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I INTRODUCTION

The use of wavelet based algorithms in numerical analysis is superficially
similar to other transform methods, in which, instead of representing a
vector or an operator in the usual way it is expanded in a wavelet basis, or
it’s matrix representation is computed in this basis. It turns out, however,
that because of the localization of wavelet bases in both space and wave
number domains, wavelet expansions organize transformations efficiently in
terms of proximity on a given scale (wave number) and interactions between
different neighbouring scales. Such organization of transformations (both
linear and non-linear) has been a powerful tool in Harmonic Analysis and
usually referred to as Littlewood-Paley, and Calderén-Zygmund theories
(see e.g. [1]).

Initially, the relations between computation and Calderén-Zygmund the-
ory was described in [2], [3], [4], where the Fast Multipole algorithm for
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computing potential interactions has made explicit many of the ingredients
of Calderén-Zygmund theory. In that paper a fast algorithm of order N to
compute all sums

is constructed. Naively it would seem to be impossible to do this calculation
in less than N? computations, since this is the number of interactions. It
was observed that the far field effect of a cloud of charges located in a box
can be described, to any accuracy, by the effect of a single multipole at the
center of the box, requiring only a few numbers (Taylor coefficients of the
field at the center of external boxes removed from the source). All boxes
were organized in a dyadic hierarchy enabling an efficient O(N) algorithm.
This algorithm is O(N) independently of the configuration of the charges,
therefore providing a substantial improvement over F/F'T, even though the
problem is to evaluate a convolution.

Wavelet based algorithms provide a systematic elegant generalization of
the fast multipole method, in which the geometric and cancellation struc-
ture of the basis functions (which may be thought of as multipoles) pro-
vide for automatic adaptability and economy in computation [5]. Another
novel aspect of transform analysis appearing naturally in connection with
wavelets is the so-called non-standard form, in which a transformation is
analyzed as a combination of successive contributions from different scales.
We start with an initial smooth or blurred input and output vector which
is then upgraded successively in input and output to higher and higher
resolution, in much the same way as the pyramid scheme in image process-
ing. This non-standard form corresponds algebraically to an imbedding
of the original vector of length N into a 2N — 2 dimensional space where
all scales are uncoupled and in which the original transformation becomes
sparse, followed by a projection into N dimensional space, in which scale
interactions are introduced.

Even in standard form, i.e. the usual matrix realization of an operator
in the wavelet basis, we gain a remarkable insight about operator compres-
sions. In fact, already for the case of the Haar basis we see that the nu-
merical manipulations needed to convert a given matrix to the Haar basis,
involve a succesion of difference operations between neighbouring columns
thus taking advantage of smoothness to reduce numerical complexity and,
thereby, providing a general method for selecting an orthonormal basis for
numerical compression of operators [5], [6], [7].

The class of operators which can be efficiently treated with wavelet bases
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includes Calderén-Zygmund and pseudo-differential operators; these oper-
ators are well behaved under translations and dilations (they satisfy trans-
lation and scale invariant size estimates). The numerical implementations
described in this paper are the beginning of a program for the conversion
of pseudo-differential calculus into a numerical tool. The main idea here is
the conversion of smoothing operators (error terms in pseudo-differential
calculus) into sparse matrices with a small number of significant entries.
Various numerical examples and applications are described in [5], [6], [8].

II PRELIMINARY REMARKS
Computing in the Haar basis, h; (z) = 279/2h(27 9z — k) j, k € Z, where

1 for 0O<z<1/2
h(x)=4¢ =1 for 1/2<z< 1 (2.1)
0 elsewhere.

offers a glimpse of the algorithms that we will review.

First, we note that the decomposition of a function into the Haar basis
is an order N procedure. Given N = 2™ “samples” of a function, which
can for simplicity be thought of as values of scaled averages

27" (k+1)
o0 = on/? / F(@)dz, (2.2)
2-nk
of f on intervals of length 27", we obtain the Haar coefficients
A 1 . . .
+1 _
& = "\/_i(sgk—l = S31) (2.3)
and averages
. 1. .
+1
s = ﬁ(sék—l + s3) (24)

for j =0,...,n—1and k = 0,...,2" 771 — 1. It is easy to see that
evaluating the whole set of coefficients di, s in (2.3), (2.4) requires 2(N -
1) additions and 2N multiplications.

Second, we note that in two dimensions, there are two natural ways to
construct Haar systems. The first is simply the tensor product h; js k& (2, y)
= hjk(x)hy k(y), so that each basis function h; j/ & x(z,%) is supported on
a rectangle. This basis leads to what we call the standard representation
of an operator.

The second basis is defined by the set of three kinds of basis functions

supported on squares: h;x(z)hjr (¥), hje(z)x;e (v), and X5,k (2) Rk (y),
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where x(z) is the characteristic function of the interval (0,1) and x; x(z) =

279/2x(279z — k). This basis leads to what we call the non-standard rep-

resentation of an operator (the terminology will become clear later).
Third, we note that if we consider an integral operator

T(f)(z) = / K(z,9)(y)dy, (2.5)

and expand its kernel in a two-dimensional Haar basis we find (for a wide
class of operators) that the decay of entries as a function of the distance
from the diagonal is faster in these representations than that in the original
kernel. This decay depends on the number of vanishing moments of the
functions of the basis. The Haar functions have only one vanishing moment,
J h(z)dz = 0, and for this reason the gain in the decay is insufficient to
make computing in the Haar basis practical.

