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We present a fast algorithm for the construction of a spectral projector. This al-
gorithm allows us to compute the density matrix, as used in, e.g., the Kohn—-Sham
iteration, and so obtain the electron density. We compute the spectral projector by
constructing the matrix sign function through a simple polynomial recursion. We
present several matrix representations for fast computation within this recursion,
using bases with controlled space—spatial-frequency localization. In particular we
consider wavelet and local cosine bases. Since spectral projectors appear in many
contexts, we expect many additional applications of our approaghsgs Academic Press
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1. INTRODUCTION

The goal of this paper is to introduce fast algorithms for computing spectral projectc
Although spectral projectors have a wide range of applications, we deal here primarily w
density-matrix computations as they arise in the Kohn—Sham scheme.

The Kohn—-Sham scheme provides a way to compute the ground state density o
arbitrary interacting system af electrons. In a typical problem, given the positions anc
charges of nuclei, we would like to know the wave function describing #lectron ground
state of the system. Since the wave functibracts on 8 variables, it is too expensive to
obtain. Instead, in density-functional theory (see, e.g., [1]) and other related theories
asks for the electron density, denotegx), which gives the probability of finding an
electron ak, i.e.,

pn(X) = /I\P(x, Xa, -y Xn) [P dXp - - - dX. 1)

1 This research was partially supported by DARPA/NASA Grant S43 5-28646 (G.B, N.C., and M.J.M.) a
DARPA/AFOSR Grant DOD F49620-97-1-0017 (G.B.).

32

0021-9991/99 $30.00
Copyright®© 1999 by Academic Press
All rights of reproduction in any form reserved.



FAST SPECTRAL PROJECTION ALGORITHMS 33

In order to construct the density as the limit of an iterative process, the Kohn—-Sh
scheme produces a sequence of densities and potentials. At itérat®nompute a new
(auxillary) potential from the previous density by

Vi () = Vo(X) + W (p (), X), )

whereV, is the potential induced by the nuclei. Although the correct functigvidbr this
process is not known, various approximations are in use (see, e.g., [1]).

To compute the new density, one finds themallest eigenvalues (with multiplicities)
{Aj} of the Hamiltonian—V? + V; (x) and their corresponding eigenfunctigns; (x)} and
forms

PR =D [ (0. 3
j=1

Ifthe densitiea)}](x) converge to some functigs, (), then the functiop(x) is the density
of the system.

In order to avoid the costly computation of the eigenfunctions, the density can be ¢
structed as the diagonal of the density matrix. Given a valseich thath, < u < Anqg,
the density matrix is defined as

Pu(X,y) = Pa(X, y) = D ¥ 00%; (). 4

Aj<pm

Although we have defined it using the eigenfunctions, the density matrix can be constru
without computing the eigenfunctions explicitly. The density-matrix approach is used
several methods. For example, in [2, 3] the density matrix is constructed using a variatic
approach. In [4-8], the authors use the Chebyshev polynomials to approximate the del
matrix. Although not directly related to the computation of the spectral projector and den:s
matrix, we would like to mention [9] and the references therein, where fast methods for
computation of the density of states are developed.

In our approach we compute the density matrix as a spectral projector by compu
the sign function. The standard methods for computing the sign function may be foun
the survey [10]. More recently in [11, 12], polynomial recursions for the sign function a
applied to the problem of computation of eigensystems, with the goal of parallelizing st
computations. The attractive feature of polynomial recursions versus Chebychev poly
mial approximations is that the order of approximation grows exponentially rather th
linearly. The main difficulty in using polynomial recursions is that they require matrix
matrix multiplications and thus are not suitable for large-size problems. The key point
our approach is that we consider matrix representations that remain sparse (up to finite
arbitrary accuracy) throughout the iteration that produces the spectral projector.

We present a set of tools for the fast computation of the sign function within the polynom
iteration. We observe that it is very important to construct an efficient representation of
Hamiltonian, which is the starting point for our iteration. To this end we use a “roug}
projection of the operator onto an adapted wavelet subspace sufficient to represen
density matrix. We show that the wavelet system of coordinates provides a suitable ch
for projectors corresponding to the lowest eigenvalues. Due to physical considerations
computational cost will scale cubicly in the number of electrpasatom(which is never
a very large number). Using a sparse representation within this rough subspace all
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us to obtain linear scaling in theumber of atomsThe efficiency of the linear scaling
method depends on electron locality, but even when some electrons are poorly locali
most are well localized, so we can represent the non-local portion of the density ma
efficiently using singular value decompositions of appropriate pieces. We demonstrate
basic approach on a one-dimensional example and indicate considerations for two-
three- dimensional implementations.

For the case where the number of eigenfunctions included is large (in many other ar
cations of spectral projectors) we present a multilevel partitioned representation of matr
(atechnique due to Rokhlin and his collaborators [13—15]) which is based on singular ve
decompositions of submatrices. We explain the computational gain using the Christof
Darboux summation formula (see also [32]). We also present a method for partition
the spectrum for the case where different sets of eigenfunctions require different base:
efficient representation.

Specifically, in Section 2 we define the matrix sign function and present the polynom
recursion to construct it. In Section 3 we develop tools to keep the matrices sparse du
this recursion. We present the basic ideas within that section, and defer the detalil
Appendix A. In Section 4 we consider a numerical example to illustrate the claims
Section 3. In Section 5 we discuss extensions of these technigues to multiple dimens
and, finally, make conluding remarks in Section 6.

