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Fast algorithms for Helmholtz Green’s functions
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The formal representation of the quasi-periodic Helmholtz Green’s function obtained by
the method of images is only conditionally convergent and, thus, requires an appropriate
summation convention for its evaluation. Instead of using this formal sum, we derive a
candidate Green’s function as a sum of two rapidly convergent series, one to be applied in
the spatial domain and the other in the Fourier domain (as in Ewald’s method). We prove
that this representation of Green’s function satisfies the Helmholtz equation with the
quasi-periodic condition and, furthermore, leads to a fast algorithm for its application as
an operator.

We approximate the spatial series by a short sum of separable functions given by
Gaussians in each variable. For the series in the Fourier domain, we exploit the
exponential decay of its terms to truncate it. We use fast and accurate algorithms for
convolving functions with this approximation of the quasi-periodic Green’s function. The
resulting method yields a fast solver for the Helmholtz equation with the quasi-periodic
boundary condition. The algorithm is adaptive in the spatial domain and its performance
does not significantly deteriorate when Green’s function is applied to discontinuous
functions or potentials with singularities. We also construct Helmholtz Green’s functions
with Dirichlet, Neumann or mixed boundary conditions on simple domains and use a
modification of the fast algorithm for the quasi-periodic Green’s function to apply them.

The complexity, in dimension d>2, of these algorithms is O(x?log k+ C(log e~ 1)%),
where € is the desired accuracy, k is proportional to the number of wavelengths contained in
the computational domain and C'is a constant. We illustrate our approach with examples.

Keywords: quasi-periodic Green’s functions;
Dirichlet and Neumann boundary conditions; fast adaptive solvers; lattice sums;
separated representations; unequally spaced fast Fourier transform

1. Introduction

In this paper, we construct fast and accurate algorithms for applying Helmholtz
Green’s functions incorporating a variety of boundary conditions on simple
domains. We come to this problem from the perspective of developing fast
algorithms for applying operators of mathematical physics with finite but
arbitrary accuracy (in operator norm) as we discuss later. Instead of emphasizing
computing of values of Green’s functions, as is typical in the literature mentioned
below, we focus on the problem of applying such Green’s functions as operators
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in a fast and accurate manner. We note that the accurate computation of the
values of a Green’s function does not by itself resolve the issue of its efficient
application and use as an operator. Towards this end, we develop approxi-
mations of Green’s functions that resolve the problem of algorithmic efficiency in
applying them to discontinuous functions or potentials with singularities.

The key element of our approach is a fast algorithm for computing
convolutions with the quasi-periodic Helmholtz Green’s function,

u@) = | Gule—)f(w) d. (1)

for functions f € LP(D), where D is the primitive cell of a Bravais lattice 4. We
consider the case where the lattice is defined by d linearly independent vectors in
dimension d>2. Green’s function G, satisfies

(A + &%) Gy(z) = —d(x), (1.2)

Gz +1) =e G (), (1.3)

where k>0, l€ A, € D and k€R’. The quasi-periodicity vector k is sometimes
referred to as Bloch or crystal momentum vector. Consequently, the function u
in (1.1) satisfies

(A + P u(x) = —f(z), (1.4)
u(x+1) = e Fly(x). (1.5)

It is well known that the method of images (typically used in dimensions d=2
or 3) gives rise to a natural, yet formal representation,

1 eiK‘:l}+l| k-1
— e for dimension d = 3,
ool dm & |z + |
Gy () = ; . (1.6)
1 Z Hél)(K\a: +1))e™! for dimension d = 2,
=y
where || denotes the length of a vector and Hél) is the zeroth-order Hankel

function of the first kind. These sums are only conditionally convergent; thus,
they require a summation convention to yield a classical solution of (1.4)
and (1.5).

The formal sum (1.6) appears in many areas of physics and engineering. For
example, one of the first applications (Ewald (1913), see Cruickshank et al.
(1992) for an English translation) describes X-ray diffraction by crystals using
(1.6) as the key mathematical object. In fact, by transforming (1.6) to the
Fourier domain, it is easy to obtain directions and X-ray frequencies by using
the so-called Ewald’s sphere. The sum (1.6) occurs in wave propagation in
periodic structures (e.g. Brillouin 1953), in the study of photonic crystals (e.g.
Soukoulis 1992; Joannopoulos et al. 1995), in band structure computations in
solid-state physics (e.g. Kohn & Rostoker 1954; Ham & Segall 1961), as well as
in the analysis of ergodic systems (Berry 1981).
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Besides Ewald’s (1921) method, there are other approaches for interpreting
and evaluating (1.6) (see Glasser & Zucker (1980) and Linton (1998) for a survey
and references therein). One approach is to use addition theorems for Bessel
functions, which separates the input variables  from the lattice vectors l. In such
cases, Green’s function is written as an expansion with respect to Bessel
functions with coefficients given by a lattice sum. We note that Yasumoto &
Yoshitomi (1999), McPhedran et al. (2000) and Dienstfrey et al. (2001) employ
this approach and develop different algorithms for evaluating the lattice sum.
Although these algorithms yield a method for the fast evaluation of Green’s
function, they do not provide an algorithm to perform fast convolutions.

In our approach, as in Ewald’s (1921) summation, we split Green’s function
into two absolutely convergent series, one in the spatial domain and the other in
the Fourier domain. We then verify directly that our representation of Green’s
function satisfies (1.2) and (1.3) in the usual sense and, thus, (1.1) yields the
classical solution of (1.4) and (1.5). We also provide an alternative derivation of
Ewald’s method using a limiting procedure based on analytic continuation, which
more naturally connects with our approach and goals.

Using the periodic Green’s function (k=0 in (1.3)) and the method of images,
we construct other Helmholtz Green’s functions that incorporate either Dirichlet,
Neumann or mixed boundary conditions on simple domains. The resulting
integral operators are no longer convolutions, but the algorithm for applying
these Green’s functions is similar to that for the quasi-periodic Green’s function.
The application of Green’s functions satisfying boundary conditions is also split
between the spatial and the Fourier domains resulting in an algorithm with the
same computational complexity as that for the quasi-periodic Green’s function.