To have a faster decay, it is necessary to use a basis in which the el-
ements have several vanishing moments. This is accomplished by wave-
lets. In particular, the orthonormal bases of compactly supported wavelets
constructed by I. Daubechies [9] following the work of Y. Meyer [10] and
S. Mallat [11] prove to be very useful. We outline here the properties of
compactly supported wavelets and refer for the details to [9] and [12].

The orthonormal basis of compactly supported wavelets of L%(R) is
formed by the dilation and translation of a single function ¢ (z)

Yin(z) =279 22792 — k), (2.6)

where j,k € Z. The function ¢(z) has a companion, the scaling func-
tion ¢(z), and these functions satisfy the following relations:

L—1
o(z) = V2 hpo(2z — k), (2.7)
k=0

L—-1
b(x) = V2 grp(2z — k), (2.8)
k=0

where

gk = (—1)khL_k_.1, k=0,...,L -1 (2.9)

and

+oo
/ o(z)dz = 1. (2.10)
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In addition, the function ¢ has M vanishing moments

+o0
(x)z™dz =0, m=0,...,M—1. (2.11)
—0
The number of coefficients L in (2.7) and (2.8) is related to the number
of vanishing moments M. For the wavelets in [9] L = 2M. If additional
conditions are imposed (see [5] for an example), then the relation might be
different, but L is always even.

The decomposition of a function into the wavelet basis is an order N
procedure. Given the coefficients s%, £ = 0,1,..., N — 1 as “samples” of
the function f, the coefficients si and df; on scales j > 1 are computed at
a cost proportional to N via

) n=L—1 ]
5] = hnSd o (2.12)
n=0
and
n=L-—1
. 1
&, = Z gn3i+2k+1’ (2.13)
n=0

where si and df; are viewed as periodic sequences with the period 277,

We note that the Haar system is a degenerate case of Daubechies’s wave-
lets. There is, however, a different way to construct orthonormal bases
which generalize the Haar system and yields basis functions with several
vanishing moments. We will discuss this construction in Section III in
greater detail, since it approaches the problem of vanishing moments di-
rectly and does not require any prior knowledge of the wavelet theory.

To discuss the standard and non-standard representations, and compres-
sion of operators in Sections IV-VI, we use Daubechies’s bases. Effectively,
these representations yield two schemes for the numerical evaluation of in-
tegral operators. The first uses the standard representation and leads to
numerical schemes which are, generally, of order N log(N), even for such
simple operators as multiplication by a function. Another class of algo-
rithms is obtained using the non-standard representation, which leads to
numerical schemes of order N. Also, the non-standard representation leads
to a proof of the celebrated “T'(1) theorem” of David and Journé (see [13])
(necessary and sufficient conditions for a Calderon-Zygmund operator to be
bounded in L%(R.)), and to uniform estimates for the error of the numerical
algorithms.

The non-standard forms of many basic operators, such as fractional
derivatives, Hilbert and Riesz transforms, etc., may be computed explic-



186 G. BEYLKIN, R. COIFMAN, V. ROKHLIN

itly [8]. In Section VII we give an example of constructing the non-standard
form for differential operators.

In Section VIII we show how to multiply two standard forms, and in Sec-
tion IX describe a fast iterative algorithm for constructing the generalized
inverse. This algorithm as well as several examples of Section X contain the
beginning of the program for conversion of the pseudo-differential calculus
into a numerical tool.

IIT BASES WITH VANISHING MOMENTS

Let us describe very simple bases for L?([0,1]) which are composed of
functions with several vanishing moments. Our construction generalizes
the Haar basis and does not require any prior knowledge of the wavelet
theory [6], [14].

Using the notion of multiresolution analysis [15], [16], we define V;VI to
be a space of piecewise polynomial functions,

V;-VI = {f: the restriction of f to the interval (2/n,27(n + 1)) is
a polynomial of degree less than M, for n =0,...,279 — 1,

and f vanishes elsewhere},
(3.1)

where M is a positive integer and j = 0,—1,—2,.... The space V;-VI has
dimension 277 M,

V(I)VICVJ_\/I1C'~‘CV;-V[C---,

and

Lz([ov 1) = U V;.
<0
We define the 277 M-dimensional space W;M to be the orthogonal comple-

Mo vM
ment of V3" in V37,

M M M
Vi =VvIEwY,

and obtain
L*([0,1]) = Vi P W} (3.2)
j<o0
If functions Ay,...,hy : [0,1] = R form an orthogonal basis for W}/,

then the orthogonality of WX to V! implies that the first M moments
of hy,...,hy vanish,

1
/hi(m)xmdw:O, m=0,1,...,M — 1.
0
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The 2M-dimensional space W is spanned by the 2M orthogonal func-
tions h1(2z), ..., hy(22), hi(2z — 1),...,hy(2z — 1), of which M are
supported on the interval [0, £] and M on [1,1]. In general, the space W;VI
is spanned by 277M functions obtained from hi,...,hp by translation
and dilation. There is some freedom in choosing the functions hq,..., Ay
within the constraint that they be orthogonal; by requiring normality and
additional vanishing moments, we specify them uniquely (up to sign).