2. THE SIGN FUNCTION AND ASSOCIATED PROJECTORS

The ordinary sign function is defined ¢noo, co) by

1, A>0
sign(x) = < 0, A=0 (5)
-1, A < 0.
For a matrix or operator of the form
TOGY) =Y A 0¥ (y) (6)
i

with A; real and{y;} an orthonormal set, we define

Sign(T)(X, y) = Y _ Sign(A )y 0¥ (y). (7)
i

We construct the spectral projector from the sign function using

P.OGY) = D 00 (y) = (I —sign(T — ul))/2. (8

Aj<p
Remark 2.1. For non-self-adjoinT, the sign function in (5) is defined as the sign of the
real part ofi.

Remark 2.2. We could use the Heaviside functioh— sign(—x))/2 instead of the sign
function in (7) and construct the projector in the analogous way.
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2.1. Recursive Construction

In this paper we use a polynomial recursion (also used in, e.g., [11, 12]) to comp
sign(T). The algorithm consists of the following steps:

To=T/ITl2

o aT 1 _ 9)
1= (BT—T3) /2 k=01,....

Other polynomials may be used in place of the one above; see [12] for a discussion of
various choices.

We first demonstrate thak — sign(T) in (9). Observe that i) is the unitary transform
that diagonalize3y, then it also diagonalizes all for k = 1, 2, .. .. Thus, we need only
show that the scalar iteration .1 = (3k — AY)/2 converges to siging), provided that
—1<xp<1. On the interval £1, 1] the function(3x» — A%)/2 is increasing and has the
fixed pointsh. = —1, 0, 1 and no others. Since

= oMzl (10)

we have either & Ag < Agy1 <1 or —1<Axy1 <Ak <0. Therefore,Ax=0 if Ag=0,
M—1if 0<xrp<l, andix— —1 if —1<Aix<O0. Both —1 and 1 are stable fixed
points.

The number of iterations needed for (9) to converge to accusaisyO(clog,x +
log, log,(1/€)), wherex is the condition number ofy. At the beginning of the itera-
tion, the smallest (say positive) eigenvalueTefis like « ~. Expanded abowt = 0, the
scalar recursion is approximately, ; = (3/2)Ax. The number of iterations needed for*
to reach some intermediate value lik€2lis thusO(log 3 ,, ). Now we enter the regime
where(1 — i) is small and convergence is quadratic. From this point to achieve precisi
€ takesO(log, log,(1/¢)) iterations.

The recursion (9) requires matrix—matrix multiplications and so still appears to be cos
as a computational tool. We, however, provide a mechanism for maintaining sparsity
the matrices during the recursion. In [16], symmetric band reductions are used for
purpose. Our approach is based on using wavelets or other representations (local cc
multiwavelets, partitioned SVD) to maintain sparsity during the recursion. In the future \
plan to investigate whether the approach of [16] can be incorporated into our approac
well.

One of the advantages of (9) is demonstrated in the proof above, namely, a mono
evolution of eigenvalues throughout the iteration. We observe that selecting a represent:
so that the original Hamiltonian and the resulting sign function are sparse appears t
sufficient for maintaining sparsity in the intermediate matrices.

One simple but very important observation is that the compressibility (sparse represe
tion for finite but arbitrary accuracy) of projectors may be different than that of the individu
eigenfunctions. We also note that computation of the projections via (9) has qualitativ
different properties than that of the direct computation of individual eigenfunctions. Name
if an eigenvalue has high multiplicity, the algorithms for direct computation of the eige
functions have difficulties, whereas the only difficulty that might occur in (9) is a possit
loss of accuracy ifly has a nullspace or a high condition number.
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Remark 2.3. The iteration step in (9) is equivalent to the “purification transform” of
McWeeny [17], where it is used as a correction in a variational method rather than a
recursion.

Remark 2.4. The following recursion (see, e.g., [10]) also provides an algorithm fc
computing sigiT) for the matrixT,

To=T
11)
Tei= (k+ T /2, k=0,1,...,

whereT, *is ageneralized inverse (If has a null space). We avoid this formulation becaus:
it requires computing an inverse, and does not preserve the ordering of the eigenvalues
also point to Appendix B where the spectral projector is expressed as an integral of Gre
function.

3. TOOLS FOR SPARSE REPRESENTATION

In this section we develop several representations for fast matrix—matrix multiplicatic
within the recursion (9). We present these ideas briefly in this section, and defer estim.
and proofs to Appendix A. We consider only one-dimensional problems here and ment
considerations for multiple dimensions in Section 5.2.

The representations of this section are critical to our approach since they control
speed of the algorithm. We describe an adapted discretization of the Hamiltonian fc
single atom in Section 3.1. In Section 3.2 we consider the sparsity of the spectral proje
for several atoms and introduce additional structure into the representation. In Section
we demonstrate a method suitable for projectors whetlee number of eigenfunctions of
interest, is large (e.g., above the Fermi level).

3.1. The Adapted Representation of the Hamiltonian

In order to construct the spectral projector using the sign function iteration (9) we m
first convert the true Hamiltoniad = —V? 4 V(x) to matrix form. This can be done by
either sampling in space or representing the operator in some basis. We will represent it
basis because this will allow us access to both the space and the spatial-frequency dorn
We will consider only orthonormal bases. We have observed that (quite naturally) the v
in which the initial discretization is handled has a strong effect.

The representation i on some finite set of basis functions can be viewed as a projecti
of H onto a subspace. We will call this projecf®r “rough projector” and apply the iteration
(9) to the matrixH = PHP. The projectoP identifies the subspace spanned by the fiirst
eigenfunctions. In discretizing the origional Hamiltonian, we would like to project it on
subspace that (i) includes the subspace indicateld twth controlled accuracy, and (ii) is
not significantly larger than the subspace indicatedPbfrormally, these conditions mean
PP — P| < e for some desired accuraeyand the operatdP(l — P) has small rank.

