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SUMMARY

The Dirac equation of quantum electrodynamics (QED) describes the interaction between electrons
and photons. Large-scale numerical simulations of the theory require repeated solution of the two-
dimensional Dirac equation, a system of two first-order partial differential equations coupled to
a background U(1) gauge field. Traditional discretizations of this system are sparse and highly
structured, but contain random complex entries introduced by the background field. For even mildly
disordered gauge fields, the near kernel components of the system are highly oscillatory, rendering
standard multilevel methods ineffective. We consider an alternate formulation of the governing
equations obtained by a transformation of the continuum operator that decouples the system into
separate scalar diffusion-like equations. We discretize the transformed system using least-squares finite
elements and use adaptive smoothed aggregation multigrid (αSA) to solve the resulting linear system.
We present numerical results and discuss implications of the transformed formulation in terms of the
physical theory. Copyright c© 2009 John Wiley & Sons, Ltd.
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1. Introduction

In the study of quantum electrodynamics (QED) and quantum chromodynamics (QCD),

hybrid Monte Carlo simulations are used to numerically predict physical observables, such

as particle mass and momentum, in accelerator experiments. The most computationally

taxing portion of such simulations comes in the numerical solution of the discrete Dirac

equation. Typical discretizations of the Dirac equation are large, sparse, and highly structured.

Unfortunately, in the physically interesting parameter regime, the discrete operator is
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extremely ill-conditioned and contains random complex entries, introduced by the background

gauge field. Furthermore, as the particle mass, m, approaches realistic values, the traditional

Krylov solvers become increasingly slow to converge, a phenomenon known as critical

slowing down. Recently, algebraic multigrid (AMG) methods have proven to be effective

preconditioners for the solution of the discrete Dirac equation, essentially eliminating critical

slowing down [1] [2].

In addition to improving the iterative methods used to solve traditional discretizations of the

Dirac equation, it is also important to consider new discretizations of the continuum operator

that lend themselves to efficient solution by multilevel techniques. In a companion paper

(see [3]), a discretization of a simplified 2-spin model of QED in two dimensions is developed

using least-squares finite elements. We show here that the resulting discretization can be solved

efficiently using an adaptive multilevel preconditioner. Additionally, we show that the resulting

discrete system satisfies important physical properties of the continuum, including gauge

invariance, chiral symmetry, and the absence of species doubling. The present paper expands

on this method by first applying a transformation to the governing continuum equations and

then discretizing the resulting system using least-squares finite elements. The discrete system

is systematically developed and implications for the physical theory are discussed. When the

discussion of the physical properties of the discretization reduces to the identical case as

discussed in [3], we will refer the reader to the previous paper.

In the remainder of §1, we describe a simplified 2-spin model of QED in two dimensions,

posed in the continuum. We introduce the concept of gauge invariance and propose a

transformation of the continuum model that lends itself well to discretization using least-

squares finite elements. In §2, the least-squares discretization of the transformed system is

described along with several important properties of the resulting discrete system, including

gauge invariance and the absence of species doubling [3]. In §3, we describe the use of adaptive

smoothed aggregation multigrid (αSA) as a preconditioner for the solution process. Some

concluding remarks are offered in §4.

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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1.1. Continuum Dirac Operator

The Dirac equation describes the behavior of spin- 1
2 particles, or fermions. The governing

equations can take on several different forms, depending on the specific gauge theory it

describes. In particular, we are concerned with a 2-spin two-dimensional model of QED, which

describes the interaction between electrons and photons. Another important configuration is

the 4D Dirac equation of QCD, which describes the interaction between quarks and their

force-carrying gluons. Though important in its own right for QED applications, the simplified

model is often used as a starting point for testing discretizations and iterative solvers for the

governing equations of full QCD.

In general, the Dirac equation appears as

D (A)ψ = f, (1)

where D is the Dirac operator, A is the vector gauge field representing the force carriers, and

f is some source term. In the simplified model of QED, (1) becomes:

 mI ∇x − i∇y

∇x + i∇y mI


 ψ

R

ψ
L

 =

 f
R

f
L

 , (2)

where ∇x = (∂x − iA1) and ∇y = (∂y − iA2) are the gauge covariant derivatives in the x- and

y-directions, respectively . In this representation, m is the fermion mass, ∂x and ∂y are the

usual partial derivatives, and Aµ (x, y) is the µth component of the gauge field representing the

photons. In QED, Aµ (x, y) ∈ R, the set of real-valued scalars. The wavefunction ψ = [ψ
R
, ψ

L
]t,

describes the fermion, with two components, ψ
R

and ψ
L

, corresponding to fermion states

that are right- and left-handed, respectively. Handedness, or helicity, is a description of the

direction of a particle’s angular momentum relative to its direction of motion. Similarly, the
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source function, f = [f
R
, f

L
]t, contains the right- and left-handed components of the source

term [3], [4].

