B. A. Jones, G. H. Born and G. Beylkin, Comparisons of the cubed-sphere gravity model with the spherical harmonics, Journal of guidance, control, and dynamics, 33, 2, (2010) 415--425

B. A. Jones, G. H. Born and G. Beylkin, A cubed sphere gravity model for fast orbit propagation, in AAS/AIAA Spaceflight Mechanics Meeting, Advances in the Astronautical Sciences, 134, (2009) 567-584

K. Sandberg and G. Beylkin, Full-wave-equation depth extrapolation for migration , Geophysics, 74, (2009) WCA121-WCA128

C. Ahrens and G. Beylkin, Rotationally invariant quadratures for the sphere, Proceedings of the Royal Society A, 465, (2009) 3103--3125

G. Beylkin and L. Monzon, Nonlinear inversion of a bandlimited Fourier transform, Applied and Computational Harmonic Analysis, 27, (2009) 351--366

G. Beylkin, C. Kurcz and L. Monzon, Fast algorithms for Helmholtz Green's functions, Proceedings of the Royal Society A, 464, (2008) 3301--3326

G. Beylkin, C. Kurcz and L. Monzon, Fast convolution with the free space Helmholtz Green's function, Journal of Computational Physics , 228, (8) (2009) 2770–2791

G. Beylkin, J. Garcke and M. J. Mohlenkamp, Multivariate Regression and Machine Learning with Sums of Separable Functions, SIAM J. Sci. Comput., 31, (3) (2009) 1840-1857

G. Beylkin, M. J. Mohlenkamp and F. Perez, Approximating a Wavefunction as an Unconstrained Sum of Slater Determinants, Journal of Mathematical Physics, 49, (2008)

G. Beylkin, V. Cheruvu and F. Perez, Fast adaptive algorithms in the non-standard form for multidimensional problems, Applied and Computational Harmonic Analysis, 24 (2008) 354--377

G. Beylkin, M. J. Mohlenkamp and F. Perez, Preliminary results on approximating a wavefunction as an unconstrained sum of Slater determinants, Proc. Appl. Math. Mech., 7, (2007)

G. Beylkin, C. Kurcz and L. Monzon, Grids and transforms for band-limited functions in a disk,

Inverse Problems, 23, (2007) 2059-2088

G. Beylkin, R. Cramer, G. Fann and R. J. Harrison, Multiresolution separated representations of singular and weakly singular operators, Applied and Computational Harmonic Analysis, 23, (2007) 235-253

L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, and G. Beylkin, Efficient solution of Poisson's equation with free boundary conditions, J. Chem. Phys., 125 (7) (2006)

G. Beylkin and M. J. Mohlenkamp, Algorithms for numerical analysis in high dimensions,

SIAM J. Sci. Comput., 26 (6) (2005) 2133-2159

F. Andersson and G. Beylkin, The fast Gauss transform with complex parameters,

J. Comput. Phys. 203 (2005) 274-286.

G. Beylkin and K. Sandberg, Wave propagation using bases for bandlimited functions,

Wave Motion 41 (3) (2005) 263-291

G. Beylkin and L. Monzon, On approximation of functions by exponential sums,

Applied and Computational Harmonic Analysis, 19 (2005) 17-48

T. Yanai, G. Fann, Z. Gan, R. Harrison and G. Beylkin, Multiresolution quantum chemistry: Hartree-Fock exchange,

J. Chem. Phys. 121 (14) (2004) 6680-6688.

T. Yanai, G. Fann, Z. Gan, R. Harrison and G. Beylkin, Multiresolution quantum chemistry: Analytic derivatives for Hartree-Fock and density functional theory, J. Chem. Phys. 121 (7) (2004) 2866-2876.

G. Fann, G. Beylkin, R. Harrison and K. Jordan, Singular operators in multiwavelet bases

IBM Journal of Research and Development 48 (2) (2004) 161-171.

R. Harrison, G. Fann, T. Yanai, Z. Gan and G. Beylkin, Multiresolution quantum chemistry: basic theory and initial applications, J. Chem. Phys. 121 (23) (2004) 11587-11598.

R. Harrison, G. Fann, T. Yanai and G. Beylkin, Multiresolution quantum chemistry in multiwavelet bases

in: P.M.A. Sloot et. al. (Ed.), Lecture Notes in Computer Science. Computational Science-ICCS 2003, Vol. 2660, Springer, 2003, pp. 103-110.

K. Sandberg, D. Mastronarde and G. Beylkin, A fast reconstruction algorithm for electron microscope tomography

G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions,

G. Beylkin, Approximations and Fast Algorithms

G. Beylkin and L. Monzon, On generalized Gaussian quadratures for exponentials and their applications,

K.Willam, I.Rhee and G. Beylkin, Multiresolution Analysis of Elastic Degradation in Heterogeneous Materials,

G. Beylkin and R. Cramer, Toward Multiresolution Estimation and Efficient Representation of Gravitational Fields,

G. Beylkin and R. Cramer, A Multiresolution Approach to Regularization of Singular Operators and Fast Summation,

B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, Adaptive Solution of Partial Differential Equations in Multiwavelet Bases,

G.Beylkin, N.Coult and M.J.Mohlenkamp, Fast Spectral Projection Algorithms for Density-Matrix Computations,

G.Beylkin, J.M.Keiser and L.Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs,

Lecture notes for

These notes are introductions into the applications of USFFT and the transform coding

G.Beylkin, On Applications of Unequally Spaced Fast Fourier Transforms

G.Beylkin and A.Vassiliou, Wavelet transforms and compression of seismic data

G.Beylkin, On Multiresolution Methods in Numerical Analysis , Invited Lecture at ICM98,