In order to construct the rough project® we need basis functions with controlled
localization in both space and frequency. The necessity of this localization is implied by
analysis of the instantaneous frequency of the eigenfunctions. It is clear that to be effici
P must be adapted to the potentd(x) and the energy cutoff.. Near the nucleus the
eigenfunctions are more oscillatory, omust allow higher frequencies.
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Note thatP does not need to “resolve” or “capturelitself, but onlyP. Other eigenvalues
and eigenvectors dfl will be changed byP, but an orthogonal projection does not change
thesignof the eigenvalues. See Section A.1 for a more detailed discussion of the effec
a rough projector.

We chooseP to be a projection onto a collection of wavelets. The desigR of based
on the potentiaV (x) and eigenvalue bound only. The size ofu — V (x) determines the
maximal “instantaneous frequency” and therefore the necessary sampling rate (i.e., wa
subspace). The derivative & (x) determines how much “frequency spillage” we will
have, and thus how welP can matchP locally. We will characterize this subspace using
an instantaneous frequency perspective. In Section A.2 we provide a rigorous justifica
using the local cosine basis (see, e.g., [18, 19]) and we indicate below how to translate
to the wavelet basis.

The eigenfunctiony, (x) satisfies (by definitiony, (x) = —(An—V (X)) ¥n(X). The WKB
(quasi-classical) approximation predicts behavior like

exp(j:i / ' Van = V(@) dt) (12)

and thus instantaneous frequengy, — V (x). Intuitively this says thatr, “lives” on the
curveé = vh(X) = v/An — V(X) in thex x & (spacex spatial-frequency) phase plane.
On the phase plane a local cosine basis element is viewed as a rectangtesuijiport
on its base interval, shifted in by its frequency, with area a constant (depending on th
normalization). Intuitively, those boxes that interset) should correspond to local cosine
elements that yield significant coefficients (see Fig. 1).

The important conclusion from the estimates in Section A.2 is that for potentials of t
form —C/|x| (in one dimension), the number of local cosine basis functions needed
constructP is proportional to/C 2 n, wheren is the rank ofP. We can thus represent

|
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FIG. 1. Schematic of instantaneous frequency plots for sewgrabith potentialV (x) = —C/x, overlaid
with the local cosine subdivision for the subspace usedfor
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FIG. 2. Schematic of instantaneous frequency plotsyfooverlaid with a wavelet phase plane.

H as an®(n x n) matrix in this adapted local cosine coordinate system and conipirte
O(n®) time using the recursion (9). For a single atom this result may already be sufficit
for the fast computation oP, sincen is never very large. In the following sections we
give further representation techniques to deal with multiple atoms and the case where
number of eigenfunctions is large.

To translate the above results to a wavelet representation, we need only note tha
wavelet partition of the phase plane is compatible with the type of partition desiréd for
In particular, high frequency is associated with small spatial support and high change
frequency (see Fig. 2). We therefore can represémind P asO(n x n) matrices in an
adapted wavelet subspace. The constant involved will depend on the choice of wavelet
the desired precision The dependence arfor a wavelet expansion is generally (dge),
yielding matrices of sizé&(nlog(1/¢) x nlog(1/¢)).

In what follows we use the standard form of the matrices, which is equivalent to simj
changing our system of coordinates into the wavelet basis, and note that it is also pos:
to use the non-standard form of [20, 21].

Remark 3.1. One could construcP using the atomic orbitals. At low precision this
should perform well, since the atomic orbitals match the eigenfunctions well. At high
precision, however, atomic orbitals are a poor choice because they do not allow Ic
refinements adapted to the particular potential in use.

Remark 3.2. If we choose the subspace fBr“too small” the density constructed will
still be an approximation of the true density (see Section A.1). Early in the Kohn-Sh:
iteration it may even be desirable to use an approximate density.

3.2. Multiple Atoms

In this section we consider the case where we hHdveiclei, each witm electrons. Be-
sides the rough projectidn, we will need additional structures for the sparse representatic
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of our matrices. We design our representation so that the final answer, the préjeatitir

be sparse. The initial Hamiltonian is banded and so will also be sparse in our repres
tation. It appears that due to the monotonicity properties of the recursion (9), choosir
representation so that the initial Hamiltonian and final projector are sparse is sufficient
maintaining the sparsity of the intermediate matrices. In this section we first produce lin
scaling inN, as others have done. Second we provide additional structures to reduce
constant in the complexity estimates.

As a first step we note that at any point in the recursion many of the matrix entr
may be less thaa and can be neglected, leaving a sparse matrix. For a single atom ¢
moderate number of eigenfunctionssuch a sparse representation may provide only
limited benefit. However, in the case where we h&lvauclei, each witm electrons, this
sparse representation provides a significant benefit. Without it we wouldh@e x n N)
matrices and therefore a&h((nN)?) algorithm.

As others (e.g., [2, 3, 22-24]) have noted, the locality of the electrons (eigenfunctio
allows us to obtain linear scaling in the number of nudlei The basic argument is as
follows: For an eigenfunction to represent a bound state electron, it muistermalized
and hence decay at infinity. Methods like WKB allow us to estimate the decay of t
eigenfunction and thus the region where it is numerically significant. Suppose the amplit
of the eigenfunctions is significant fdrunits, where atoms areunits apart and > s. If
we use &K point discretization per unit, then the matrix is banded, with bandwddtK
and diagonal lengtN - s - K. It thus hasN - s- d - K? entries and can be multiplied in the
recursion inN - s - K - (d - K)? operations. We have obtained linear scalind\inbut the
constans - d - K2 (ors- K - (d - K)?) may be quite large.