In the spatial domain, we approximate operators using separated representations
given by a sum of Gaussians and note that this type of approximation (e.g.
Beylkin & Mohlenkamp 2002, 2005; Beylkin & Monzén 2005) has been successfully
used by Harrison et al. (2004) and Beylkin et al. (2007, 2008) to construct fast and
accurate algorithms for applying non-oscillatory kernels. In this paper, we extend
the results in Beylkin et al. (submitted) to the quasi-periodic Helmholtz Green’s
functions as well as Green’s functions with boundary conditions on simple domains.
Thus, to apply Green’s function, in the spatial domain we compute convolutions
with Gaussians via an adaptive multiresolution algorithm (e.g. Harrison et al. 2004;
Beylkin et al. 2007, 2008), or the fast Gauss transform in Greengard & Strain (1991),
Strain (1991) and Greengard & Sun (1998).

In the Fourier domain, we use the unequally spaced fast Fourier transform
(USFFT) (e.g. Dutt & Rokhlin 1993; Beylkin 1995; Lee & Greengard 2005). The
resulting algorithm computes (1.1) with controlled accuracy €, computational
cost proportional to (log e_l)d, and maintains its performance when applied to
functions with discontinuities or singularities (e.g. Coulomb or Lennard-Jones
potentials). The same approach yields algorithms for Green’s functions in simple
domains with either Dirichlet, Neumann or mixed boundary conditions. These
algorithms yield fast and adaptive solvers for the Helmholtz equation with the
aforementioned boundary conditions and have computational complexity
O(k?log k + C(log e 1)?), where C'is a constant.

We proceed by providing some preliminaries in §2 and, in §3, derive a
representation of the quasi-periodic Green’s function as a sum of two convergent
series solving (1.2) and (1.3). Using this representation, in §4 we develop a fast
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algorithm for computing convolutions with the quasi-periodic Green’s function and
illustrate our approach with examples. Then, in §5, we construct approximations to
Green’s functions satisfying boundary conditions on simple domains. Finally, we
discuss implications of our approach for developing a unified methodology for
applying oscillatory and non-oscillatory Green’s functions.

2. Preliminaries

(a) Bravais lattice
A Bravais lattice in dimension d=2 is defined as
A={nl + n2l2}nl,n2€Za

where the lattice vectors I, 1, € R? are linearly independent. The reciprocal
lattice (in the Fourier domain) is then given by

* —
A4 = {mldl + m2d2}m1,m2€Z)

where d;, d, € R? are the reciprocal lattice vectors defined to satisfy

1, =y,
: 0, i%j.

Similarly, in dimension d=3 we have
A ={nly +noly + ngls}, nynez
and
A" = {myd; + mody + mzds}, mym, ez

where 1, Iy, I; € R? and dy, dy, d3 € R®. An obvious generalization yields Bravais
lattices in any dimension d.

In dimension d, we consider the primitive cell to be the d-dimensional
parallelepiped associated with the vectors Iy, l,, ..., l;. We denote the primitive
cell as D and its volume as V. We refer to, for example, Kittel (1986) for a
detailed description of Bravais lattices.

(b) Fourier transform and Poisson summation formula

We use the Fourier transform in dimension d

fo) = | s do

and its inverse
1 2\ inp
T) =— e P dp.
) = Gy o fP)  dp
For our purposes, it is sufficient to consider the Schwartz class of functions & ([Rd)
containing infinitely differentiable functions with derivatives decaying faster
than any inverse polynomial (e.g. Grafakos 2004, §2b). We have
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Proposition 2.1. (Poisson summation formula) Let fES(RY), A be a Bravais
lattice, A* the reciprocal lattice and V the volume of the primitive cell. Then

. 1 . .
Zf(w + l)elk'l =7 Z f(27rd—k)em(2”dfk),

led dea*
d
for x, k € R

This result follows from observing that the set of functions {e*"® 4}, ;. forms
an orthonormal basis for S(D) since the linear change of variables x = Zle yil;s
where y= (y1,...,y4) € [0,1]%, reduces the problem to that of the standard
Fourier series {e*™¥' "}, _u.

(¢) Free-space Green’s function

The outgoing free-space Helmholtz Green’s function in dimension d (where

H((;)—m /2 is the Hankel function of the first kind),

: (d-2)/2
_1 K 1)
Gfrco(w) - 4 (27r|m|> H(d72)/2(’<|w’)7

satisfies the Helmholtz equation
(A + k%) Gpyeo () = —0(2) (2.1)

and the Sommerfeld radiation condition

dGy,
lim |z|?"1/2 (—Gﬁce — ik Gfree> = 0.
|a|—00 8|m|

In particular, we have

1 eiK\w|
Tﬁ , for dimension d=3,
T |z

Gfreo (ZL‘) =

i

1 Hél)(K|$|), for dimension d=2.

On taking the Fourier transform of (2.1), we obtain

A 1
Gee(P) = |p|2—_K2 .

The inverse Fourier transform of éfree is a singular integral and we use the
limiting procedure in Beylkin et al. (submitted) to define Green’s function as

1 el$p
Cree(@) = 1i dp. 2.2
hree(®) AE(% (QW)dJRd |p|2—(l<+i)t)2 P (2:2)
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3. Quasi-periodic Green’s function via absolutely convergent series

The quasi-periodic Green’s function formally described by (1.6) requires a

summation convention for its evaluation. Instead, we construct the quasi-periodic

Green’s function via a sum of two convergent series that yield an explicit (classical)

solution of (1.2) and (1.3) and, in §4, describe a fast algorithm for its application.
As a motivation, let us consider

iz- (2md—k)

1 e
4 dEZA* o2wd — k> — k?

and note that this sum formally satisfies (1.2) and (1.3) provided « # |27d — k],
where d € A*. Following the approach in Beylkin et al. (submitted), we choose
1n>0 and split the above expression as

1 ol® (2md—k) <—|27rd — kP + K2>

ex
V & 2rd — kP — 2 dn’
1 el (2md—k) —[27d —k|* + «*
=Y —————(1-ex :
Vv d;* md— k2 — ( p< 4 >>

We show below that the splitting parameter 7 is the same as in Ewald’s method
and we discuss practical considerations for its selection in §4.
Observing that the first term is an absolutely convergent series, we define

1 exp ( *|2’ll'd*k‘2+K2)

_ an? iz (2md—k)

G ourier \T) = =5 € s 3.1
‘ @) 4 d;l* 27d —k|* — & 3

for k>0, k # |2wd — k|, where d € A*. Note that the sum in (3.1) is independent
of the dimension d.
For the second term, we use the Poisson summation and (still formally) obtain

bpdtldl Z elk lFblng l)a (32)
lea
where

1 © e?s o
Fsing(ZB) = W Jlog(Qn) exp<—|a}’2 I + KZG 2 + (d_2)s> ds. (33)

We note that by replacing e ?* by its maximum on [log (27), %) and changlng
variables t=e*/4—n° we obtain the estimate Fag(x+ 1)< Ce™ et with
some constant C and any [#0.