First let us construct M functions f1,...,fsr : R — R supported on
the interval [—1, 1] and such that

1. The restriction of f; to the interval (0,1) is a polynomial of de-
gree M — 1.

2. The function f; is extended to the interval (—1,0) as an even or odd
function according to the parity of z + M — 1.

3. The functions {f;}!=M are orthonormal,
1
/ fz(x) fl(I) d.T:(Sil, ’i,lzl,...,M.
-1
4. The function f; has vanishing moments,

1
/ fi(z) 2™ dz = 0, m=0,1,...,i+M -2,
-1

Properties 1 and 2 imply that there are M? polynomial coefficients that de-
termine the functions fi,. .., fis, while properties 3 and 4 provide M? con-
straints. It turns out that the equations uncouple to give M nonsingular
linear systems that may be solved to obtain the coefficients, yielding the
functions uniquely (up to sign).

We now determine fy,..., far constructively by starting with 2M func-
tions which span the space of polynomials of degree less than M on the
interval (0,1) and on (—1,0), then orthogonalize M of them, first to the

functions 1,z,...,2M~1 then to the functions z™,zM+1 22M-1 and
finally among themselves. We define f{, f3,..., fi, by the formula
z™ 2z e(0,1),
fo(z)={ —z™ 1, ze€(-1,0),
0, otherwise,
and note that the 2M functions 1,x,..., M=, f} i ... fi are linearly

independent.
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1. By the Gram-Schmidt process we orthogonalize f} with respect to
L,z,..., ™71 to obtain f2, for m = 1,..., M. This orthogonality
is preserved by the remaining orthogonalizations, which only produce

linear combinations of the f2.

2. The following sequence of steps yields M — 1 functions orthogonal
to M, of which M — 2 functions are orthogonal to z™*! and so
forth, down to ome function which is orthogonal to z2~2. First, if
at least one of f2, is not orthogonal to ™, we reorder the functions so
that it appears first, (f2,2™) # 0. We then define 3 =12 —am-f?

where a,, is chosen so (f3,z™) = 0 for m = 2,..., M, achiev-
ing the desired orthogonality to ™. Similarly, we orthogonalize to
ML 2®M=2 each in turn, to obtain fZ, f3, f4,..., fM*! such

that (fm+l zt) =0fori <m+ M — 2.

3. Finally, we do Gram-Schmidt orthogonalization on f 1{\/}1 1 f}\‘f_l, ey
f2, in that order, and normalize to obtain fas, far—1,- .., fi.

It is easy to see that functions {f,}7=M satisfy properties 1-4 of the
previous paragraph. Defining hy,...,hjs as

B (z) = 212 frn (22 — 1), m=1,...,M,

we obtain

M _ 1 no . n — 97 —J
W;* = linear span {hy, ;: hp (z) =2 312 b (2792 — ),

. 3.
m=1,...,M; n=0,...,277 — 1}. (3.3)

Let {um}m=M denote an orthonormal basis for V). Combining it with
(8.3) (in view of (3.2)) we obtain an orthonormal basis of L?([0,1]). We
refer to this basis as the multi-wavelet basis of order M.

It is easy to see that the orthonormal set

{hm;: b)) = 2792 h (2792 —n), m=1,...,M; n€ Z}.

is an orthonormal basis of LZ(R).

Algorithms, various numerical examples and applications utilizing bases
of this Section are described in [6] and [14].

We now outline the construction of bases for L2[0,1]¢ and L2(R9),
for any dimension d. We describe this extension by giving the basis
for L2([0,1]%), which is illustrative of the construction for any finite-
dimensional space. Let us define the space V;VI’Z as

Vi =Y x VY, j=0,-1,-2,..,
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where V;VI is given in (3.1), and the space W;-Vm as the orthogonal com-

plement of V;Vm in V?{f ,

M2 _ x M2 M,2
Vi =Vt W
The space Wéw 2 is spanned by the orthonormal basis
{uilz)hi(y), hi(z)w(y), hi(x)h(y): 4,1=1,...,M}.

Among these 3M? basis elements each element v(z,y) has vanishing mo-
ments,

11
/ / v(z,y) 'y dz dy = 0, 4,0=0,1,...,M —1.
o Jo

The space WJM’2 is spanned by dilations and translations of the v(z,y)
and the basis of L?([0,1]?) consists of these functions and the low-order
polynomials {u;(z)u;(y): ¢,1=1,...,M}

IV THE NON-STANDARD FORM

The two-dimensional multi-wavelet basis described in Section III (with the
functions of the basis supported on squares) requires 3M? different combi-
nations of one-dimensional basis functions, where M is the number of van-
ishing moments. On the other hand, the two-dimensional bases obtained
using compactly supported wavelets [9] require only three such combina-
tions. Thus, we will use Daubechies’ bases to review the non-standard
form [5].

The wavelet basis induces a multiresolution analysis on L2(R) [15], [16],
i.e., the decomposition of the Hilbert space L?(R) into a chain of closed
subspaces

..CVo,C V3 CVgCV_;CV_,C... (4.1)
such that
NVv,={} Uv;=1*®). (42)
jeZ jeZ
By defining W as an orthogonal complement of V; in V;_4,
V1=V, QW (4.3)

the space L?(R) is represented as a direct sum

L’R)=PW;. (4.4)
jeZ
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On each fixed scale j, the wavelets {t;(z)}, .z form an orthonormal
basis of W; and the functions {p;(z) = 277/2p(27 72 — k)} ez form an
orthonormal basis of V.