By using the wavelet coordinate system and the rough projector we can reduce
constant. The matrix can be organized into a set of blocks, each representing the intera
between a pair of nuclei (including self-interactions). We will discuss this structure here
a fixed (wavelet) scale and act as if there were only this scale and a coarse scale. Sinc
main estimate used for the blocksizedn x n), which includes the contributions from
all scales, in what follows we need not sum over the scales to obtain the overall estim
We decompose the projector into matrix blodgs, 1 < i, j < N. Letting /¢ denote
eigenfunctiork of atoma,

N n

Bij = Z Z l&ékl(x) |X%i 1';ﬁl(y)‘ymj ’ (13)

a=1 k=1

where-"denotes the wavelet transformandy are wavelet coordinates, and the restrictior
X~ i means thak is near nucleus. Each block is anD(n x n) square of (possibly)
significant entries, surrounded by entries less thahhis empty area between blocks is
the classically forbidden region. In this regign is a smooth (decaying) function, which
can be represented by a small number of coefficients at a coarse scale. The rough proj
P removes from the Hamiltonian those coordinates that are not needed for the proje
thus deleting the empty space between blocks. For an eigenfunction to contritgjje to
it must have a significant component near both nuici@nd j. The assumptions that all
eigenfunctions are only significant fdrunits and nuclei ars units apart mean tha;;

is set to zero ifii — j| > d/s. Our matrix thus is block-banded, witd blocks along the
diagonal,d/s blocks on each row, and with blocks of si@&n x n). Thus the matrix has
O(N - (d/s) - n?) entries and can be multiplied in the recursion(iN - (d/s)? - n°)
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operations. The constant has been significantly reduced, but may still be too large for s
problems. The fact that wavelets are well suited to representing wave functions has t
noted in [25].

If the number of nuclei in interaction rangd/g) is large, we will need an additional
technique. The bloclg;; is formed by eigenfunctions that have a significant componer
near both nuclei and j. The number of entries iB;; is determined by the highest energy
eigenfunctiony,. This eigenfunction has the slowest rate of decay, and so we expect
off-diagonal blocks to remain fulld(n x n)), and decay (perhaps slowly) in amplitude as
li — j| increases. Lower energy eigenfunctions, however, will decay much more rapic
so B, although full, will becomdow rank (up to€) long before|i — j|>d/s. We can
represent these blocks using the singular value decomposition (SVD) and obtain a i
more efficient representation. This technique takes advantage of the fact that core elec
interact only at short distances.

3.3. Partitioned SVD Representations

As the number of eigenfuctiomsincreases, the cost of computation using wavelet corr
pression may increase liké. In physical systems the number of eigenfunctions per atom
never very large, and the localization of the eigenfunctions keeps the representation sp
In other applications of projectors, we may have a situation corresponding to keepin
large number of eigenfunctions (above the Fermi level) on a single atom. For this ce
we propose a technique that should be insensitive tar even improve for larga. The
representation we use was developed by Rokhlin and his collaborators [13—15]. We u:
to exploit the implications of the Christoffel-Darboux summation formula (see [32]). Th
theorem does not apply in our case, but a similar approximate result does hold. We
present the Christoffel-Darboux summation formula and a sketch of Rokhlin’s approa
Then we present the approximate result that holds in our context.

PrROPOSITION3.3. Let {pk(X)}R2, be a set of normalized orthogonal polynomials on
[—1, 1] constructed fromil, x, X2, ... by Gramm-Schmidt orthonormalization with re-
spect to some weight(x) dx. Then{px(X)}f, satisfies a three-term recurrence ini-
tialized by p1(X) =0, po(X) =ag, and with general term f{x) = (@,X + bn) pn_1(X) +
(@n/an-1) Pa—2(X).

THEOREM 3.4 (Christoffel-Darboux [26, p. 43])

n

3 POpy) = ay P10 P(Y) = Pa(X) Pnsa(y).
k=0 X—Yy

(14)

Since the proof is brief, we present it here.

Proof. Expanding the numerator using the recurrence relation we obtain

ant1
an

((an+1x + b)) pa(X) + pn—l(X)> pn(y)

ana:1 pnl(y)>
= any1(X — Y) Pn(X) Pa(Y) + (@nt1/8n) (Pn(X) Pr=1(Y) — Pn—1(X) Pn(y)). (15)

— Pn(X) ((an+1y + bni1) pa(y) +
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FIG. 3. Partitioned SVD.

Dividing this bya,.1(x — y) reveals the top term in the sum, and we are left to prove th
same theorem with replaced byh — 1. The theorem follows by induction

This theorem says that the projector onto the figgblynomials is significantly less com-
plicated than the séip«(X)}i_o- The kernel pni1(X) pn(Y))/(X — y) naturally factors into

Pn+1(X) pn(y) = D1AD.. (16)

X—Yy
The matricesD;, D, are diagonal and can be applied with ea&és not diagonal, but is
compressible when partitioned as in Fig. 3. On each off-diagonal squae low-rank
matrix in the sense that its singular value decomposition has only a few singular values al
a given thresholdD; AD, must then also be of low rank (verified by direct evaluation). Tc
represenD; AD, on a square, we need to store some number of singular values, and
corresponding singular vectors, each with length the size of the current square. The cc
represent the entire matrix is the same ag¥orthis representation, which@(K (log K )?)
for aK point discretization. We call this a partitioned SVD representation (PSVD).

Remark 3.5. It might be possible to compress the singular vectors as well. The low ra
of Ais not sufficient to imply thaD; AD, is compressible in a wavelet basis, however. Fo
compressiblity ofD; AD, we would also need the vectors which are the diagonal3;of
andD; to be compressible. For example[Of, and D, are random diagonal matrices, the
productD; AD, appears random to the wavelets, and no compression is possible.