1.2. Model Problem

Let R = [0, 1] × [0, 1] be the domain, VR be the space of real-valued, periodic functions

that are uniformly bounded a.e. on R, and VC ⊂ H1(R) be the space of complex-valued,

periodic, H1 functions on R [5]. Let ψ (x, y) = [ψ
R

(x, y) , ψ
L

(x, y)]t ∈ V2
C

be the fermion

field with right- and left-handed components ψ
R

and ψ
L

, respectively. Assume that A (x, y) =

[A1 (x, y) ,A2 (x, y)]t ∈ V2
R
. With periodic boundary conditions on ψ, the simplified model

becomes

 mI ∇x − i∇y

∇x + i∇y mI


 ψ

R

ψ
L

 =

 f
R

f
L

 in R, (3)

ψ(0, y) = ψ(1, y) ∀y ∈ (0, 1),

ψ(x, 0) = ψ(x, 1) ∀x ∈ (0, 1),

To clarify notation, we emphasize that three different types of objects appear in this paper:

continuum functions, finite element functions, and discrete vectors and operators. Continuum

functions are denoted by scripted text, as in ψ, f , and A. Operators in the continuum are

represented in a similar scripted fashion, as in D. Finite element functions are indicated with

a superscript h, as in ψh, fh, and Ah. Lastly, discrete vectors are denoted with an underbar,

as in ψ, f , and A, while discrete operators are denoted by bold-faced symbols, as in D.

1.3. Gauge Covariance in the Continuum

A necessary property of any QED theory is that the fermion propagator - another name for

D−1 - transforms covariantly under local gauge transformations, [6]. That is, suppose a local

gauge transformation, Ω (x, y) ∈ U(1), is applied to each component of the fermion field ξ.

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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Then a modified propagator, D̃−1, exists such that

D−1

 Ω (x, y) 0

0 Ω (x, y)

 ξ =

 Ω (x, y) 0

0 Ω (x, y)

 D̃−1ξ.

Let Ω (x, y) = eiω(x,y) for some real, periodic function ω. Suppose further that D is constructed

using the gauge field A. It is demonstrated in [3] that the correct modification of D−1 to allow

gauge covariance is

D̃−1 (A) = D−1 (A−∇ω) .

Thus,

D−1 (A)

 Ω (x, y) 0

0 Ω (x, y)

 ξ =

 Ω (x, y) 0

0 Ω (x, y)

D−1 (A−∇ω) ξ. (4)

A consequence of this is that, if we want to solve D (A)ψ = f , then we are not restricted to

working specifically with D (A). In fact, for any transformation of the form Ω (x, y) = eiω(x,y) ∈

U(1) we have

ψ =

 Ω (x, y) 0

0 Ω (x, y)

D−1 (A−∇ω)

 Ω∗ (x, y) 0

0 Ω∗ (x, y)

 f. (5)

Then, if there exists some ω, such that D (A−∇ω) is easier to invert than D (A), we can

solve the original problem for ψ by first applying the inverse transform to the source term f ,

inverting the transformed operator D (A−∇ω), and then applying the transformation to the

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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result.

1.4. Transformation

For simplicity, denote the off-diagonal block of (3) by B (A) = ∇x − i∇y = (∂x − iA1) −

i (∂y − iA2). The matrix form of the Dirac equation then becomes

 mI B

−B∗ mI


 ψ

R

ψ
L

 =

 f
R

f
L

 . (6)

We begin by noting that operator B transforms covariantly under a transformation of the

form ez, where z is any complex-valued, periodic function. That is to say, if some component

wavefunction ξ
R

, which without loss of generality we take to be right-handed, is transformed

according to ξ
R
7→ ezξ

R
, then it is possible to specify some modified operator B̃ such that

Bezξ
R

= ezB̃ξ
R
.

To see that B transforms covariantly under such a transformation, let r (x, y) and s (x, y) be

real, periodic functions, and set z = r + is. Then

B (A) ezξ
R

= [(∂x − iA1)− i (∂y − iA2)] ezξ
R

= ez {[∂x − i (A1 + ry − sx)]− i [∂y − i (A2 − rx − sy)]} ξ
R

= ezB
(
A−∇⊥r −∇s

)
ξ

R
.