If there is the coarsest scale n, then the chain of the subspaces (4.1) is
replaced by

VaC...CV2CViCVoC Vo CV,C., IPR)=V,.HW,.
j<n
(4.5)
If there are finitely many scales, then without loss of generality we set
the scale j = 0 to be the finest scale. Instead of (4.5) we then have

V,C...CV,CV;C Vo, Vg C L2(R) (46)

In numerical realizations the subspace Vy is finite dimensional.
Let T be an operator

T :L*(R) — L%(R), (4.7)

with the kernel K(z,y). We define projection operators on the subspace
Vj’ .7 € Za

P;:L%(R) - V;, (4.8)
as follows
(Pif) (@) =Y (fr0ik)05k(@). (4.9)
k

Expanding T in a “telescopic” series, we obtain
T = (Q;TQ; + Q;TP; + KTQ;), (4.10)
i€l
where
is the projection operator on the subspace W;. If there is the coarsest scale

n, then instead of (4.10) we have

T= > (QTQ;+QTP; + P;TQ;) + P,TP,, (4.12)
j=—o0
and if the scale j = 0 is the finest scale, then

To =Y (Q;TQ; + Q;TP; + P;TQ;) + P,TP,, (4.13)

Jj=1
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where T' ~ Ty = PyT P, is a discretization of the operator T on the finest
scale.

The non-standard form is a representation (see [5]) of the operator T as
a chain of triplets

T= {AJ"BJ"FJ'}jeZ (4.14)
acting on the subspaces V; and W,
Aj : Wj - Wj, (415)
B;:V; - Wj, (4.16)
Fj : Wj — Vj. (4.17)

The operators {Aj,Bj,I‘j}jez are defined as A; = Q;TQ;, B; = Q;TP;
and Fj = PJTQJ
The operators {4;, B;,I';},.7 admit a recursive definition (see [5]) via

the relation
T; = ( A{‘“ BJ"“ ) (4.18)
L1 T
where operators T; = P;TF;,

T’j : Vj — Vj. (419)
If there is a coarsest scale n, then

T = {{4;,B;,T;} ;eZ.5¢n Tn}, (4.20)

where T, = P,TF,. If the number of scales is finite, then j = 1,2,...,n
in (4.20) and the operators are organized as blocks of the matrix (see Fig-
ures 1 and 2).

We will now make the following observations:

1). The map (4.15) implies that the operator A; describes the interaction
on the scale j only, since the subspace W is an element of the direct sum
in (4.4).

2). The operators Bj, I'; in (4.16) and (4.17) describe the interaction
between scale j and all coarser scales. Indeed, the subspace V; contains
all the subspaces V;» with j' > j (see (4.1)).

3). The operator T} is an “averaged” version of the operator Tj_;.

The operators A;, B; and I'; are represented by the matrices of, 57
and 7,

o = / / K(z,y) ¥j,6(x) ¥j0 (y) dzdy, (4.21)
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FIGURE 1. Structure of the non-standard form of a matrix. Submatrices o, 8
and - on different scales are the only nonzero submatrices. In fact, most of the
entries of these submatrices can be set to zero given the desired accuracy.

ﬂi,k: = //K(w,y) ik () 00 (y) dzdy, (4.22)
and
= [ [ K@) ern@) by ) dody. (4.23)

The operator 7} is represented by the matrix s7,

Si,k’ = //K(way) i k(x) @jr(y) dzdy. (4.24)

Given a set of coeflicients sg’k, with k, k' = 0,1,..., N — 1, repeated appli-
cation of the formulae (2.12), (2.13) produces
L-1

Jo j—1
@, = § 9kGm Sk 9; mt20> (4.25)
k,m=0



WAVELETS IN NUMERICAL ANALYSIS 193

FIGURE 2. An example of a matrix in the non-standard form, A;; = 1/(i—73),i #
j. Entries above the threshold of 10™7 are shown black. Note that the width of
the bands does not grow with the size of the matrix.
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L-1

zl = Z gkhmsk+2z m+20 (426)
k,m=0

L-1

. -
7Z,l= Z hkgmsi+2i,m+2l’ (4.27)
k,m=0

Z hkh’msk+2z m+20 (428)
k,m=0
with 4,/ = 0,1,...,2"77 — 1, j = 1,2,...,n. Clearly, formulae (4.25) —
(4.28) provide an order N scheme for the evaluation of the elements of all
matrices o/, 37,97 with j =1,2...,n.

To compute the coefficients sg,k,, we refer to [5], where wavelet-based
quadratures for the evaluation of these coefficients are developed. Also, we
refer to [5] for a fast algorithm (order N) for constructing the non-standard
form for operators with known singularities, and to [8] for the direct eval-
uation of non-standard forms of several basic operators (see Section VII).

V THE STANDARD FORM
The standard form is obtained by representing

V=P w;, (5.1)

3i'>3

and considering for each scale j the operators { B 551 }J >4

Bl :Wj — W, (5.2)
I W; — Wy (5.3)
If there is the coarsest scale n, then instead of (5.1) we have
j'=n
V=V, P W;. (5.4)
=i+1

In this case, the operators {B], I } for j/ =j5+1,...,n are as in (5.2)
and (5.3) and, in addition, for each scale j there are operators {B"+1} and
Ty,

BV, - W, (5.5)

LI W5 — V. (5.6)
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FIGURE 3. An example of a matrix in the standard form, A;; = 1/(i — j),i # j.
Different “finger” bands represent “interactions” between scales.