This estimate shows that (3.2) is an absolutely convergent series which we use
as a definition for Ggpatia. We define

Gq(x) = Gspatial(m) + GFourier(m) (34)

as a sum of two absolutely convergent series with Gypatiar int (3.2) and Groier in (3.1).
Next, we show that G, in (3.4) satisfies (1.2) and (1.3) in the usual sense and,
therefore, we no longer depend on an interpretation of (1.6) as an operator. As a
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result, we may consider convolving G, with functions from various classes, e.g.
L?(D), and the convolution (1.1) gives us a classical solution of (1.4) and (1.5).
We prove that

Proposition 3.1. The function G, in (3.4) is the quasi-periodic Green’s
function satisfying (1.2) and (1.3) for k>0, k #|2wd —k|, where d € A" and
k € R This result holds in any dimension d>2.

Proof. The quasi-periodic condition for Gpguier in (3.1) follows from

—[2md—k|* 4+«
1

Gromier(2 + 1) 3 eXp( Lk
ourier \ L =%
’ V & 2nd—k)? —«

> i (2nd—k)  —ik-l _ _—ik-l
€ € =€ GFourier(a:)7

since ¢4 =1 for any IE4 and d € A*. For Gepatiar i (3.2), a shift in summation
yields a factor e~ * ! and, thus, it also satisfies the quasi-periodic condition.
We apply A+«* to (3.1) and (3.2). Using proposition 2.1, we have

1 —2rd — k> + &2\ iy 0mg
<A+K2)GFourier(m) == Z eXp( | i ’ K >elm (2wd—k)

4 dea* 4772
7’ 2 2 K k-1

=———= > exp| 7+ + —> e (3.5)
i Yoo

For Ggpatia in (3.2), we change the variables in the integral, s =log(2t), and obtain

ik-1 o 2

2 _ (S . 2,9 K
(A+« )Gspatml(w) = lEEA_27rd/2 L exp< |z +17t" + —4t2>
X4tz + 1> —22d + )t dt. (3.6)

In the previous sum, we separate the I=0 term and note that for |z+1|>0
we have

1 * 2,2 K 2,4 2 2\ ,d-3
d 2
n 2 2 K
=— — + 1" +—). 3.7
e —ifla+ 1+ (5.1
This identity follows by observing that
d 2,2 K 1 2,4 2 2,2 K

and using integration by parts. Thus, for z€ D and [#0, we have a term-by-term
cancellation between (3.6) and (3.5), which yields

(A + K2)Gq($) = F(x),
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1 00 K2 »
Flz) = L exp<—|m|2t2 +4_152> (4]z|*t* —2t7d + k)t dt

d

2
n 2.2 4 K

The function F corresponds to the difference of 1=0 terms in (3.6) and (3.5).
Note that due to (3.7), F(x) vanishes for £#0. In order to show that G,
satisfies (1.2), we show that the Fourier transform of (3.8) is F'(p) = —1. We have

d 2 2 4 .2
n 2102 4 K —iz-p —|p|” +«
— —nlz|” +— de = —_—
i/ Jwexp< Tl 4?72>e exp( Ar?

and
pd-3 2 '
WJ dexp(—]ac\th + F) (4> t* —2t*d + k*)e P da
7% IR
—lp + &> (—lpf + £
= T ex 5 .
2t 4t

Thus, we obtain

- = —|p]* +«* —|p|* + & —|p|* + &
F(p) = dt—exp( P8 —
(p) L o5 eXP 2 exp I

I
|
=

Remark 3.2. In the special case where k = [2wd — k| for some d € A*and fixed
k € R?, where A" is the reciprocal lattice, each of the functions e'®"# %)@ gatisfies
the quasi-periodic condition (1.5) and is a eigenfunction of A with eigenvalue
—|2wd — E|*. Thus, such functions are in the null space of A+«* and we require
the function fin (1.1) to satisfy

| swpememtay =o, (39)
D
for all such vectors d. Therefore, the solution to (1.4) and (1.5) is given by
u(x) = J Goz—y)f(y)dy+ > cg-e® ™, (3.10)
D .
des
|27 d—k|= K

where cg4 are arbitrary constants and

1 exp ( *‘27Td*k|2+K2)
4’ iz (2w d—k)
G () = Gyptial () +— e .
q( ) ‘ptl( ) 1% Z ’27Td—k’2_l<2
dea*
|2 d—k| #k
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Remark 3.3. We note that to derive G, it is sufficient to consider the real part
of the free-space Green’s function G since the imaginary part of Gy leads to a
vanishing sum. Indeed, using the Poisson summation for generalized functions,
for k>0, k # |2nd — k|, k € R? and € D, we have

> Im(Gpee(a + 1))t = % 3 e RS9 d — k| —x) =0,

led dea*

where / is a Bravais lattice, A" its reciprocal lattice and V the volume of the
primitive cell. This property may also be seen by replacing the outgoing free-
space Green’s function by the incoming one (i.e. its complex conjugate) to obtain
(3.2), (3.1) and (3.4). Also, the limiting procedure described in §3a (as an
alternative to Ewald’s summation) leads to the same conclusion. We were not
able to find this fact in the literature except for a particular case in McPhedran
et al. (2005).