Thus, the correct modification of B (A) corresponding to the transformation ez is B̃ =

B
(
A−∇⊥r −∇s

)
. Now, suppose that real, periodic functions u and v form a Helmholtz

decomposition of the gauge field, according to

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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A =

 A1

A2

 = ∇⊥u+∇v +

 k1

k2

 , (7)

where k1 and k2 are constants. Setting z = u+ iv, then

B (A) ezξ
R

= ezBkξR
, (8)

where Bk := (∂x − ik1)− i (∂y − ik2). In addition, it is easy to verify that the adjoint operator,

B∗, transforms covariantly under a similar transformation. Specifically,

B∗ (A) e−z̄ξ
R

= e−z̄B∗kξR
. (9)

We wish to use this property to separate the gauge field from the differential operators in

D (A). Define the following transformation matrix:

Q =

 e−z̄I 0

0 ezI

 . (10)

Setting ψ = Qξ, (6) yields

 mI B

−B∗ mI


 e−z̄I 0

0 ezI

 ξ = f. (11)

Using the covariance of B, this becomes

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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 me−z̄I ezBk

−e−z̄B∗k mezI

 ξ = f. (12)

Denote this transformed operator in (12) by D̂ (A). Note that we continue to express the

dependence of D̂ on the gauge field, A, because the gauge field still appears as part of the

exponential terms. Then, if we have an efficient way of discretizing and solving the transformed

system, (12), we can solve the original system, (6), by first solving (12) and then setting ψ = Qξ.

Thus, a solution process for the continuum problem is given in Algorithm 1.

ALGORITHM 1: Continuum Dirac Solve

• Input: Gauge field A, source term f .

• Output: Wavefunction ψ.

1. Solve D̂ (A) ξ = f .

2. Set ψ = Qξ.

Note that we must be careful with the boundary conditions prescribed to the auxiliary

function ξ. To ensure that ψ is periodic onR, we require that Qξ be periodic onR. To discretize

the continuum equation in Step 1 of Algorithm 1, we use least-squares finite elements [7], [8].

In addition to providing a potential solution method for (6), this transformation also gives

insight into the spectrum of the continuum operator. First, note that, from the form of (6),

the Dirac operator can be written as the sum of Hermitian and anti-Hermitian operators:

 mI B

−B∗ mI

 =

 mI 0

0 mI

+

 0 B

−B∗ 0

 . (13)

Thus, the spectrum of D is a vertical line in the complex plane:

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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Σ (D) = m+ isj , (14)

where sj ∈ R, j = 1, 2, . . . Furthermore, note that D has a purely real eigenvalue if and only if

k1 and k2 are integer multiples of 2π. To see this, consider the transformed operator Bk, with

the non-constant portion of the gauge field removed. Let φ = ei(k1x+k2y). Then,

Bkφ = [(∂x − ik1)− i (∂y − ik2)] ei(k1x+k2y),

= [(ik1 − ik1)− i (ik2 − ik2)] ei(k1x+k2y),

= 0.

But, recall that operator Bk acts on complex-valued periodic functions and that

ei(k1x+k2y) = [cos (k1x) + i sin (k1x)] [cos (k2y) + i sin (k2y)] .

Then, φ = ei(k1x+k2y) is periodic onR only if k1 = 2πl1 and k2 = 2πl2 for some l1, l2 ∈ Z. Thus,

it is easy to see from (8) that operator B (A) is singular, with nullspace vector φ = ez+i(k1x+k2y),

only if k1 and k2 are integer multiples of 2π. Similarly, from (9), it is clear that, under these

conditions on k, B∗ (A) is singular with nullspace vector φ = e−z̄+i(k1x+k2y). Then, from (13),

we see that if the constant portions of the gauge field are integer multiples of 2π, then D has

two eigenvectors, φ+ and φ−, associated with purely real eigenvalue m, where

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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φ+ =

 e−z̄+i(k1x+k2y)

ez+i(k1x+k2y)

 ,
φ− =

 e−z̄+i(k1x+k2y)

−ez+i(k1x+k2y)

 .

2. Discrete Dirac Operator

In numerical simulations of QED, it is necessary to compute many solutions of the discrete

Dirac equation for varying gauge fields and source vectors. In traditional lattice formulations,

the continuum domain, R, is replaced by an n × n regular, periodic lattice. The continuum

wavefunction, ψ, and source, f , are replaced by discrete analogues, ψ and f , with values

specified only at the lattice sites. The continuum gauge field, A, is represented by the discrete

field A = [A1, A2]t, with information specified on each of the lattice links. The components

of the gauge field, A1 and A2, represent values on the horizontal and vertical lattice links,

respectively. A discrete solution process of the 2D model problem then takes the source, f ,

specified at the lattice sites, and gauge field, A, specified at the lattice links, and returns the

discrete fermion field ψ, with values again specified at the lattice sites. The discrete solution

can be written as

ψ = [D (A)]−1
f,

where [D (A)]−1 is some discrete representation of the solution process.