When matrices in PSVD form are multiplied, it creates multiple contributions to ea
part of the output matrix. To return to the PSVD form, we must add these contributions ¢
move them to the correct size square. This process is similar to multiplying in non-stanc
wavelet form [21].

The projectors we are considering are not formed from orthogonal polynomials &
so Theorem 3.4 does not directly apply. The theorem does hold for objects derived fi
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orthogonal polynomials by changes of variables. In particular it holds for the Chebyst
polynomialsT,(x), which under the change of variables= cosf becomeT,(cosp) =
cognd). Theorem 3.4 thus holds for cosines, after the appropriate change of variab
The cosines are eigenfunctions for the Hamiltonia%? which we will consider as our
prototype, with other Hamiltonians a perturbation of this by a potential.

We note that for the eigenfunctions efvV2 we could bypass Christoffel-Darboux and
use instead the formula for the projector onto exponentials (valid in any dimension),

n ,
. . 1 — @ M+DHx=y)
kx o—iky

kE y g™ = BEr = (17)

The approximate version of Theorem 3.4 that holds in our case is based on the claim
—V? and—V? + V(x) are “spectrally equivalent” in the following sense: LR be the
projector onto the firsin cosines (or exponentials). We will decompd3as

P=Rn—( —P)Rn+(l —RyP (18)

(see Fig. 4). The Christoffel-Darboux theorem appliedtg so it can be represented
efficiently in the PSVD. We claim that there is amso that(l — Ry)P and(l — P)Ry
are either low rank or highly localized. Supposing that— Ry,)P or (I — P)Ry, is of
rankr, it adds at most singular values to each PSVD square, and thus at mo$bg K
additional coefficients in the PSVD representatioril - Ry,) P or (I — P) R, were highly
localized, it would interact with only a few squares, and thus add few additional coefficiel
in the PSVD representation. It is also acceptablg for Ry,)P or (I — P) R, to consist

of a low-rank part plus a localized part. Estimates for this spectral equivalence appec
Section A.3.

nN—

i

FIG. 4. Schematic of instantaneous frequency plots and the boundaries of the projfectodsR,.
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4. NUMERICAL EXAMPLES

In this section we test our methods on a simple one-dimensional example. The |
guestion we wish to answer is how many iterations are required for convergence, as a fun
of the condition number of the initial matrix. Second we test how well our wavelet and PS\
representations compare to direct (sparse) matrix multiplications. This comparison is d
for both high and lowx (equivalentlyn).

To determine the number of iterations required we consider the opdrago512x 512
discretization of- V2 with periodic boundary conditions. Since the smallest eigenvalue 1
Tis0,To = T/||T| +«~I has condition numbar. (In the general problem, the condition
number is the band gap divided by the matrix norm.) We then see how many iteratior
takes forTy to converge to the identity to accuraeyfor several values of. According
to Section 2.1, we should have convergence&ditiogx + loglog(1/¢)) iterations, and
the O(logk) portion is confirmed in Table I. See [12] for a more detailed analysis of tt
convergence of this iteration.

To test the sparsity of our representations we consider ax5%22 finite-difference
discretization of the operator V2 — 300/|x| on the interval {-1/2, 1/2] with periodic
boundary conditions. In our first example, we chogse 0 and construct the projector onto
the 15 eigenfunctions with eigenvalues less tpamn our second example, we chogse
so that we project onto 70 eigenfunctions. In all cases we use a fifth-order finite differe
approximation for the second derivative and arrange for the singularity in the poten
to occur between sample points. The wavelets used were coiflets with seven vanis
moments.

ExAMPLE 4.1. First we uset = 0(n=15) and produce Fig. 5. Plotted is the number
of coefficients used to represent the matrix as a fraction of the size of the full matré, 51
The first plot is using standard coordinates and representing the matrix in sparse form,
truncation at 108. Initially the matrix is banded and so sparse, but by the end of the iterati
itis full. The second plot is again a sparse matrix representation with truncation®abi®
is in wavelet coordinates. Initially it mimics the banded form of standard coordinates, |
it remains sparse throughout the iteration, improving at the end. In the third plot we use
rough projector to reduce the size of the matrix and then use the sparse structure as b
in wavelet coordinates. The subspace we uséf@ given by all wavelet coordinates that
the eigenfunctions we wish to capture use at level®1@nd has dimension 322. In the
true problem the eigenfunctions are not known, but this choic®@faltows us to prove the
principle without addressing the problem of the constructidn (fee Section A.2). By using

TABLE |
Number of Iterations Required
for the Cubic Sign Recursion (9) to
Converge with 10°7 Accuracy

Condition
number ofT, Iterations
10 11
1% 15
10° 21

10t 26
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FIG. 5. (Example 4.1) Ratio of the number of significant coefficients above the thresholdd he total
number of matrix elements during the cubic sign recursion (9).

this rough projector, we have eliminated the bump in the number of wavelet coefficients
the middle of the iteration. The fourth plot is similar to the third, except the rough project
is set to level 10, giving P rank 133. The number of coefficients is cut further, without ar
increase in error, as discussed below. This final method gives about a factor of 16 sav
in the size of the matrix and a factor of 64 in the number of computations.

In Fig. 6 we plot the error in the density for the methods in Fig. 5. This error is comput
as thel. 2 norm of the difference in the computed density from the actual density (comput
from the eigenfunctions), divided by the norm of the actual density. We see convergenc
after 35 iterations, with some loss of accuracy due to conditionireg 6 x 10°). The use
of wavelet coordinates yields an extra digit of accuracy. The threshold used for the rol
projector need not be tied to the condition number of the matrix. In this example, we
able to use a rough projector to only five digits without increasing the final error.