(In this notation, I'"*! = T, and B! = B,,). If there are finitely many
scales and V) is finite dimensional, then the standard form is a represen-
tation of To = P()TP() as

To = {4;,{B] ji,§;?+1,{rj? J,:;‘H,B"’f1 T2 To}im, (5.7)

The operators (5.7) are organized as blocks of the matrix (see Figure 3).

If the operator T is a Calder6n-Zygmund or a pseudo-differential operator
then, for a fixed accuracy, all the operators in (5.7) (except T},) are banded.
As a result, the standard form has several “finger” bands which correspond
to the interaction between different scales. For a large class of operators
(pseudo-differential, for example), the interaction between different scales
characterized by the size of the coefficients of “finger” bands, decays as the
distance j' — j between the scales increases. Therefore, if the scales j and 7’
are well separated, then for a given accuracy, the operators B] ,I" can be
neglected.
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There are two ways of computing the standard form of a matrix. First
consists in applying the one-dimensional transform (see (2.12) and (2.13))
to each column (row) of the matrix and, then, to each row (column) of the
result. Alternatively, one can compute the non-standard form and then
apply the one-dimensional transform to each row of all operators B7 and
each column of all operators I';. We refer to [5] for details.

V1l COMPRESSION OF OPERATORS

If the operator T is a Calderon-Zygmund or a pseudo-differential operator,
then by using the wavelet basis with M vanishing moments, we force op-
erators {A;, B;,T; }jeZ to decay roughly as 1/dM+1, where d is a distance
from the diagonal. For example, let the kernel satisfy the conditions

1
K(z,y)] < —7Wp 6.1
K@)l < o= (6.1)
C
102 K (z,)| + |0y K (2,y)] < Iw_—zjl)m (6.2)

for some M > 1. Then by choosing the wavelet basis with M vanishing
moments, the coefficients o ;, 5] ;, 7], of the non-standard form (see (4.21)
- (4.23)) satisfy the estimate

o [+ 187, + 12| < Tffdiwﬁf (6.3)
for all
li—1]>2M. (6.4)
If, in addition to (6.1), (6.2},
[ K@) dsay|< i (65)
IxI

for all dyadic intervals I (this is the “weak cancellation condition”, see [10]),
then (6.3) holds for all ¢,1.

If T is a pseudo-differential operator with symbol o(z,£) defined by the
formula

T(f)(z) = o(z, D) f = / €7 o(z,€)/(€) de = / K(z,9)f(y) dy, (6.6)

where K is the distributional kernel of T', then assuming that the symbols o
of T and ¢* of T* satisfy the standard conditions

| 8¢ 8 o(x,€) |I< Cap(1+ | € )7+° (6.7)
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| 8¢ 82 o*(2,€) I< Cap(1+ | £, (6.8)

we have the inequality

log |+ 1801+ vyl < i (6.9)

PR
for all integer 1, .

Suppose now that we approximate the operator T, by the operator TZ
obtained from Ty by setting to zero all coefficients of matrices o, 37 and v7
outside of bands of width B > 2M around their diagonals. We obtain

c
I = Toll < 537 log, N, (6.10)

where C is a constant determined by the kernel K. In most numerical
applications, the accuracy e of calculations is fixed, and the parameters
of the algorithm (in our case, the band width B and order M) have to
be chosen in such a manner that the desired precision of calculations is
achieved. If M is fixed, then we choose B so that

C 1/M
B> (-E-logzN> . (6.11)

In other words, Ty has been approximated to precision € with its truncated
version, which can be applied to arbitrary vectors for a cost proportional
to N((C/e)logy, N )1/ M which for all practical purposes does not differ
from N.

A more detailed investigation [5] permits the estimate (6.10) to be re-
placed with the estimate

C
1T — Toll < B (6.12)

making the application of the operator Tp to an arbitrary vector with arbi-
trary fixed accuracy into a procedure of order N. Obtaining this uniform
estimate leads to a proof of

Theorem (G. David, J.L. Journé) Suppose that the operator

ﬂn=/waﬂm@ (6.13)

satisfies the conditions (6.1), (6.2), (6.5). Then a necessary and sufficient
condition for T' to be bounded on L? is that

B(z) =T(1)(=), (6.14)
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y) =T"(1)(y) (6.15)

belong to dyadic B.M.O., i.e. satisfy condition
cup / 18(z) — my(8)2dz < C, (6.16)
where J is a dyadic interval and
m(®) = 757 [ Ble)e (6.17)

Again we refer to [5] for details.