(a) A connection with Ewald’s method

Ewald (1921) used an integral representation of the free-space Green’s
function in dimension d=3,

1 eim’ 1 5 o K2
—_— = —r°t° +— |dt,
A7 r 273/2 Lexp( " 4¢?

where I is a suitably chosen contour in the complex plane so that the integral is
well defined. Let us consider a different limiting procedure, similar to that in
(2.2), to obtain Ewald’s result. Instead of integrating along a contour, we add an
imaginary part to k, k+iA with A>« and consider

1 ei(K-H}\)r 1 © - (K +IA)2
Gireo(T,A) = Py 1 JO exp(—r t +T>dt (3.11)

with integration over the positive real axis. The expression on the left-hand side
of the formula yields the free-space Green’s function as A—0, whereas the
integral on the right-hand side is well defined only for A> k. However, owing to
analytic dependence on A, it is possible to use the integral in (3.11) to obtain an
expression for the quasi-periodic Green’s function. We proceed with the
derivation for dimension d=3 and note that in dimension d=2 we may follow
the same steps but starting (for A>«) with

. % )2
1o, . _ 1 o, (KFIA)T dE
4H0 ((k—iA)r) oy L exp( T + e L

instead of (3.11). Similar integrals are available in any dimension d.
The fact that the integral in (3.11) is well defined for A>«k may be seen using
the primitive

1 + A 2 (—iK+A)T - _|_ A
m JeXp(-?“QtQ +%>dt = _887 erfc<1KT + 'f’t)
e

r
(ik=A)r o
e ik + A
£ _
+ ey er c( 57 rt)
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and, using (Abramowitz & Stegun 1970, eqn (7.1.16)) to evaluate the limits
for A>«k,

) elTikFA)r —ik + A lik=A)r —ik + A
lim —— erfe| ——+ 1t | + erfc( —————1t | =0
8 2t 8

=0+ wr wr 2t

and

. e(—iK+A)r —ik 4+ e(iK—A)r —ik 4+ 2 1 e(iK—A)r
lim—— erfc| ——— +rt) + erfc|] ———————1t = — .
8 2t 8w

t—o0 mr

As a starting point to construct the quasi-periodic Green’s function, we use
(3.11) and for A>«k consider

ikl 20 (K +i2)?
Gy(z, ) = 3/2 Ze L exp<—|w+l\t +T dt

lea
+12)?
+ ik ’J YR I Gt P (3.12)
2713/2 ;e , exp( |z + 1| I

As in Ewald (1921), we introduced a real parameter n>0 to split the region of
integration into two intervals t€ (0, n) and t€(n, ).

In the second term in (3.12), we set A=0 since the integral is convergent for all
A2>0. Thus, we obtain

Gipatian(T) = 3/2 Zelli exp<—|m+l\2t2+ )dt (3.13)
2 le n

We note that explicit integration yields

! re —lz + 120+ N = L (coslz )
272 |, P 4t2 T\ |zt

—ik|z+I] —ix ik|z+| —ik
_° erf< " +|sc—|—l|17> © erf( e —|:1:+l|17>>,
2|z +1| 2 2z +1| 29

an expression that may be found in some numerical procedures for Ewald’s
method. We note that this formula requires appropriate modifications in
computing contributions of the error function to avoid loss of accuracy. We
instead write

2s
ikl 2€ 2 —2s
Gipatial (T = in 3/2 legA Jlogm exp<—|a: +{ = +Kke T+ s) ds, (3.14)

where we changed the integration variable from ¢ to s, t=e"/2. This expression
coincides with (3.2) for d=3.
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In the first term in (3.12), we exchange the order of summation and integration
since A>«k. We then use the Poisson summation formula in proposition 2.1
to obtain

L Kk +iA) ikl |+
- dt
2r3/2 L eXp < 4¢2 ) Ze

lea

L (k +i)? i (2mdk) 27d — K>\ dt
—WLWGETJZQ o~ ) @

dea*

where A" is the reciprocal lattice. By again switching the order of summation and
integration, we arrive at

1 iz (omd—te) [ —2rd — k> + (k +i2)?\ dt
iz (2rd—k)
57 2 © Lm< I 7

dea*

i - —k|> 4 (k+i2)?
1 S em.(gﬂd_mexp( famd4 +A>>
V & 127rd — k|* — (k + i2)?

Denoting the right-hand side as

i (2md—Fk) —[2md—k|* +(k+iA)?
1 e'® exp<—4n2 )
G, urier {13,/1 = y
Fourier (% 1) = 7 dzem 2md —k|? — (k + i)

we observe that Gpowie(®, A) is an analytic function in A and, thus, may be
extended to the region A>0. This leads us to consider the quasi-periodic Green’s
function defined by the limiting procedure

Gq(a:) = Gsp'dtial(m) + }E%L GFourior(a:7 ;\)7 (315)
valid for any real parameter n>0. To evaluate the limit, we have (e.g. Gel’fand &
Shilov 1964, ch. III, §1.3)

I 1 1 n i
im =
-0t 2md — k) —(k +10)?  [2nd —k)? —«?  22md — k|

(6(|12rd — k| — k)

—0(|2md — k| + «)).
For k>0, we arrive at

GFourier (.’17) = ,111}(1)1* GFourier (213, A)

— goes

1 Z eiz,(2ﬂ,d_k)exp < _’27Td — k‘Z + K2>
4 dea*

1 im

The sum involving the delta function vanishes provided « # |2wd — k|, where
d € A" and, under this assumption, we obtain (3.1).
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4. Fast convolutions with Green’s function

Representation of the quasi-periodic Green’s function as a sum of two rapidly
convergent series (3.1) and (3.2) yields a fast and accurate algorithm for its
application as a convolution. We truncate these series and obtain a separated
representation by approximating the integral in (3.2) via a sum of Gaussians.
Using the resulting approximation of Green’s function, we prove an accuracy
estimate (in operator norm) for its application. We then present the algorithm to
apply the operator, and estimate its computational complexity. We illustrate the
algorithm by presenting several examples.

(a) Approzimation of Green’s function

Let us outline how we obtain an approximation of the quasi-periodic Green’s
function (3.4).

Owing to the exponential decay of the terms in Gpourier, We truncate the
Fourier sum

] exp( 7|21'rdfk\2+/<2)
5 4 iz (2w d—k)
G ourier \ L) = == € ) 4.1
dea”
[2wd—k|<xb

where we select parameters >0 and b>0 so that the contribution of the
discarded terms is less than the desired accuracy e.