ExAMPLE 4.2. In Fig. 7 we perform a similar test but withsuch that we capture 70
eigenfunctions. The first plot is using standard coordinates and truncating &t Tige
second plot uses wavelet coordinates with the same truncation. As predicted in Section
wavelet compression starts to fail, since the eigenfunctions are now more oscillatory.
rough projector at the 16 level is of full rank 512, and so provides no relief. The third
plot is the number of coefficients needed for the PSVD representation at four levels
subdivision, including storage of the singular vectors, with truncation &t. MJe have not
implemented the recursion in PSVD form, so we compute the PSVD from the full mati
constructed at higher precision at each iterate. (Truncation of the matrix tends to proc
a large number of singular values just above the threshold.) As suggested in Section
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FIG. 6. (Example 4.1) Relative error in the density generated in Fig. 5.
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FIG. 7. (Example 4.2) Ratio of the number of significant coefficients above the threshoidd. he total
number of matrix elements during the recursion (9)dazapturing 70 eigenvectors.
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FIG. 8. (Example 4.2) Relative error in the density generated in Fig. 7.

the PSVD still performs well. In Fig. 8 we plot the error in the density for this exampl
We choseu between two eigenvalues that are paired, so the band gap is smalkahaP.

We achieve slightly better performance than in Fig. 6 simply because we measure rele
error.

5. EXTENSIONS

5.1. Partitioning the Spectrum

In this section we describe a method for partitioning the spectrum and indicate a situa
when such a partition may be appropriate. We expect its greatest utility will be for ott
applications for spectral projectors, such as in wave propagation.

Letu' < u < 0. We will partition the spectrum intG-oo, 1), (1’, n), and(u, co). Con-
struct the spectral project®’ (x, y) onto the interval—oo, 1) as above. Then construct

H = -P)H( - P). (29)
The eigenvectors corresponding to eigenvaludd ¢dss thand’ now have zero eigenvalue

with respect toH’. We can then project onto th@’, ) portion of the spectrum dfl by
computing

P” = (I —sign(H' — ul))/2. (20)

The electron density, (X) is recovered by taking the diagonals®f and P’ and adding.
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The case wherg > 0 can be treated by applying an appropriate shift and then using t
construction above.

Such partitioning is useful if for some reason computi?igx, y) and thenP”(x, y) is
easier than simply computinig, (X, y). Within the Kohn—Sham scheme, the lower parts o
the spectrum, which correspond to densities which are localized around the nucleus, sh
converge more quickly under the DFT-LDA iteration than other parts of the spectrum.
may then be able to fiR’ early in the iteration process and save some work. This idea is si
ilar to the use of pseudopotentials except that we have not modified the potential, butins
the entire operator. We note thidt is no longer of the form “Laplacian plus potential.”

5.2. Multidimensional Implementations

Efficient implementation of both wavelet and PSVD representations in multiple dime
sions requires careful attention. The straightforward generalization, although available
not efficient.

In Example 4.1 we demonstrated that choosing a good initial adapted representation
crucial for efficiency. In multidimensional problems the treatment of the singularities (e.
the Coulomb potential of the ions) will also become critical. We plan to use multiwavelets
atool of discretization in multiple dimensions. These bases allow us to position boxes so
the point singularities of the ionic potential coincide with the corners of the parallelogral
where the multiwavelets are supported. At these corners the multiwavelets are discontin
already and so should be able to match the singularity with fewer scales than any overlap
wavelet basis. A paper on this topic which is a follow-up to [27, 28] is in preparation [2€

In addition, in a separate work [30] it is shown that for a large class of operators f
difference between the operator and its projection on a coarse scale can be repres
as a (small) sum of separable operators. This approach is shown to produce an effi
generalization for multidimensional implementation in, e.g., wavelet bases. We plan to
theseresults as a way ofimplementing the constructions of this paper in multiple dimensi

6. CONCLUSIONS

We have presented a fast algorithm for the construction of a spectral projector. T
algorithm allows us to compute the density matrix, as usedin, e.g., the Kohn—Sham iterat
and so obtain the electron density. We computed the spectral projector by constructing
matrix sign function through a simple polynomial recursion. We have presented seve
techniques for fast computation within this recursion, using bases with controlled spa
spatial frequency localization.

Since spectral projectors appear in many contexts, we expect many additional applica
of our approach. In particular we expect this basic approach to work in molecular dynan
simulations and homogenized wave propagation. We note that the details of the approp
representation to maintain sparsity may vary.

APPENDIX A: MATHEMATICAL ESTIMATES

A.1. The Effect of a “Rough” Projection

In this section we examine the effect of the rough projector from Section 3.1. We sh
that the signs of the eigenvalues are preserved. This fact is closely related to the la



48 BEYLKIN, COULT, AND MOHLENKAMP

inertia for a symmetric matrix, but we demonstrate it with a simple example. This exam,
also shows the effect of this projection on the eigenvectors. Suppogeth@ti < u < i,
and we have an operator

T = My10)¥(Y) + A292(X) Ya(y)

= A(a101(X) 4 b1g2(x)) (A191(y) + b1g2(y))
+ A2(@2p1(X) 4 bag2(X)) (A201(Y) + baga(y)), (21)

where{y, ¥,} are the normalized eigenfunctions afd, ¢»} is some basis. Assuming
that|b;| < € we letP be the projection ontg;. Our operator becomes

T =PTP = Ai(aa$1(X) (@e1(y)) + A2(3p1(X) (Qpa(Y))
= (1182)p1(X)p1(Y) + (2283) 1 (X)P1(Y). (22)

In the subspace we wanted to keep, the eigenvallbecomes.;a? = A1(1— O(e?)) < 0
and the eigenfunctiogr; (x) becomespi(X) = (Y1(X) — O(€)g2(x)) /(L — O(e?)). In the
complementary subspace, becomes.,aZ > 0.