For completeness, let NC be the space of discrete, periodic, complex-valued vectors, with

values associated with the sites on the lattice. Let NR ⊂ NC be the space of discrete real-

valued vectors, with values associated with the lattice sites. Then, the discrete fermion field

is given by ψ = [ψ
R
, ψ

L
]t ∈ N 2

C
, which specifies complex values of both the right- and left-

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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handed components of the fermion field at each lattice site. Similarly, the source term, f ,

becomes f = [f
R
, f

L
]t ∈ N 2

C
. Let ER be the space of discrete real-valued vectors, with values

associated with the lattice links. Then A = [A1, A2]t ∈ ER .

2.1. Preliminary Considerations

To formulate the discrete Dirac equation in terms of a finite-element process, we must associate

the discrete objects, ψ, A, and f , with corresponding finite-element functions. In analogy to

the nodal setting, each elementary square on the lattice is represented by a quadrilateral finite

element. Recall that NC is the space of discrete complex-valued vectors, with values associated

with the lattice sites. We equate any discrete vector w =
[
w

R
, w

L

]t ∈ (NC)2 with the piecewise

bilinear function wh =
[
wh

R
, wh

L

]t ∈ (Vh
C

)2, where Vh
C

= span{φj}n
2

j=1 is the space of periodic

piecewise bilinear finite element functions over the complex numbers. Here, φj is the standard

nodal basis function associated with lattice site xj . Then, naturally,

wh
R

=
n2∑
j=1

w
Rj
φj ,

wh
L

=
n2∑
j=1

w
Lj
φj .

We wish to represent the discrete gauge field, A, in the continuum using a finite element

function. Recall that A = [A1, A2]t belongs to ER , the space of discrete real-valued vectors, with

values associated with the lattice links. Gauge data, A1 and A2, define values on the horizontal

and vertical lattice links, respectively. We associate any A ∈ ER with Ah =
[
Ah1 , A

h
2

]t ∈ Wh
R ,

where Ah is chosen to exactly interpolate the discrete gauge data on the centers of lattice links.

To define Ah and Wh
R precisely we first consider a Helmholtz decomposition of the discrete

gauge field:

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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A =

 A1

A2

 =

 C1 G1

C2 G2


 u

v

+

 k1

k2

 (15)

where C = [Ct1 Ct2]t and G = [Gt
1 Gt

2]t are discrete representations of the curl and gradient

operators, respectively. The specific forms of C and G are given below. Vectors v and u are real-

valued and are associated with the sites of the standard lattice and the cell-centered lattice,

respectively. Then u, v ∈ NR . Note that each row in (15) corresponds to gauge data on a link

on the standard lattice, with the first block row corresponding to the horizontal links and the

second block row corresponding to the vertical links. The rows of the matrix in (15), denoted

alternatively by [C G], are defined by the relationship between the individual lattice links and

their contributions from u and v values on adjoining lattice sites. As such, the rows of matrices

G and C are defined by the appropriate centered differences that map values of v and u at sites

on the standard and cell-centered lattice, respectively, to values on the links of the standard

lattice. The stencils for constituent matrices of C and G are as follows:

C1 =
1
h


0 −1 0

0 1 0

0 0 0

 , (16)

C2 =
1
h


0 0 0

−1 1 0

0 0 0

 , (17)

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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G1 =
1
h


0 0 0

−1 1 0

0 0 0

 , (18)

G2 =
1
h


0 0 0

0 1 0

0 −1 0

 . (19)

Inspection of these stencils shows that constant vectors are in the nullspace of both C and

G, so the decomposition defined in (15) is not unique; any u and û, or any v and v̂, that differ

by only a constant produce the same A. To remedy this, we require that the entries of u and

v individually sum to zero. That is, we require that

∑
jk

ujk =
∑
jk

vjk = 0.

Under these conditions, the decomposition defined in (15) is unique.

The development of the decomposition in (15) suggests a method of computing v and u for

any gauge field, A. Specifically, u is the orthogonal projection of A onto the space of vectors

in Range (C) whose entries sum to zero. Likewise, v is the orthogonal projection of A onto the

space of vectors in Range (G) whose entries sum to zero. Thus, u and v are the solutions to

the following sets of normal equations:

ĈtĈu = ĈtA, (20)

ĜtĜv = ĜtA, (21)

where Ĉ and Ĝ are nonsingular versions of C and G modified to enforce the condition that the

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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entries of u and v sum to zero. The matrices on the left-hand side of (20) and (21) are similar

to constant coefficient periodic Poisson operators discretized via finite differences. Thus, they

can easily be inverted using standard methods. Finally, constants k1 and k2 are found by

computing

 k1

k2

 = A− Cu−Gv. (22)