For Gypatial Wwe perform a similar truncation again using the exponential decay
of its terms and, in addition, construct an approximation of Fg,, in (3.3) as a
sum of Gaussians. For a fixed parameter n and given accuracy €, we select >0
to truncate the sum (3.2) as

Z elk qulng l)7

lea
[lI<a

so that the contribution of the discarded terms is less than e. Then, for fixed «, we
approximate Fg,, as in Beylkin et al. (submitted) using a discretization of the
integral. Thus, we obtain an approximation of Fi,, as a sum of Gaussians,

emalel’, (4.2)

51ng

||'Mz

where ¢;>0 and ¢;>0. The weights ¢; depend on the dimension d and the
parameter k (see Beylkin et al. (submitted) for details). Using (4.2), we
approximate Ggpatial 25

Gspanal Z elk lSslng($ + l) (43)

les
[lI<a
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Combining (4.1) and (4.3), the quasi-periodic Green’s function is approximated as

éq(w) = Gspatial(w) + éFourier(w)' (44)

We note that there are two sources of error in this approximation: (i) a truncation
error due to replacing infinite series by finite sums and (ii) an approximation
error introduced by (4.2). Owing to the exponential decay of the terms in
both series, the number of significant terms depends only logarithmically on the
desired accuracy. ~

We compute convolutions with Gpgyie: in the Fourier domain as

—[27d—k]>+&* \ iz (2md—
G ) ! eXp( '2175“‘*)@, - ond—k 45
. % = J— .
( Fourier f)(iﬂ vV ’27Td—k’2—K2 fD( ™ )7 ( )
dea”
[27rd—k|<xb
where
Folp) = | fl)e ™" do (4.6)

and convolutions with C:’Spaﬁal in the spatial domain as

N
(Gopatia % f) (@) = > " qjj —uley £ (y) dy. (4.7)
j=1

€
D
lea
II<a

We show in dimension d=2,3 that this approximation of (3.4) by (4.4) yields
accurate convolutions in the operator norm.

Proposition 4.1. For any €>0, we may choose the splitting parameter n, the
Fourier truncation parameter b in (4.1) and the spatial truncation parameter a in
(4.3) so that

1(Gy —Gy) * fll ooy < €llf | ),

forf € LP(D), 1< p< oo,

We note that the parameters 1, b and a are interdependent and their selection
is discussed in §4b.

Proof. Using Minkowski’s inequality for convolutions (e.g. Grafakos 2004,
p. 20), we have

1(Gy =Go) * fllpro) < I(Gy =Gl oy 11l o)
< (H Gspatial _éspatial”Ll(D) + || GFourier _éFourier”Ll(D)) ||f||L7'(D)
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We may choose >0 and b>1 so that

ex — 2w d—k|* +«
p 4172 €

1
R S R
4 Z 2md —k]* —k? ~ 3
dea”
|2 d—k[>«kb
and, thus,
<€
H GFouller GFOUTIE‘I‘ ( ) § (4'8)
We now estimate the spatial error by
H G'Spatial _Gspatial ||L] (D)
> N Fyg(m + 1) = Sang(@ + 1) + > g (z+1)
=l tea =y
ll<a ll>a LN(D)
< Z J sing (2 + 1) — Sy (2 + 1)| dez +J Z sing ( (4.9)
Il\Sa m>a

Next, we may choose a>0 so that the integrand in the second term satisfies

€
Z Fsing(w + l) < W?
led

[I>a
for € D and, thus,

J ZFsmg 'T‘+

lea
[l>a

(4.10)

CO |

In what follows, let us first consider dimension d= 3. To estimate the first term
n (4.9), as in Beylkin et al. (submitted), we construct the spatial approximation
Ssing for accuracy €;>0 and range parameter 0 <6 <diam(D)/2,

1
—, for0<r<o,
r

|E§ing(r) - Ssing(T)| < (411)

€
L. forr>é.
T

We use (3.2) and (4.3), where we split the =0 term to estimate

JD|F§ing(m) - smg | dm + Z J ‘Fsmg T+ l) - Ssing(m + l)| de. (412)
lea
0<|l|<a
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We estimate the first term in (4.12) by considering a ball of radius R=diam(D)/2
circumscribing the primitive cell and using (4.11),

R

0
JD|F’sing(m) - Ssing(m)| de < 4w (JO rdr+ €1 J

r dr> <2m(6* + R%¢). (4.13)
B

The second term in (4.12) is estimated as

3 | [Pasle+ D= Susla+ D] do< Z of, 57

lea
0<|lI<a 0<|l|Sa

Setting L= minge po<|j<q |e+ 1|, the minimum diagonal distance in the
parallelepiped defined by the lattice vectors, we have

1
—— _dz< LV <¢LVN,, 4.14
> o prpdes X atv=q (414
lea lea
0<|l|<a 0<|l|<a

where N, is the number of lattice points within the ball |I| < a. Combining (4.10),
(4.13) and (4.14) we have

H Gspatial G%paMaIHLl < 3 + 277(52 + R2€1) + 61LV]\7 (415)

For a given €, we select 6= R,/ and choose € in (4.11) so that e= 3¢, (4mR>
+LVN,). Together with (4.8), we obtain the result for dimension d=3.

For dimension d=2, the proof is similar except that we use the spatial
approximation (see Beylkin et al. submitted)

1
10g<1+2>, for0< r <y,
T
|Fsing(r) - Ssing(r)| <

B 1
€ 10g<1 +P>, for r> 9,

instead of (4.11). |

(b) Choice of the splitting and truncation parameters

The splitting parameter, 7, controls the rate of decay of the terms in (3.1) and
(3.2) and thus, for a given accuracy, determines the number of terms to be
retained in each sum. Instead of choosing n directly, we choose the Fourier
truncation parameter b>1 in our approximation (4.1), so that for a given
accuracy € and k, we set

_ 2% -1

—. (4.16)

4loge
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With this selection of 7, note that in (3.1) the discarded terms |p|> kb satisfy
ox <—(\p\2—'<2))
p 4,)72 €
< .
P RF-1)

With 7 given by (4.16), we now select the spatial truncation parameter a so that
the contribution of the discarded terms in (3.2) is below the desired accuracy.