A.2. The Instantaneous Frequency Perspective

In this section we examine how cloge can be toP, justifying the arguments of
Section 3.1. We use the local cosine basis and the quantitative quasi-classical methc
[31] because they allow rigorous bounds. Local cosine is difficult to orthogonalize in higt
dimensions, so we do not use it in practice.

Alocal cosine basis (see e.g., [18, 19]) is constructed as follows: We begin with a seque
of points on the line (interval, circle} - x; < X1 ---. Letl; =[x, Xj+1]. We have a set of
compatible bells, indexed by their intervdh; (x)}. These bells have the properties that
bi (x)bi_1(x) is even abouk;, by (x)b; (xX)=0 if i’ #i £ 1, and} b?(x) =1. On each
interval we have a set of cosines of the proper scaling and shift, denoted

c”(x) = 2 cos((p +1/2mx - Xi)) . (23)
Xit1 — Xi Xit1 — Xi 00

The set{b; (x)cip(x)} forms an orthonormal basis for the line.

The use of cosines instead of exponentials and the half-integer frequeneidg? is
crucial for the orthogonality of these functions but has no effect on the decay estimates
need. To simplify the proof, we provide estimates using the exponentials

L —— s )
{Q 00 = Xit1 — X AN Xit1 — X pzol 4)

For simplicity we also considdy; to be supported ofy, rather than overlapping with the
neighboring interval.

In Section 3.1 we introduced the notion that those local cosine boxes that intersect
instantaneous frequenayx) should correspond to basis functions that yield significan
coefficients (see Fig. 1). To make this notion rigorous, we can apply an integration by p:
argument as in [31].
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THEOREM A.1. Let | be an interval of length,ly; the normalized eigenfunction as
above V* € R, and h a dilation and translation to | of a bell b of®, 1]; then

121 A0 — V(X) = V¥l + 107 L= qo.1p + 2P| - 101 L=qo.1p

[(¥n. bref)| < 12V — (pr)?|

(25)

We can manipulate (25) to determine for whigtwe havel (yn, biel)| < €, wheree is
the desired accuracy. If we choose the consténto minimize |1, — V (X) — V*||L=q),
then+/V* is the central frequency in the instantaneous frequepex) for v, (x), and we
can interpret our estimates gnas defining a band aroung(x) on whichyr,(x) lives. In
Section A.3 we will use this band to show spectral equivalence. For the results of the cur
section, we are interested only in largeso it would be sufficient to také* =0.

Ignoring constant factors, we can concly¢,, by el)| < ¢ when

A — V(X)) — V¥~ b ||
p>max{|\/v*+ o — VOO — V¥, m,\/lzv*+ 1"~
€

€

(26)
€

1o + /1D oz + 26212V }
The role of the second and third terms in (26) is to give a minimum value famsistent
with the uncertainty principle. Even in a region whéféx) is nearly constant, the act of
localizing with a bell implies that we will need a certain number of frequencies to repres
Y¥n. We will ignore these two terms for our main analysis. In order to satisfy the first ter
in (26) it is sufficient to take

= V(X) = V*lLeq)
- )

| A
oo 1 4 VI

(27)

Sincev/V* is the typical local frequency, the first term in (27) defines the basic sampli
rate. The second term in (27) measures the “frequency spillage” due to the variatiol
V(x). If Ay is not available, we can uge in (27). Applying this theorem on a properly
chosen patrtition allows us to constrgetas in Fig. 1.

We wish to calculate the total number of basis functions needed to corBteatisfying
PP — P| <e. We will show that this number is the same order as the dimension
P, and thusP(l — P) does not have large rank. On any given partition, the contributio
of thel/V* term in (27) to the number of basis functions needed, when summed o
the intervals in the partition, takes the form of a Riemann sum which can be estimatec
fOlJC—p( dx=2+/C.Onaninterval¥;, ;1] of lengthl;, the second termin (27) is bounded
by i VIV’ ()1/€ = (v/C/e)1¥? /% By choosing ¥? = ax, we make the number of basis
functions needed per interval constant. Summing over the intervals, the total number
then be estimated byol(ﬁ/e)a1/3x‘2/3 dx = (3+/C/e)a3. If we could chooser — 0
then this term would not contribute at all. The second and third terms in (26), howe\
bound« from below by a universal constant. These estimates really hold on(,d]
since an interval which includes= 0 would haveV* = cc.

In order to improve the dependenceeinom ¢ ! to log(1/¢), one can apply the integra-
tion by parts technique used for Theorem K.times and minimize ovet. This technique
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fails only if ([V®(x))¥*+D /k increases as a function kf which is not the case in our
example.

One conclusion we may draw is that the sampling rate remains finite as we approact
singularity, as long as we only wish to capturgup toe. The second, more important, con-
clusion is thafP is representable in a local cosine subspace with dimension proportiona
+/C. The number of eigenfunctiomsis also proportional ta/C (by, e.g., WKB estimates),
so there is no fundamental obstructiorfRa@losely matchingP.