The development of the Helmholtz decomposition of the discrete gauge field leads us to a

convenient representation of the discrete gauge data by a finite element function, Ah. Note

that the action of G and C on discrete vectors can be interpreted as the application of the

gradient and curl operators to bilinear finite element functions defined on the standard and

cell-centered lattice, respectively. Then, Ah can be defined in terms of a continuum Helmholtz

decomposition involving bilinear finite element functions vh and uh defined on the standard

and cell-centered lattice, respectively, whose entries at lattice sites correspond exactly with

the discrete values of v and u. This decomposition is

Ah = ∇⊥uh +∇vh + k. (23)

The definition of vh as a bilinear finite element function on the standard lattice implies that

the gradient portion of the gauge field, ∇vh, belongs to Wh
v , the Nédélec space over the real

numbers associated with the standard lattice. Similarly, the definition of uh as a bilinear finite

element function on the cell-centered lattice implies that the curl portion of the gauge filed,

∇⊥uh, belongs to Wh
u , the Raviart-Thomas space over the real numbers associated with a

cell-centered lattice. Illustrations of typical basis functions for Wh
u and Wh

v can be found in

Figures 1 and 2. Noting that constant vector k is represented in both of these spaces, define

Wh
R = Wh

u ⊕Wh
v . This choice of spaces naturally ensures that the curl and gradient portions

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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of the gauge field are orthogonal.

Figure 1: Nédélec element (left) and Raviart-Thomas element (right) associated with a
horizontal lattice. The solid grid lines represent the standard lattice, and the dashed represent
the cell-centered lattice

Figure 2: Nédélec element (left) and Raviart-Thomas element (right) associated with a vertical
lattice. The solid grid lines represent the standard lattice, and the dashed represent the cell-
centered lattice

2.2. Least-Squares Discretization

We begin by formulating the solution to (12), appearing in Step 1 of Algorithm 1, in terms of

a minimization principle.

ξ = arg min
ϕ∈V2

C

‖D̂ϕ− f‖20, (24)

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 00:0–0
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where VC is the space of continuous, periodic, complex-valued, H1 functions defined previously.

Minimization principle (24) is equivalent to the following weak form:

Find ξ ∈ V2
C

s.t.
〈
D̂ξ, D̂w

〉
=

〈
f, D̂w

〉
∀w ∈ V2

C
, (25)

where 〈 · , · 〉 is the usual L2 inner product. If ξ is sufficiently smooth, then (25) is formally

equivalent to

Find ξ ∈ V2
C

s.t.
〈
D̂∗D̂ξ, w

〉
=

〈
D̂∗f, w

〉
∀w ∈ V2

C
. (26)

Thus, we can think of the least-squares formulation of the problem as being approximately

equivalent to solving the continuum normal equations, D̂∗D̂ξ = D̂∗f , by the Ritz-Galerkin

method. Examining the formal normal operator, D̂∗D̂, can often give insight into the potential

success of the least-squares formulation:

D̂∗D̂ =

 me−zI −Bke−z

B∗kez̄ mez̄I


 me−z̄I ezBk

−e−z̄B∗k mezI

 (27)

=

 m2e−2uI + B∗ke−2uBk 0

0 m2e2uI + Bke2uB∗k

 . (28)

Notice that v, which is associated with the gradient portion of the gauge field, vanishes

from the formal normal. Moreover, this formal normal is block diagonal, with each diagonal

block containing a zeroth-order term and a second-order term resembling a diffusion operator

with variable coefficients. This is promising because algebraic multigrid methods have proved

effective at solving these types of problems [7], [8].

The least-squares solution is obtained by restricting the minimization problem in (24) and,
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thus, the weak form in (25), to a finite-dimensional space, Vh
C
⊂ VC . That is, our solution must

satisfy the following weak form:

Find ξh ∈
(
Vh

C

)2
s.t.

〈
D̂ξh, D̂wh

〉
=

〈
fh, D̂wh

〉
∀wh ∈

(
Vh

C

)2
. (29)

Step 2 of Algorithm 1 requires that we set ψ = Qξ. We can formulate this process in terms of

a weak form as well:

Find ψh ∈
(
Vh

C

)2
s.t.

〈
ψh, wh

〉
=

〈
Qξh, wh

〉
∀wh ∈

(
Vh

C

)2
. (30)

The least-squares formulation of Algorithm 1 can now be implemented via the following

algorithm:

ALGORITHM 2: Least-Squares Dirac Solve

• Input: Gauge field A, source term f .

• Output: Wavefunction ψ.

1. Compute u and v such that A = Cu+ Gv + k.

2. Map u 7→ uh and v 7→ vh.

3. Map f 7→ fh ∈
(
Vh

C

)2.