L.Monzon, G.Beylkin and W.Hereman, Compactly supported wavelets based on almost interpolating and nearly linear phase filters (coiflets),

G.Beylkin, M. Brewster and A. Gilbert, A Multiresolution Strategy for Numerical Homogenization of Nonlinear ODEs,

G.Beylkin and N.Coult, A Multiresolution strategy for reduction of elliptic PDE's and eigenvalue problems,

D. L. Gines, G. Beylkin and J. Dunn, LU Factorization of Non-Standard Forms and Direct Multiresolution Solvers,

G. Beylkin and J. M. Keiser, An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear Partial Differential Equations

Chapter in

G. Beylkin and J. M. Keiser, On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet Bases,

A.Averbuch, G. Beylkin, R.R.Coifman, and M. Israeli, Multiscale Inversion of Elliptic Operators,

in

M. E. Brewster and G. Beylkin, A Multiresolution strategy for numerical homogenization,

G. Beylkin, Fast and accurate computation of the Fourier transform of an image,

Gregory Beylkin, On the Fast Fourier Transform of Functions With Singularities,

G. Beylkin and B. Torresani, Implementation of operators via filter banks, autocorrelation shell and Hardy wavelets,

G. Beylkin, On factored FIR approximation of IIR filters,

G. Beylkin and N. Saito, Wavelets, their autocorrelation functions, and multiresolution representation of signals,

Expanded abstract in

G. Beylkin, Wavelets and Fast Numerical Algorithms,

Lecture Notes for short course, AMS-93,

N. Saito and G. Beylkin, Multiresolution Representations using the Auto-Correlation Functions of Compactly Supported Wavelets,

Schlumberger-Doll Research Tech. Rep., 1991,

G. Beylkin, On wavelet-based algorithms for solving differential equations

APPM preprint 153, Dec. 1992, Chapter in the book

G. Beylkin,

On the fast algorithm for multiplication of functions in the wavelet bases

In Proceedings of the International Conference "

B. Alpert, G. Beylkin, R.Coifman and V. Rokhlin, Wavelet-like bases for the fast solution of second-kind integral equations

G. Beylkin, On the representation of operators in bases of compactly supported wavelets

G. Beylkin, R. Coifman and V . Rokhlin, Wavelets in numerical analysis

in: Wavelets and their applications, Jones and Bartlett, Boston, MA, 1992, pp. 181-210.

G. Beylkin, Wavelets, Multiresolution Analysis and Fast Numerical Algorithms, A draft of INRIA lectures, May 1991

G. Beylkin, R. Coifman and V . Rokhlin, Fast Wavelet Transforms and Numerical Algorithms I.

Comm. Pure Appl. Math. 44 (2) (1991) 141-183.

G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustics and elasticity

Wave Motion, 12, 1, pp. 15-52, 1990

M. Cheney, G. Beylkin, E. Somersalo and R. Burridge, Three-dimensional inverse scattering for the wave equation with variable speed: near field formulae using point sources

Inverse Problems, 5, pp. 1-6, 1989

R. Burridge and G. Beylkin, On double integrals over spheres

Inverse Problems, 4, pp. 1-10, 1988

W. Chang, P. Carrion and G. Beylkin, Wavefront sets of solutions to linearised inverse scattering problems

Inverse Problems, 3, 4, pp. 683-690, 1987

D. Miller, M. Oristaglio and G. Beylkin, A new slant on seismic imaging: Migration and Integral geometry

Geophysics, 52, 7, pp. 943-964, July 1987

G. Beylkin, Discrete Radon Transform

IEEE Trans. Acoustics Speech and Signal Processing, 35, 2, pp. 162-172, 1987

G. Beylkin, A mathematical theory for reconstructing discontinuities in linearized inverse problems of wave propagation

(expanded abstract) in Mathematical and computational methods in seismic exploration and reservoir modeling, SIAM, Philadelphia, PA, 1986

G. Beylkin, Mathematical theory for seismic migration and spatial resolution

in Deconvolution and Inversion, EAEG/SEG, Blackwell Scientific Publications, pp. 291-305, 1986

G. Beylkin and M. Oristaglio, Distorted-wave Born and distorted-wave Rytov approximations

Optics Communications, 53, 4, pp. 213-216, 1985

G. Beylkin, Reconstructing discontinuities in multidimensional inverse scattering problems: smooth errors versus small errors

Applied Optics, 24, 23, pp. 4086-4088, 1985

G. Beylkin, M. Oristaglio and D. Miller, Spatial resolution of migration algorithms

in A.J.Berkhout, J.Ridder, van der Waal L.F. (Eds.), Acoustical Imaging, 14, Plenum Pub. Co., pp. 155-167, 1985

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform

Journal of Mathematical Physics, 26, 1, pp. 99-108, January 1985

A.J. Devaney and G. Beylkin, Diffraction Tomography using arbitrary transmitter and receiver surfaces

Ultrasonic Imaging, 6, pp. 181-193, 1984

G. Beylkin, The inversion problem and applications of the generalized Radon transform

Communications on Pure and Applied Mathematics, Vol. XXXVII, pp. 579-599, 1984

G. Beylkin, Iterated Spherical Means in Linearized Inversze Problems

in Conference on Inverse Scattering: Theory and Applications, SIAM, Philadelphia, 1983

G. Beylkin, The fundamental identity for iterated spherical means and the inversion formula for diffraction tomography and inverse scattering

Journal of Mathematical Physics, 24, 6, pp. 1399-1400, June 1983