Proof of Theorem A.MVe will suppose our interval is [0], so

|
(yn, by€l) = /0 xpn(x)b(x/l)\/liexp<i X||Oﬂ> dx. (28)

Integrating twice by parts, we obtain

! 1 exp(i |
= [ L0 G/ D/120000 + 2060/ D0 + B0 )] \ﬁw dx. (29)
0 I —(pr/D)
Considering thdy'y/’ term separately and integrating by parts again, we have
b”(X) prr b'(X) . Xpr
—(pn/l)z\/7/ [ —VX)b(x) +i2— I i ]exp<| I )wn(x)dx.
(30)
Choosing any* we have
p v*
(V. rer’) <1+ —(pn/l)z)
B 1 1 /7 b pr b (x)
_W\/lj/o [_ 7 = Gn = V00 = Vb0 +i280 2 ]
« exp<i Xf”) V(%) dX 31)
Py _ 1 \f /' [_ ') pr b’(x)}
(Y, bref’) = v o 12V T, E (An — V(X) = VHb(X) +i2— T
. Xpr
X exp(| I—)%(x) dx. (32)

Applying Hélder’s inequality with the dual exponents ¢b) and then the triangle inequality
yields

1 2
|(¥n, brel)| < W\[

d(

|2

//

/
T

+ A0 = V(X) - V||oo+2_’

>||¢n(x)|||_1([0| (33)

Since [|[Yn(X) lLzqo,1 =1 we have||yn ()|l o,y < V1. Rearranging thé’s yields the
theorem. A
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A.3. Spectral Equivalence

For the techniques in Section 3.3 to be valid in our case, we need estimates to show
—V2and—V?+V (x) are “spectrally equivalent.” In this section we give estimates showin
to what degree this is true. Interpreting these results as good or bad will depend on
particular situation.

Theorem A.1 gives decay of local cosine coefficients|like* — (pm)?|~1. In Section A.2
we used this for smaW* and largep, but it can also be used for larye and smallp. Itis
slightly more convenient to compute the length of the{pet | (v, by el)| > €} than upper
and lower bounds on this set, since the deWdy- (pr)? is not symmetric about/V*.
Fixing 0 < X1, Theorem A.1 bounds the length of this set for the intexal{], | = 1—Xx3)
by (ignoring constants)

. VX)) = Vo IV =Vl | 0o . ] [IDlc D]l
max{ min<| N , , min —_— —— 7.
{ { € €/ V* } € { € eV12V*

(34)

As in (26) the second and third terms ensure that we do not violate the uncertainty princ
whenV is nearly constant. Singe ~ Im, we can translate the second part of the first tern
in (34) to a bound ok — m, whereR(P ~ P and P R, ~ Ry, on [Xq, 1]. This estimate
then bounds the rank @f — Ry) R¢ which in turn bounds the rank ¢f — R,) P. For the
potential—-C/|x| we obtain

IC/xa| C
e —C/xy €./ X/ X — C’

This bound goes to 0 as— oo, butincreases ag — 0. Using this method the other term
(I — P)Ry is negligible on kq, 1].

We note finally that the Christoffel-Darboux summation formula is really a local resu
We could partition [01] and apply bounds as above on each interval, obtaining a tight
result. Due to the difficulties of interpreting these results on the partition in Fig. 3, we w
not pursue this idea. It does suggest, however, that the performance of this algorithm
be better than predicted via (35).

(35)

APPENDIX B: GREEN'S FUNCTION AND SPECTRAL PROJECTORS

One approach to constructing the electron density uses contour integrals,
1
on(X) = T/G(x,x,z)dz (36)
Tl Jc

whereG = (H — 2)~! and the contou€ has the eigenvalues of interest in its interior. This
approach shifts the difficulty from solving an eigenvalue problem at each step in the Kot
Sham iteration to that of computing Green’s functi®mand integrating over an appropriate
contour to obtaino,(x). In this appendix we show that our sign function formulation is
equivalent to the contour integral (36), namely

(I —signT — pul))/2 = —i_/(T —z1)tdz (37)
2mi c
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M

Cr

—iM

FIG. 9. The contoulC, composed o€, andC;,.

where the contou€ is shown in Fig. 9T is a self-adjoint matrix, and at no point on the
contourC is the matrixT — zI singular.
We can write the integral (37) as

—1./(T—z|)—1dz=—1.U*</(D—z|)-1> dzu, (38)
27i C 2ri C

whereU is a unitary transformation which diagonaliZE®ndD is a diagonal matrix such
thatT = U*DU. The integral (37) may then be evaluated element-by-elemeb, @s in

— / (-2 tdz (39)
2mi c

wherea is a diagonal element dd.

We define the parts of the contd@ras in Fig. 9. The vertical par;, runs fromu —iM
tou +iM. The part labele®,, is a circular arc running throughi M and connecting with
the endpoints o€;. We take the limit aM — oo.

First consider the integral ove€}, . For M large enough, we may write the series repre-
sentation
k

. (40)

A-2t=-z1)" (k)
ko \ 4

This series is uniformly convergent for albnC, . By writing z= Me'? anddz=iMe'? do,
we obtain

S /2 k
! (A — )*1d2=i2/ ( * >d9. (41)

_E Cy 2 ! /2 Me‘9



FAST SPECTRAL PROJECTION ALGORITHMS 53

As M — oo only the termk = 0 remains, leaving us with

1 1
im —-— [ (-2 tdz=_. 42
Jim hiq} 9 dz=5 (42)

ForC, we havez=u + it anddz=i dt,

. 1 M A—p+it
im —— r—27tdz= lim —— ————dt. 43
M—oo  27i C|( ) M—oco 27 /—M (A —u)2+1t2 (43)

The imaginary part of the integrand in (43) is odd, so the imaginary part of the integra
zero. For the real part, we have

M

1 /M A—pu

im - [ AT gt i tan‘l()\l> =—}sign()»—u), (44)
m

—oo 21 Jom (A — )P +t2 T M—o0 2

and obtain (37).
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