VII THE OPERATOR d/dz IN WAVELET BASES

As an example, we construct the non-standard form of the operator d/dz [8].
The matrix elements o, 87, and ~}; of A;, Bj, and I';, where i,1,j € Z
for the operator d/dz are easily computed as

oy =277 /oo Y2z — ) y'(2 0 —1)279dz = 27 0y, (7.1)
7 — 9 / ” W@z —4) @' (279 — )27 dz = 2798, (7.2)
and
v =277 /oo 27z — i)' (27 — 1) 27 dx = 279y, (7.3)
where
+oo d
o = Yz —1) ——d(z) dz, (7.4)
+oo d
B = Yz~ 1) S-v(z) dz, (7.5)
and
+oo d
n= [ ele-1)50(@) de. (7.6)

Moreover, using (2.7) and (2.8) we have

L—-1 L—-1

a; =2 Z Z Gk k! T2i4k—k! (7.7)

k=0 k'=0
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L-1 L-1

Bi =2 Z Z Gk Py T2itk— ks (7.8)

k=0 k'=0

and
L—1 L-1

vi =2 Z Z hi e T2ipk—kts (7.9)

k=0 k'=0
where
+oo d
Ty = / olz — 1) —p(z)dz, leZ. (7.10)
oo dz
Therefore, the representation of d/dz is completely determined by r
in (7.10) or in other words, by the representation of d/dx on the sub-

space V.
Rewriting (7.10) in terms of $(£), where
1 [F° .
p(€) = W /-oo w(x) e di, (7.11)
we obtain
+oo .
n= [ IR (.12

The following proposition (8] reduces the computation of the coeffi-
cients r; to solving a system of linear algebraic equations.

1. If the integrals in (7.10) or (7.12) exist, then the coefficients r, | € Z
in (7.10) satisfy the following system of linear algebraic equations
L/2
r=2|ru+ 3> ask_1(ra—oesr + rater—1)| (7.13)

k=1

and

> ol = -1, (7.14)
{

where the coefficients agg—1,

L—-2k
aAok—-1 = 2 Z hi hi+2k—1a k= 1, e ,L/2 (715)

=0

2. If M > 2, then equations (7.18) and (7.14) have a unique solution
with a finite number of non-zero vy, namely, 1 # 0 for — L+2<I<L—2
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and

T = —T_], (7.16)

Solving equations (7.13), (7.14), we present the results for Daubechies’
wavelets with M = 2,3,4,5. For further examples we refer to [8].

1. M=2
9 1
a1—§, 113——'8‘,
and
2 1
7”1——5, Tz_ﬁ,

We note, that the coefficients (—1/12,2/3,0,—2/3,1/12) of this example
can be found in many books on numerical analysis as a choice of coefficients
for numerical differentiation.

2. M=3
75 25 3
al“a, 3 = 1-2—8, as“ﬁ,
and
272 53 16 1
T1=—%, 7“2‘"56-5, 7”3=—ﬂ)-£, Ty = m
3. M=4
1225 245 49 5
alzﬁa as=—ﬁ, a5=ﬁ, a7=‘“1‘@,
and
39296 76113 1664
T Tioss3’ 2T 396a2a’ T 49553’
2645 128 1
™ T Tigeor2’ 7T 7ames’ 6T T 1is92ma
4. M=5
19845 2205 567 405 35
T 76388 BT Tgo2r BT g0z YT T32m68 T 32768
and
957310976 265226398 735232
1 T1159104017° 2T 11s9104017° ° T T 13780629’
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. 17297069 1386496 . 563818
= —_— re — — ——m—m————— [ —
4 2318208034°  ° 5795520085’ 10431936153’
2048 5
Ty = o g = e,
8113728119 18545664272

Remark 1. If M = 1, then equations (7.13) and (7.14) have a unique
solution but the integrals in (7.10) or (7.12) may not be absolutely conver-
gent. For the Haar basis (h; = hg = 27%/?) a; =1 and r; = —1/2 and we
obtain the simplest finite difference operator (1/2,0,—1/2). In this case
the function ¢ is not continuous and

PO =71 2 g,

Remark 2. For the coefficients 'rl(n) of d*/dz™, n > 1, the system of
linear algebraic equations is similar to that for the coefficients of d/dz.
This system (and (7.13)) may be written in terms of

#(€) =y riMelt, (7.17)
I
as

#(&) = 2™ (Imo(€/2)|? #(€/2) + [mo(€/2 + m)|* F(€/2+ 7)),  (7.18)
where myq is the 2m-periodic function

k=L-1
mo(§) =272 Y~ hee'®s, (7.19)
k=0

and h; are the wavelet coefficients. Considering the operator My on 27-
periodic functions

(Mo f)(€) = Imo(€/2)| £(£/2) + [mo(&/2 + m)|* f(¢/2+m),  (7.20)

we rewrite (7.18) as
My7 =277, (7.21)
so that 7 is an eigenvector of the operator My corresponding to the eigen-
value 27", Thus, finding the representation of the derivatives in the wavelet

basis is equivalent to finding trigonometric polynomial solutions of (7.21)
and vice versa [8].

Remark 3. While theoretically it is well understood that the opera-
tors with homogeneous symbols have an explicit diagonal preconditioner



204 G. BEYLKIN, R. COIFMAN, V. ROKHLIN

and T. For example,

j'=n+1
I =024+ A1+ > B{IY. (8.4)

i'=3

If the operators T and T are Caldérén—Zygmund or pseudo-differential op-
erators, then all the blocks of (8.1) and (8.2) (except for T}, and T},) are
banded and it is clear that I'? is banded. This example is generic for all
operators in (8.3) except for BJ’-L‘H, I‘;-L'H, (j=1,...,n) and T,,. The latter
are dense due to the terms involving 7}, and T,. It is easy now to estimate
the number of operations necessary to compute T. It takes no more than
O(N log® N) operations to obtain T, where N = 2".

If, in addition, when the scales j and 7’ are well separated, the opera-
tors B;: /, 1"‘;:/ can be neglected for a given accuracy (as in the case of pseudo-
differential operators), then the number of operations reduces asymptoti-
cally to O(N).