4. Find ξh ∈
(
Vh

C

)2 s.t.
〈
D̂ξh, D̂wh

〉
=
〈
fh, D̂wh

〉
∀wh ∈

(
Vh

C

)2,

5. Find ψh ∈
(
Vh

C

)2 s.t.
〈
ψh, wh

〉
=
〈
Qξh, wh

〉
∀wh ∈

(
Vh

C

)2,

6. Map ψh 7→ ψ ∈ (NC)2.

Using the nodal basis for Vh
C

, we can form the following matrix equation for solving the weak

form in Step 4 of Algorithm 2:
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Lξ = Kf, (31)

where ξ and f are the coefficients in the expansions of ξh and fh, respectively. Note that since

the discrete values of ξ and f naturally coincide with the expansion coefficients of ξh and fh,

respectively, we choose to represent them using the same notation. Matrices L and K are given

according to

L :=

 L11 0

0 L22

 , (32)

L11 := m2M− + L−xx + L−yy + i(L−xy − L−yx), (33)

L22 := m2M+ + L+
xx + L+

yy + i(L+
xy − L+

yx), (34)

K =

 mN+ B+
x − iB+

y

B−x + iB−y mN−

 , (35)

where
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(L±xx)j,k = 〈e±u (∂x − ik1)φk, e±u (∂x − ik1)φj〉 ,

(L±yy)j,k = 〈e±u (∂y − ik2)φk, e±u (∂y − ik2)φj〉 ,

(L±xy)j,k = 〈e±u (∂x − ik1)φk, e±u (∂y − ik2)φj〉 ,

(L±yx)j,k = 〈e±u (∂y − ik2)φk, e±u (∂x − ik1)φj〉 ,

(B±x )j,k =
〈
φk, e

±u+iv (∂x − ik1)φj
〉
,

(B±y )j,k =
〈
φk, e

±u+iv (∂y − ik2)φj
〉
,

(M±)j,k = 〈e±uφk, e±uφj〉 ,

(N±)j,k =
〈
φk, e

±u+ivφj
〉
.

(36)

Thus, Step 4 of Algorithm 2 can then be replaced by

ξ = L−1Kf. (37)

A similar linear system can be developed to replace the weak form in Step 5 of Algorithm 2:

Pψ = Qξ. (38)

where

P =

 P0 0

0 P0

 , Q =

 Q− 0

0 Q+

 , (39)

and
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(P0)j,k =< φk, φj >, (Q±)j,k =< e±u+ivφk, φj > . (40)

Again, since the expansion coefficients of ψh correspond to the discrete values in ψ, we can

replace both Step 5 and Step 6 of Algorithm 2 by

ψ = P−1Qξ. (41)

It is useful to note that L and P do not depend on v in any way. They are defined solely in

terms of the curl component of the gauge field.

Finally, these associations allow us to write a discrete solution process, equivalent to

Algorithm 2, solely in terms of the discrete variables:

ALGORITHM 3: Discrete Dirac Solve

• Input: Gauge field A, source term f .

• Output: Wavefunction ψ.

1. Compute u and v such that A = Cu+ Gv + k.

2. Compute ξ = L−1Kf .

3. Compute ψ = P−1Qξ.

2.3. Gauge Covariance of the Discrete Solution Process

A little reflection on the property of gauge covariance of the fermion propagator in the

continuum leads us to a test for covariance of the discrete solution process. Suppose that,

in the continuum, we are given related Dirac equations:
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D (A)ψ = f,

D (A−∇θ) ψ̃ =

 Ω∗ (x, y) 0

0 Ω∗ (x, y)

 f,

where Ω (x, y) = eiθ(x,y) for some θ. Then, by the principle of gauge covariance, we have

ψ =

 Ω (x, y) 0

0 Ω (x, y)

 ψ̃.

Transferring these facts to the discrete lattice, we let θ be the vector of values of θ (x, y) on

the lattice sites and define discrete gauge transformation Ωθ by a diagonal matrix such that

(
Ωθ
)
kk

= eiθk .

The adjoint of this transformation, Ω∗θ is the diagonal matrix such that

(
Ω∗θ
)
kk

= e−iθk .

Finally, define the respective transformation matrix and its adjoint, which operate on two-

component wavefunctions by

Tθ =

 Ωθ 0

0 Ωθ

 T∗θ =

 Ω∗θ 0

0 Ω∗θ

 .
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Suppose now that we are given two sets of gauge data, A and Ã, and two sets of source data,

f and f̃ , related according to

Ã = A−Gθ, (42)

f̃ = T∗θ f. (43)

Then, given these two sets of inputs, Algorithm 3 should yield solution vectors, ψ and ψ̃, such

that

ψ = Tθ ψ̃.

Surely, if the solution of the auxiliary system appearing in Step 2 of Algorithm 3 is not gauge

covariant, then Algorithm 3 as a whole will not be either. Thus, we first ask whether, given

the above data, Steps 1-2 return vectors ξ and ξ̃ that satisfy

ξ = Tθ ξ̃.

