5 .17 / .31 .15 / .29 .17 / .28

Table 3.2: Average convergence factors for αSA -preconditioned CG applied to the
least-squares formulation (left) and the normal equations of the Dirac-Wilson operator
(right) on a 64×64 lattice with varying choices of mass parameter m and temperature
β.

Note that the average convergence factors are significantly better for the least-squares
formulation. Data illustrate that αSA -preconditioned CG achieves slightly more ac-
curacy per multigrid cycle for the proposed formulation than for the normal equations
of CoFDs.

We must also recognize that the computational cost is significantly less for the
least-squares problem because it avoids the added complexity of the discrete nor-
mal equations. Our least-squares approach does form normal equations, but more
effectively on the continuum Dirac operator only, without the additional stabilization
term. Discretizing the continuum normal equations in this way results in a stencil
that has only the nearest-neighbor connections typical of second-order operators, in
contrast to the wider and more complicated stencils for the normal equations of the
Dirac-Wilson matrix. As a result, the least-squares matrix is more compact and has
about 53% as many nonzeros as the normal equations of the Dirac-Wilson matrix.
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Also, the operator complexity, σ, is significantly better for least-squares than it
is for CoFDs. σ, is defined to be the ratio of the total number of degrees of freedom
on all grids in the multigrid hierarchy to the number of degrees of freedom on the
finest grid. This number indicates how much work has to be done on the coarse-grids
compared to that on the fine grid. For the lattice sizes that were tested in these
experiments, operator complexity stayed below 1.5, while the operator complexities
applied to (3.3) were bounded by 3.0 [1].

The improved operator complexity of the proposed formulation is due to the
reduced sparsity of the fine-grid operator. In the least-squares formulation, the fine-
grid operator involves only nearest-neighbor coupling of the unknowns. Applying
the smoothed aggregation methodology to a system of this form yields a coarse-grid
operator that retains the sparsity structure of the original system, resulting in a small
operator complexity.

In contrast, the fine-grid operator associated with (3.3) involves second nearest-
neighbor coupling. As a result, the coarsening between the fine grid and the first
coarse grid fails to significantly reduce the number of nonzeros in the coarse-grid
operator. Aggressive coarsening on the remaining coarse levels does keep rapid stencil
growth from occuring, but results in an overall larger operator complexity than the
least-squares formulation [1].

A useful way to compare the performance of two methods, which differ both in
convergence rate and in computational complexity, is to look at a measure of the num-
ber of work units necessary to gain one unit of accuracy in the approximate solution.
This measure takes into consideration convergence factors, operator complexity, and
sparsity of the original system. We define one work unit to be the cost of performing
one relaxation sweep on the finest grid of the least-squares matrix, L. The normal
equations of the Dirac-Wilson operator, D∗WDW , has approximately 88% more nonze-
ros than that of L. Thus, one relaxation sweep on D∗WDW costs approximately 1.88
work units. To quantify this performance factor, we introduce a variant on a formula
developed in [4]. Define η to be the work units necessary to improve the current
iterate by one digit of accuracy. Then,

η = δ σ (ν1 + ν2 + 1)
log.1
logρ

, (3.4)

where σ is the operator complexity, ν1 and ν2 are the number of pre- and post-
relaxation steps performed in the V-cycle, ρ is the usual convergence factor reported
in Table 3.2, and δ is a scale factor that allows us to quantify the cost of a work
unit relative to the specific discretization. For the least-squares discretization, we set
δ = 1 and, for the Dirac-Wilson system, δ = 1.88. The values ν1 and ν2 are both 2
for all of the experiments, indicating that a V(2,2)-cycle was used. As stated above,
we have σ = 1.5 for the least-squares formulation and σ = 3.0 for the Dirac-Wilson
formulation. Table 3.3 gives the η-values for the experiments described previously
in Table 3.2. Taking the ratio of η-values of the Dirac-Wilson operator to those of
the least-squares formulation, we get an estimate of the speedup obtained from one
discretization over the other. These ratios are given in Table 3.4.
Note that αSA -preconditioned CG applied to the least-squares formulation obtains
between 5 and 7 times the accuracy per computational cost that of the same iterative
method applied to the normal equations of the Dirac-Wilson matrix.