Although we only require b>1, in practice the choice of this parameter does
depend on k and €. For moderate size k we select b~ 3, for large k we may select a
smaller b and for small k we need to choose b larger.

Remark 4.2. Different choices of  have been made in several papers considering
Ewald’s summation (e.g. Catti (1978) or Jordan et al. (1986) for k=0). We would
like to point out (see also Moroz 2006; Oroskar et al. 2006 or Beylkin et al.
submitted) that some choices of n may induce numerical cancellation resulting in a
loss of accuracy. For example, choosing 1 too small leads to (3.1) and (3.2) to be
large simultaneously and to have opposite signs for |x| ~ 0.

(¢) Algorithm for convolution with the quasi-periodic Green’s function

We describe an algorithm and estimate its complexity for computing
volumetric convolutions with the quasi-periodic Green’s function approximation
(4.4). We assume that the input function and its Fourier transform (4.6) are
given, and we are free to discretize them as needed. In the description of the
algorithm to compute

(@) = | Gule—w)i(y) dv

we refer to fand g as the input and the output function, respectively. We want to
compute this convolution for any given accuracy e.
Initialization:

(i) Truncation of the Fourier sum. For a fixed k and a given accuracy €, we
select b that determines 7 in (4.16).

(ii) Truncation and approzimation of the spatial sum. For a fixed k and a
given accuracy €, we construct S, as an N-term Gaussian approximation
(4.2). We denote by N, the total number of lattice points that satisfy
|I] < a. We note that N ~ (loge 1) (see Beylkin et al. submitted) and
N, ~ (log e 1) due to the exponential decay of (3.3).

(iii) Discretization of the input function. We use the multiresolution algorithm
in Beylkin et al. (2008) to adaptively discretize the input function using a
tensor product basis with p scaling functions per dimension. If M, is the
total number of boxes used to represent the input function with accuracy
€, then the total number of input points is N, = N, p%. In practical
applications, we choose p~loge ! since it improves the overall
performance. Thus, we have N, ~ N, (log e_l)d. We note that it is not
hard to construct examples of functions for which an adaptive
representation offers no advantage; in such cases, the number of points
is N, ~«k? due to the required Nyquist sampling rate. Thus, in the worst
case, we have N,, ~k?+ C,(log efl)d.
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(iv) Initialization of the output function. The output function, a sum of spatial
and Fourier contributions, is evaluated on a user chosen set of N, points.
While the spatial contribution may retain an adaptive structure if we use
the algorithm from Beylkin et al. (2008), the Fourier contribution results
in (’)(Kd) points due to the required Nyquist sampling rate. Thus, unless
there are special circumstances, N, ~ k% Again, in the worst case we
have N, ~«k%+ Cy(log e )"

Applying the operator:

(i) Convolution with Gyt - Using the algorithm in Beylkin et al. (2008), the
complexity of applying Gypatia in (4.7) is O(N,-p- N+ Ny,). Alternatively, the
fast Gauss transform (see Greengard & Strain 1991; Strain 1991;
Greengard & Sun 1998) may be used, which results in a similar computa-
tional complexity. Although p- N is formally estimated as p- N ~ (log e !)?,
we note that within the range of parameters we experimented with, this
product behaves effectively as a constant (the overestimation is, in part,
due to the fact that the algorithm in Beylkin et al. (2008) does not use all
Gaussian terms on all scales). Note that in (4.7) the term =0 dominates
the computational cost since this is the only term contributing to fine scales
in a multiresolution representation of the operator. With these caveats, the
computational complexity of computing (4.7) is O(x”+ Cy(log e_l)d),
where (5 is a constant.

(ii) Convolution with Gpyyie- We evaluate the Fourier transform of the input
function at the reciprocal lattice points within the sphere [27d —k| <«kb
and denote by Ny their total number. We note that Np ~ (log 6_1)d due to
the exponential decay of the terms in (3.1). Given a set of locations x to
evaluate (4.5), we use the USFFT (Dutt & Rokhlin 1993; Beylkin 1995;
Lee & Greengard 2005) to evaluate the trigonometric sum. Thus, the
computational complexity is O(N,y + Np) + O(k?log k), or (’)(Kd log k+
Cy(log e 1)%), where Cj is a constant.

We note that the performance of both, the spatial and Fourier, components of
our method has been tested and timed independently in the references mentioned
above. We would like to add that, in some applications, the semi-analytic nature
of our approximation may allow for additional savings.

(d) Ezamples

We start by comparing values of the quasi-periodic Green’s function computed
using G, in (4.4) and those of its alternative representation in McPhedran et al.
(2000). The two-dimensional quasi-periodic Green’s function is written in
McPhedran et al. (2000) as

Gr(x) = 1 (HO(U(KT) + Z SlAJl(m’)e_im>, (4.17)

lez

where &= (7 cos 0, r sin #) and the coefficients Si' are computed as lattice sums.
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Figure 1. Error plots for a two-dimensional quasi-periodic Green’s function with k= (2,7/10) and
k=10 for a hexagonal lattice with lattice vectors I, = (1,0) and I, = (1/2,v/3/2). (a) The absolute
error \Re@q(xl,O)) —Re(Gr(z,,0))] for z; € (1071°1/2) using a log-log scale. (b) The absolute
error |Im(Gy(z;,0)) —Im(Gy(zy,0))| for z; € (0,1/2) using a log scale on the vertical axis.

We note that the representation in (4.17) allows us only to evaluate Green’s
function and does not provide an algorithm for its application as an operator. By
contrast, our approach treats Green’s function as an operator and constructs an
approximation that yields a fast and accurate algorithm for its application. For
the purpose of comparison, we 1mplemented the evaluation of Green’s function in
(4 17) by computlng the coefficients S in (4.17) as lattice sums, writing
SA=AS,+ S We use (McPhedran et al. 2000, eqn (17)) to compute AS; and
(Linton 1998, eqns (2.49), (2.53) and (2.54)) to compute S¢.

In figure 1, we display the error between (4.17) and our approximation G in
(4 4) constructed for accuracy e = 107?. We note that the discrepancy near 7” 0
is due to our method of approximating G, and does not affect its application as
an operator (beyond accuracy € =10~?) as is demonstrated in proposition 4.1.