Upon closer examination of the derivation of the algorithm, we realize that this cannot be

true. The problem arises in the weak form appearing in Step 4 of Algorithm 2. The weak form

for the modified data appears as

Find ξ̃h ∈
(
Vh

C

)2
s.t.

〈
D̂ξ̃h, D̂wh

〉
=

〈
f̃h, D̂wh

〉
∀wh ∈

(
Vh

C

)2
,

where f̃h is the projection of T∗θ f into the space of piecewise bilinears. The problem arises

in the inner product on the right hand side of this equality. Assuming that the Helmholtz

decomposition of the modified gauge field is given by Ã = ∇⊥uh +∇
(
vh − θh

)
+ kh, we can
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rewrite this inner product as

〈 e−i(v−θ) 0

0 e−i(v−θ)

 f̃h,
 me−uI euBk

−e−uB∗k meuI

wh〉 .

To achieve covariance, we need the exponential term embedded in f̃h, as shown in (43), to

cancel with the eiθ term in the inner product. Unfortunately, the fact that the exponential in f̃h

has been projected into a bilinear space, and that the inner product is traditionally evaluated

numerically using quadrature points not located at lattice sites, defeats exact cancelation. A

similar problem arises in the weak form used to transform ξh into ψh.

Fortunately, this difficulty occurs only in the imaginary part of the transformation. We can

thus remedy this problem, and in turn restore gauge covariance, by treating the imaginary

part of the transformation in the lattice setting, and the real part in the finite-element setting.

Recall from (5) that, for any transformation Ω (x, y) = eiω(x,y), we are free to solve

D (A)ψ = f for ψ by solving the modified problem

D (A−∇ω) ψ̃ =

 Ω∗ (x, y) 0

0 Ω∗ (x, y)

 f (44)

and then setting

ψ =

 Ω (x, y) 0

0 Ω (x, y)

 ψ̃. (45)

Then, if A has the Helmholtz decomposition given in (7), choosing ω = v eliminates the

gradient and constant portions of the gauge field, and, thus, all imaginary parts from the

transformation. That is, the intermediate problem becomes
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D
(
∇⊥u

)
ψ̃ =

 Ω∗ (x, y) 0

0 Ω∗ (x, y)

 f. (46)

After solving for the approximation to ψ̃ using the least-squares formulation, we obtain the

approximation to ψ on the lattice by setting

ψ = Tv ψ̃. (47)

Note that the only changes made in the finite-element solution process is that K and Q are

constructed with the gradient portion of the gauge field set to 0. We can now formulate a

discrete Dirac solver that exhibits gauge covariance.

ALGORITHM 4: Gauge Covariant Discrete Dirac Solve

• Input: Gauge field A, source term f .

• Output: Wavefunction ψ.

1. Compute u and v such that A = Cu+ Gv + k.

2. Set g = T∗v f

3. Construct L, K, P, and Q based on A = Cu+ k

4. Compute ξ = L−1Kg.

5. Compute ζ = P−1Qξ.

6. Set ψ = Tv ζ.

It is clear now that the discrete solution process satisfies the gauge-covariance test proposed

above. That is, given gauge fields A and Ã and source vectors f and f̃ defined in (42) and

(43), Algorithm 4 will return ψ and ψ̃ such that ψ = Tθ ψ̃. To see this, notice that A and Ã
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differ only by a gradient. Thus, for both sets of data, L, K, P, and Q are all constructed using

the same gauge field. Then

ψ = Tv P−1QL−1KT∗v f.

Similarly,

ψ̃ = Tv−θ P−1QL−1KT∗v−θ T∗θ f

= Tv−θ P−1QL−1KT∗v f

= T∗θ ψ.

Thus, setting ψ = Tθ ψ̃ yields the desired result.

2.4. Chiral Symmetry

Another physical property that a theory of QED should retain in the discrete setting is chiral

symmetry. This property is a global symmetry that says that, in the massless case, independent

constant rotations of the right- and left-handed components of the fermion field do not change

the physics of the model. A sufficient condition for retaining chiral symmetry in the discrete

setting is that the discrete Dirac operator, in the massless case, has zero main diagonal blocks.

For a more thorough discussion of this property, see [9], [10], [11].

It is easy to verify that the proposed method retains chiral symmetry once it is clear what

the discrete Dirac operator is. In fact, D is precisely the operator that relates ψ to f , that is,

Dψ = f.
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From Algorithm 4, it is clear that, for the proposed method,

D = Tv K−1LQ−1P T∗v. (48)

Setting m = 0 in (32) and (35), some simple algebra then shows that D has zero matrices as

its main diagonal blocks. For a more rigorous discussion of chiral symmetry in the context of

least-squares discretizations, see [3].