We note, that we may set to zero all the entries of T below the threshold
of accuracy and, thus, prevent the widening of the bands in the product.
On denoting T. and T. the approximations to T and T obtained by setting
all entries that are less than € to zero, and assuming (without a loss of
generality) ||T|| = ||T|| = 1, we obtain using the result of [5]

IT-Tdl<e IIT-Tl<e (8.5)
and, therefore,
|TT — (TT)e|| < €+ (14 €) + €(1 + €)2. (8.6)

The right hand side of (8.6) is dominated by 3e. For example, if we com-
pute T* then we might lose one significant digit.

IX FAST ITERATIVE CONSTRUCTION OF THE
GENERALIZED INVERSE

The fast multiplication algorithm of Section VIII gives a second life to a
number of iterative algorithms. As an example, we consider an iterative
construction of the generalized inverse. In order to construct the general-
ized inverse A’ of the matrix A we use the following result [17]:

Let o7 be the largest singular value of the m X n matrix A. Consider
the sequence of matrices X},

Xk+1 = 2Xk - XkAXk (91)
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with
X() = CYA*, (9.2)

where A* is the adjoint matrix and « is chosen so that the largest eigen-
value of aA*A is less than two. Then the sequence X converges to the
generalized inverse Af.

When this result is combined with the fast multiplication algorithm of
Section VIII, we obtain an algorithm for constructing the generalized in-
verse in at most O{N log® N log R) operations; where R is the condition
number of the matrix. (By the condition number we understand the ra-
tio of the largest singular value to the smallest singular value above the
threshold of accuracy).

The details of this algorithm (in the context of computing in wavelet
bases) will be described in [18]. We note that throughout the iteration (9.1),
it is necessary to maintain the “finger” band structure of the standard form
of matrices Xi. Hence, the standard form of both the operator and its
generalized inverse must admit such structure. We note that the pseudo-
differential operators satisfy this condition.

Size N x N SVD FWT Generalized Inverse Lo-Error
128 x 128 20.27 sec. 25.89 sec. 3.1-107*
256 x 256 144.43 sec. 77.98 sec. 3.42.104
512 x 512 1,155 sec. (est.) 242.84 sec. 6.0-1074

1024 x 1024 9,244 sec. (est.) 657.09 sec. 7.7-107%
215 x 215 9.6 years (est.) 1 day (est.)

TABLE 3.

We now present an example. The table above contains timings and ac-
curacy comparison of the construction of the generalized inverse via the
singular value decomposition (SVD), which is O(N?®) procedure, and via
the iteration (9.1)-(9.2) in the wavelet basis using Fast Wavelet Trans-
form (FWT). The computations were performed on Sun Sparc workstation
and we used a routine from LINPACK for computing the singular value
decomposition. For tests we used the following full rank matrix

=5 i#J
Az]: )
1 i=j
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where 4,5 = 1,...,N. The accuracy theshold was set to 1074, i.e., entries
of X below 10~ were systematically removed after each iteration.

X SOME PRELIMINARY RESULTS AND
DIRECTIONS OF RESEARCH

In this section we describe several iterative algorithms indicating that nu-
merical functional calculus with operators can be implemented efficiently
(at least for pseudo-differential operators). Numerical results and relative
performance of these algorithms will be reported separately.

Remark on iterative computation of the projection operator on
the null space.

We present here a fast iterative algorithm for computing P, for a wide
class of operators compressible in the wavelet bases.
Let us consider the following iteration

X1 = 2X, — X} (10.1)

with
Xo = aA* A, (10.2)

where A* is the adjoint matrix and « is chosen so that the largest eigenvalue
of aA*A is less than two.

Then I — X} converges to Ppyy. This can be shown either directly or
by combining an invariant representation for P, = I — A* (AA*)TA with
the iteration (9.1)-(9.2) to compute the generalized inverse (AA*). The
fast multiplication algorithm makes the iteration (10.1)-(10.2) fast for a
wide class of operators (with the same complexity as the algorithm for
the generalized inverse). The important difference is, however, that (10.1)-
(10.2) does not require compressibility of the inverse operator but only of
the powers of the operator.

Remark on iterative computation of a square root of an operator.

Let us describe an iteration to construct both A/2 and A='/2, where A
is, for simplicity, a self-adjoint and non-negative definite operator. We
consider the following iteration

Y. = 2 -Y XY, (10.3)

Xl_|_1 = (X[ + YEA), (104)

1
2
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with
Yo = S(A+1),
X, = %(A +1), (10.5)
where o is chosen so that the largest eigenvalue of §(A+1) is less than V2.
The sequence X; converges to A/2 and ¥; to A1/2. By writing 4 =
V*DV, where D is a diagonal and V is a unitary, it is easy to verify that

both X; and Y; can be written as X; = V*P,V and Y; = V*Q,;V, where P,
and @, are diagonal and

Qi1 = 2Q - QPQ,

Pui = 3(R+QuD) (10.6)
with
Q = S(D+D),
Py = —Z—(D+I). (10.7)

Thus, the convergence need to be checked only for the scalar case, which
we leave to the reader. If the operator A is a pseudo-differential operator,
then the iteration (10.3)-(10.4) leads to a fast algorithm due to the same
considerations as in the case of the generalized inverse in Section IX.