Next we verify accuracy of our algorithm by considering the quasi-periodic

function
3
/ —1k T Zze alz—r, +1 (418)

led n=1

with parameters «=300, k=(1/3,4/7), r,=(0,0), »,=(1/10, 1/10) and r3=(—3/
20, 1/10), where the sum is over the square lattice generated by the lattice vectors
l;=(1,0) and Il = (0, 1). We treat u as a solution of (1.4) and (1.5) and analytically
compute the corresponding right—hand side in (1.4),

/ —1k:1:§ :2 :e—oz|a: r

led n=
(4a + |k|* —4d® |z —7, + 1> —diak- (x—7, + ) —/<2). (4.19)
We construct an approximate two-dimensional quasi-periodic Green’s function with
k=230, and apply it to fso that we can compare the result with the exact solution wu.

The parameter « was chosen so that the Fourier transform of the function in (4.19)
remains significant well beyond the disc of radius k. Such choice allows us to test
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Figure 2. Absolute error of the difference between the exact and the computed solutions of (1.4)
and (1.5) with fin (4.19). The error is plotted along the diagonal of the primitive cell using a log
scale on the vertical axis.

Figure 3. A quasi-periodic Green’s function with k=(3,5) and k=100 for a two-dimensional
hexagonal lattice with lattice vectors & =(1,0) and I,= (1/2,v/3/2) plotted in the region
[—1/2,1/2] X [=1/2,1/2]: (a) a real part and (b) an imaginary part.

both the spatial and Fourier parts of the algorithm. In figure 2, we display the
absolute error plotted along the diagonal of the primitive cell. Green’s function was
approximated with e=10""", whereas the L*>norm of the solution is ||u|, = 1.76
and that of the right-hand side is ||f||, =1.31-10%. This result agrees with the
estimate in proposition 4.1.

Next, we illustrate the results of convolving with several quasi-periodic Green’s
functions. In figure 3, we illustrate the application of a two-dimensional quasi-
periodic Green’s function to a delta function. The motivation for presenting this
example is twofold: (i) to demonstrate that our approach is applicable to functions
whose Fourier transforms have slow decay and (ii) to illustrate Green’s function
itself. In figure 4, we display the result of convolving a periodic Green’s function with
a fairly complicated function with jump discontinuities. We also display cross
sections of the (periodic) output function.
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(@) ' (b)

(d)
(e) N
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Figure 4. An application of a two-dimensional periodic Green’s function with k= (0, 0), k=507 and
¢=0 in (3.10) for a cubic lattice with lattice vectors {; = (1,0) and I, = (0,1). (a,b) Different views
of the discontinuous input function. (c¢) Green’s function within the primitive cell and (d) the
result of its convolution with the input function. A cross section of the result depicted in (d) is
displayed for (e) z;=1 and z, € (—1/2,1/2) and (f) z,=1/5 and z; € (—1/2,1/2).

5. Green’s functions with boundary conditions on simple domains

We now have the necessary tools to construct Green’s functions that incorporate
boundary conditions on simple domains by extending our results for the quasi-
periodic Green’s function (3.4). We note that although the resulting integral
operators are no longer convolutions, the algorithm for applying these Green’s
functions is similar to that for the quasi-periodic Green’s function. The
application of Green’s functions satisfying Dirichlet, Neumann or mixed
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boundary conditions is again split between the spatial and the Fourier domains.
In the spatial domain, we use separated representations involving Gaussians and
in the Fourier domain apply a simple combination of multiplication operators.
For ease of notation, we consider the two-dimensional case with Dirichlet
boundary conditions on the primitive cell D=[—1/2,1/2] X[-1/2,1/2]. We
construct these Green’s functions using the periodic Green’s function (with 2k

instead of «), satisfying ,
(A +4k°)Gy(x) = —0(x)

and (1.3) with k=0. We note that the formal description of the periodic Green’s
function in this case is of the form

Gg)rmal(xh x2 Z Z YO (2[(\/ Ty + nl) + (zg + n2)2>7

711:—00 ng=—00

since, in (1.6), the sum associated with the imaginary part of the free-space
Green’s function is zero, I; = (1,0) and I, = (0,1).
We write G, via the sum of two rapidly convergent series in (3.4),

1 © 2s
Gy (71, 29) = 7= J exp<—|w + n|26— + 4K26_2s> ds
2m =, Jog(2m) 4

ex ( 2\Tn| +K2)
+ Z b eZTrim-m.

m,GZ2 2|m| K )

We obtain Green’s function with Dirichlet boundary conditions on D as

— — +y +1 —
GD($1,$2,y1,y2) _ Gp(m 5 yl’l'Q - y2> _ Gp<$1 2.% 7$2 > ?JQ)

r1— U x2+y2+1 x1+y1+1 I2+y2+1
—Gp< = )+Gp< , .

2 2
(5.1)

For z+#y, we have (A, + k*) G°(z, y) = 0 since each of the four summands in (5.1)
is a Helmholtz Green’s function with parameter 2. The only singularity is at
=1y, in which case the first term in (5.1) yields

(A, + &%) GP(x,y) = —6(x—y).

Since Gy, is periodic with period one and is even, the terms in (5.1) cancel each
other on the boundary so that GP satisfies the Dlrlchlet boundary conditions,
Gd)(i]'/2 1327y1,y2) 0 and G (1‘17i1/2, ylqu):O'

Following the approach in §3, we split (5.1) between the spatial and the

Fourier domains GP = G2 spatial T GRwier and then approximate these components.
As in §4a, we approximate the spatial part G2 spatial DY @ sum of Gaussians. For a
desired accuracy € and fixed 7, we select a>0 to satisfy (4.10) and construct g;
and o; for j=1, ..., Nin (4.11) to obtain the separated representation

~D
Gspatial(xla T2, Y1, yQ) = Z Z QJ 7,m1 $17 A Sj Ny (33’2, y2) (52)
\/n? +nz<aJ
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where
o; o,
Siu(z, y) = exp (— Zj (r—y+ 2n)2) —exp (— Zj (z+y+1+ 271)2). (5.3)

Thus, the application of the operator (5.2) separates along each direction and we

compute
1/2

N
~D
J Gspatial(m7 y)f(y) dy = Z qj Z J Sj,ng (‘T2’ yZ)
b J=1 1/n%+n§£a, -1/

1/2
X J 9 Sj,nl(‘rh yl)f(yh y?)dyl dy?v

which may be accelerated further using fast algorithms described in §4.
In the Fourier domain, for a desired accuracy € and fixed 7, we select b>1 to

satisfy (4.8) and obtain
fﬂ'z(mermg)Jer
exp| ———7——
eiﬂ(nllxl—FmQ:rQ)

A(m?(mf + m3) —?)