2.5. Species Doubling

A pitfall of many simple discretizations of the Dirac equation is that they suffer from what

is known in the physics community as species doubling. Essentially, this means that, for every

low frequency eigenvector of the discrete operator, a corresponding high frequency eigenvector

shares the same eigenvalue. In the mathematics community this phenomenon is known as

red-black instability [12]. It occurs as a result of naively discretizing first-order differential

operators using a central-type difference scheme. The proposed method avoids this problem

essentially by forming the normal equations in the continuum prior to the discretization by

finite elements. The resulting discrete operator that must be inverted, namely, L, has a 9-point

stencil similar to that resulting from a Ritz-Galerkin discretization of a constant coefficient

Laplacian. It is well known that discrete operators of this type do not suffer from red-black

instability, and so the proposed discretization does not suffer from species doubling. For a

more in-depth discussion of the phenomenon of species doubling, see [9], [10], or [11]. For a

discussion of species doubling specifically in the case of a least-squares discretization, see [3].

In the physics community, there is a famous no-go theorem, attributed to Nielsen and

Ninomiya, which has been interpreted as saying that a discretization of the Dirac equation

cannot satisfy hermiticity, locality, and chiral symmetry without suffering from species doubling

[9]. On the surface it appears that the discretization proposed here must violate this no-

go theorem. However, the discrete least-squares operator avoids this because it is not local.
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Although the proposed solution methodology only requires the inversion of matrices L and P,

which are local, the effective Dirac operator given in (48) is not a sparse matrix, and therefore

not local.

3. Numerical Experiments

In this section, we apply adaptive smoothed aggregation multigrid (αSA) to solve matrix

equation (31), which appears in Step 4 of Algorithm 4 [13]. The resulting linear system clearly

contains complex entries. To avoid working in complex arithmetic, we solve the equivalent real

formulation (ERF) of (31):

 X −Y

Y X


 x

y

 =

 a

b

 , (49)

where X,Y are real-valued matrices satisfying L = X + iY, ξ = x+ iy, and Kf = a+ ib.

Note that the matrix P appearing in (41) and Step 5 of Algorithm 4 does not depend on the

gauge field. It is simply a mass matrix with constant coefficients. Solutions to linear systems

involving P can be approximated quickly and efficiently by a number of methods. The vast

majority of the solution process is spent approximating solutions of linear systems involving

L. As such, we focus the remainder of this section on the solution of (31).

3.1. Results

Table I reports average convergence factors of αSA applied to the homogeneous version of (49)

and accelerated by conjugate gradients (CG) for various values of the particle mass, m, and

gauge field temperature, β. Note that the smaller β is the more disordered the gauge field

is. In all reported experiments, averages were taken over 20 distinct gauge fields. The αSA

preconditioner was based on a single V(2,2)-cycle with 4 prototype error components used to

build the interpolation operator. The relaxation scheme used was Gauss-Seidel. The operator
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complexity, σ, is the ratio of the total number of nonzero matrix entries in the multigrid

hierarchy to the number of nonzero entries in the fine-grid matrix.

β\m .001 .01 .1
2 .22 .20 .12
3 .18 .18 .10
5 .15 .15 .14

β\m .001 .01 .1
2 .22 .22 .13
3 .19 .20 .18
5 .16 .15 .11

β\m .001 .01 .1
2 .22 .21 .12
3 .22 .22 .17
5 .18 .17 .12

Table I: Average convergence factors for αSA-PCG applied to (49) on 64× 64 (top), 128× 128
(middle), and 256 × 256 (bottom) lattices with varying choices of mass parameter, m, and
temperature, β. For each grid size, operator complexity, σ, was approximately 1.4.

In Table I, all tests have operator complexities of approximately 1.40. The method performs

better for the largest mass tested and slightly worse for the two smaller masses. However,

since performances remains fairly static between m = .01 and m = .001, it appears that

critical slowing down has been eliminated. The value of β seems to affect the performance

of the solver. As the value of β increases, the matrix becomes easier to invert. This is not

surprising, since a larger β implies less disorder in the background gauge field. Finally, the

solver appears to be scalable with respect to the lattice size.

4. Conclusions

We described a discretization of a modified version of the simplified model of QED based on

least-squares finite elements. The modified continuum equations are obtained by applying

a transformation that effectively removes the gauge field from the differential operators.
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Discretizing the new system using least-squares finite elements results in a block-diagonal

discrete operator with diffusion-like diagonal blocks. We presented a discrete algorithm

that retains gauge covariance of the solution process and avoids species doubling. Finally,

we applied adaptive smoothed aggregation multigrid to the resulting linear system. The

numerical experiments demonstrate that the resulting system of linear equations can be

approximately solved quickly and efficiently by an adaptive multilevel solver with convergence

rates independent of grid size and mass of the particle.
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