Remark on fast algorithms for exponential, sine and cosine of a
matriz

The exponential of a matrix (or an operator), as well as sine and cosine
functions are among the first to be considered in any calculus of operators.
In this section we present a fast algorithm for computing the exponen-
tial, cosine and sine functions of a matrix. Again, as in the case of the
generalized inverse, we use previously known algorithms (see e.g. [19])
which obtain completely different complexity estimates when we use them
in conjunction with the wavelet representations. We do not study these
algorithms in detail since our main goal in this paper is limited to pointing
out the advantages of computing in the wavelet bases.
The algorithm for the exponential is based on the identity

exp(A) = [exp(Z_LA)] 2 . (10.8)

First, exp(2~T A) is computed by, for example, using the Taylor series. The
number L is chosen so that the largest singular value of 272 A is less than
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one. At the second stage of the algorithm the matrix 2~ A is squared
L times to obtain the result.

Similarly, sine and cosine of a matrix can be computed using the elemen-
tary double-angle formulas. On denoting

Y, = cos(27TA) (10.9)
X, = sin(2714), (10.10)

we have for (=0,...,L —1

Yiqr = 2Y2-1 (10.11)
X1 = 2YiXy,, (10.12)

where [ is the identity. Again, we choose L so that the largest singular
value of 27 A is less than one, compute the sine and cosine of 2= A using
the Taylor series, and then use (10.11) and (10.12).

Ordinarily, such algorithms require at least O(IN?) operations, since a
number of multiplications of dense matrices has to be performed [19]. Fast
multiplication algorithm of Section VIII reduces complexity to not more
than O(N log® N) operations.

To acheive such perfomance it is necessary to maintain the “finger” band
structure of the standard form throughout the iteration. Whether it is
possible to do depends on the particular operator and, usually, can be
verified analytically.

Unlike the algorithm for the generalized inverse, the algorithms of this
remark are not self-correcting. Thus, it is necessary to maintain sufficient
accuracy initially so as to obtain the desired accuracy after all the multi-
plications have been performed.

REFERENCES

[1] Y. Meyer, Ondelettes et Operateurs, Hermann, Paris, 1990.

[2] V. Rokhlin, Rapid Solution of Integral Equations of Classical Poten-
tial Theory, Journal of Computational Physics, vol. 60, 2, 1985.

[3] L. Greengard and V. Rokhlin, A Fast Algorithm for Particle Simu-
lations, Journal of Computational Physics, 73(1), 325, 1987.

[4] J. Carrier, L. Greengard and V. Rokhlin A Fast Adaptive Multipole
Algorithm for Particle Simulations, Yale University Technical Re-
port, YALEU/DCS/RR-496 (1986), SIAM Journal of Scientific and
Statistical Computing, 9 (4), 1988.



WAVELETS IN NUMERICAL ANALYSIS 209

[5]

[6]

[10]

[11]

[12]

[13]

G. Beylkin, R. R. Coifman and V. Rokhlin, Fast wavelet trans-
forms and numerical algorithms I. Yale University Technical Report
YALEU/DCS/RR-696, August 1989, Comm. on Pure and Applied
Math., vol. XLIV, 141-183, 1991.

B. Alpert, G. Beylkin, R. R. Coifman and V. Rokhlin, Wavelets for
the fast solution of second-kind integral equations, Technical report,
Department of Computer Science, Yale University, New Haven, CT,
1990.

R. R. Coifman, Y. Meyer and V. Wickerhauser, Wavelet Analysis
and Signal Processing, this volume.

G. Beylkin, On the representation of operators in bases of compactly
supported wavelets, preprint, to appear in SIAM J. on Numerical
Analysis.

1. Daubechies, Orthonormal Bases of Compactly Supported Wavelets,
Comm. Pure and Applied Math., XL1, 1988.

Y. Meyer, Wavelets and Operators, Analysis at Urbana, vol.1, edited
by E. Berkson, N.T. Peck and J. Uhl, London Math. Society, Lecture
Notes Series 137, 1989.

S. Mallat, Review of Multifrequency Channel Decomposition of Im-
ages and Wavelet Models, Technical Report 412, Robotics: Report
178, NYU (1988).

I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Ap-
plied Mathematics, SIAM, (1991 in press).

R. Coifman and Yves Meyer, Non-linear Harmonic Analysis, Oper-
ator Theory and P.D.E., Annals of Math Studies, Princeton, 1986,
ed. E. Stein.

B. Alpert, Sparse Representation of Smooth Linear Operators, PhD
thesis, Yale University, 1990.

Y. Meyer, Ondelettes et functions splines. Technical Report,
Séminaire EDP, Ecole Polytechnique, Paris, France, 1986.

S. Mallat, Multiresolution approzimation and wavelets, Technical re-
port, GRASP Lab, Dept. of Computer and Information Science, Uni-
versity of Pennsylvania.

G. Schulz, Iterative Berechnung der reziproken Matriz, Z. Angew.

"Math. Mech. 13, 57-59, 1933.



210 G. BEYLKIN, R. COIFMAN, V. ROKHLIN
[18] G. Beylkin, R. R. Coifman and V. Rokhlin, Fast wavelet transforms
and numerical algorithms II., in progress.

[19] R. C. Ward, Numerical computation of the matriz exponential with
accuracy estimates, STAM. J. Numer. Anal. vol.14, 4, 600-610, 1977.