~D

GFourier (xlv T2, Y15 y?) = E
2my/m?+m3<xb
><<e—17rmly1 _61777”1(?/1+1)) (e —immy _el‘frmz(y2+1)> ) (54)

We apply this operator as

_ 2( 2 2 2
k(g 7n]+7n2)+/<)
exp(— 2
K ei'n’(mlz]+m2z2)

A(m?(mi + m3) —«?)

~D
J GFOurier<$7 y)f(y) dy = Z
D 2w/ m? +mZ<xb

X (fD(Wmu my) _eimlfD(_Wmla Tmsy)

_eiﬂmeD(Wml,_WmQ) _I_eiﬂ(ml+m2)fD(—7Tml,_7Tm2))’

(5.5)
where f, is given in (4.6). We use USFFT to evaluate (5.5) as in §4c.

Remark 5.1. As described by Keller (1953), the method of images in dimension
d=2 yields Green’s function with prescribed boundary conditions for four
bounded regions: (i) rectangle, (i) equilateral triangle, (iii) isosceles triangles
with angles w/2, w/4,7/4, and (iv) right triangle with angles /2, 7/3,7/6. As an
example of incorporating the Neumann boundary conditions on D, we have

- - toy 1 oz —
GN(:Elvx%ylayQ) = Gp<xl o >I2 y2) + Gp (Il U 7x2 y2>

2 2 2 2

xl—y1$2+y2+l ./L'1+y1+1$2+y2+1
+Gp<2, / >+Gp< prl nrnrl)

where G} (+1/2, 25, y1, 4o) = 0 and G} (z1,£1/2, y;, y,) = 0, where GINi =9GN /dx;,
=1, 2.

We note that we can mix Dirichlet and Neumann boundary conditions since it
requires only appropriate sign changes in the previous construction.
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Remark 5.2. The construction of Green’s functions with Dirichlet or Neumann
boundary conditions on D in dimension d=3 is completely analogous to the two-
dimensional case and is composed of a combination of eight terms. Importantly,
their approximations have the same form in all dimensions. For example, in the
spatial domain the approximation of Green’s function with Dirichlet boundary
conditions is given by

G?patial(xla Ta, T3, Y1, Yo, Y3)

1
= 5 Z Z QJ j,mq xla W Sj,llz(x27 yQ)S] TL;(x?ﬂ y3)
y/ni+ni+ni<a’

where ¢; are described in (4.2) and S;,, in (5.3). Similarly, we have an analogue

of (5.4), S
(—ﬂQ(mf+m§+m§)+Kz>
1 exp 7
~D
Gourierl‘)xaxv » Y29 =5
Fourier (T1, T2, T3, Y1, Y2, Y3) 9 Z 4(7r2(m%+m§+m§)—l<2)

21/ m +m2+mi<kb

X eiw(7’L1iL‘1+’,’b2{L‘2+’,rL3{L‘3) (e —imrmyy _e'17rm1(y1+1)>
X (e —immyy, _ei""mz(yz+1)> (e —immgys _eiﬂmfs(?/:ﬁl))’

which we apply as a multiplication operator in the Fourier domain. In arbitrary
dimension d, we have

N
ég)atial(% y) = 2;11 2 Z z::

are given in (5.3) and

20,012 2
—°|m|*+k
ex —_— d
p< 712 ) iTm-x

(|’ —«?)

a=1

d
H SJ,ILa o) ya

a=1

where S,

- 1
GFourier(xv y) = 2d—2 Z

27| m|<kb

We note that in order to apply Green’s function in higher dimensions, we also
need to use a separated representation for the input functions (see Beylkin &
Mohlenkamp 2005). Green’s function with Neumann boundary conditions on
D has the same form and differs only by changing the sign of appropriate terms.
As a result, we may use essentially the same algorithm to apply these operators.
To summarize, the results of this section yield fast adaptive solvers for the
Helmholtz equation for a variety of boundary conditions.

6. Conclusion and remarks

In this paper, we extend the approach in Beylkin et al. (submitted) for the free-
space Helmholtz Green’s function to approximate and apply Green’s functions,
which incorporate quasi-periodic Dirichlet or Neumann boundary conditions.
The key features of these fast algorithms are: (i) the splitting of application of
operators between the spatial and the Fourier domains, (ii) the use of separated
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representations, and (iii) the ability to achieve a finite, arbitrary accuracy.
Algorithms with the last two features have been developed for non-oscillatory
kernels and have been used to solve problems in quantum chemistry (see
Harrison et al. 2003, 2004; Yanai et al. 2004a,b). Since these algorithms for
oscillatory and non-oscillatory kernels may be considered within the same
framework, we intend to build a unified software framework for their application.
We expect further development in this direction. In all cases, we obtain
representations of Green’s functions that lead to fast adaptive solvers for
corresponding problems.

Our approach (with minor modifications) is also applicable to the case k=0.
However, using multiresolution, both the interpretation and the application of
the operator may be kept entirely in the spatial domain and we plan to consider
this case separately.

A natural application of the quasi-periodic Green’s function is in the
computation of band gaps in crystal structures. We plan to investigate these
applications with particular attention to potentials (indices of refraction) with
singularities (discontinuities) since, in such cases, the efficiency of our algorithms
does not degrade significantly.

We note that our method extends to problems where the lattice dimension is
less than the dimension of the embedding space (sometimes referred to as
gratings), which will be described elsewhere.

Finally, we note that our results shed new light on Ewald’s approach of
splitting between spatial and Fourier domains, which we use as a tool to obtain
semi-analytic, separated representations for Green’s functions.

This research was partially supported by NSF grant DMS-0612358, DOE/ORNL grant
4000038129, DOE grant DE-FG02-03ER25583 and AFOSR grant FA9550-07-1-0135.
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