The decision to build the intergrid transfer operators using 8 prototype error
components was convenient because it allowed direct comparison to the results ob-
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β/m .01 .1 .3
2 9.4 / 58.6 10.1 / 55.4 9.7 / 55.4
3 9.7 / 72.8 9.7 / 70.9 9.4 / 55.4
5 9.1 / 55.4 9.1 / 52.5 9.7 / 51.0

Table 3.3: Average η-value for αSA -preconditioned CG applied to the least-squares
formulation (left) and the normal equations of the Dirac-Wilson operator (right) on
a 64× 64 lattice with varying choices of mass parameter m and temperature β.

β/m .01 .1 .3
2 6.2 5.5 5.7
3 7.5 7.3 5.9
5 6.1 5.8 5.2

Table 3.4: Average speedup factors for αSA -preconditioned CG applied to the least-
squares formulation over the normal equations of the Dirac-Wilson operator on a
64× 64 lattice with varying choices of mass parameter m and temperature β.

tained for the Dirac-Wilson operator. It does, however, beg the question whether it
is more computationally efficient to use fewer error components. Using fewer com-
ponents leads to smaller operator complexities and thus, cheaper computation cost
on coarser grids. Table 3.5 shows the average convergence factors for a CG iteration
preconditioned by a smoothed aggregation V(2,2)-cycle built on a varrying number of
prototype error components. Operator complexities for each cycle are also reported.

K/m .01 .1 .3 σ

4 .80 .81 .80 1.12
5 .66 .64 .65 1.19
6 .40 .39 .40 1.28
7 .25 .24 .24 1.38
8 .17 .17 .15 1.50

Table 3.5: Average convergence factors and operator complexities for αSA -
preconditioned CG applied to the least-squares formulation using varrying number
of prototype error components (K) on a 128× 128 lattice. Here β = 2.

We can again compute the number of work units required to improve the current
iterate by one digit of accuracy. These values are given in Table 3.6. The data
indicates that the use 8 prototype error components yields the most computationally
efficient method.

4. Conclusions. We described a discretization of the continuous Dirac equation
for the 2D Schwinger model based on least-squares finite elements. The formulation
avoids several pitfalls of traditional discretizations based on covariant finite differences
by producing a discrete operator that is Hermitian, positive definite, and extremely
sparse. We formulated our solution process in a gauge covariant way, and argued
that it retains a sense of global chiral symmetry. We showed that our method avoids
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K/m .01 .1 .3
4 57.8 61.2 57.8
5 32.9 30.7 31.8
6 16.1 15.7 16.1
7 11.5 11.1 11.1
8 9.1 9.1 9.7

Table 3.6: Average η-value for αSA -preconditioned CG applied to the least-squares
formulation using varrying number of prototype error components (K) on a 128×128
lattice. Here β = 2.

the need for stabilization terms and that it does not suffer from species doubling.
Furthermore, we showed that the resulting discrete system can be handled quite
effectively by conjugate gradients with adaptive smoothed aggregation multigrid as
a preconditioner. It is not immediately clear if the least-squares methodology can
be extended to the full QCD model. The noncommutative nature of the gauge field
makes the QCD problem much more complicated. As a result, further investigation
is warranted.
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[9] J. C. Nédélec A New Family of Mixed Finite Elements in R3, Numerische Mathematik, 50

(1986), pp. 57-81
[10] C. Rebbi, Chiral-Invariant Regularization of Fermions on the Lattice, Phys. Lett. B, 186 (1987),

pp. 200-204
[11] P. Vanek, J. Mandel, and M. Brezina, Algebraic Multigrid by Smooth Aggregation for Second

and Fourth Order Elliptic Problems, Computing, 56 (1996), pp. 179-196.
[12] P. Wesseling, Principles of Computational Fluid Dynamics, Springer, Heidelberg, 2001.
[13] K. Wilson, Confinement of Quarks, Phys. Rev. D, 10 (1974).


