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When an algorithm in dimension one is extended to dimension d,
in nearly every case its computational cost is taken to the power d.
This fundamental difficulty is the single greatest impediment to
solving many important problems and has been dubbed the curse
of dimensionality. For numerical analysis in dimension d, we
propose to use a representation for vectors and matrices that
generalizes separation of variables while allowing controlled ac-
curacy. Basic linear algebra operations can be performed in this
representation using one-dimensional operations, thus bypassing
the exponential scaling with respect to the dimension. Although
not all operators and algorithms may be compatible with this
representation, we believe that many of the most important ones
are. We prove that the multiparticle Schrödinger operator, as well
as the inverse Laplacian, can be represented very efficiently in this
form. We give numerical evidence to support the conjecture that
eigenfunctions inherit this property by computing the ground-
state eigenfunction for a simplified Schrödinger operator with 30
particles. We conjecture and provide numerical evidence that
functions of operators inherit this property, in which case numer-
ical operator calculus in higher dimensions becomes feasible.

In almost all problems that arise from physics there is an
underlying physical dimension, and in almost every case the

algorithm to solve the problem will have computational com-
plexity that grows exponentially in the physical dimension. In
other words, when an algorithm in dimension one is extended to
dimension d, its computational cost is taken to the power d. In
this paper we present an approach that, in several important
cases, allows one-dimensional algorithms to be extended to
d dimensions without their computational complexity grow-
ing exponentially in d. In moderate dimensions (d � 2, 3, 4)
our approach greatly accelerates a number of algorithms. In
higher dimensions, such as those arising from the multiparticle
Schrödinger equation, where the wave function for p particles
has d � 3p variables, our approach makes algorithms feasible
that would be unthinkable in a traditional approach.

As an example of the exponential growth in d, consider
ordinary matrix–matrix multiplication. In dimension d a matrix
has (N2)d entries, and matrix–matrix multiplication takes (N3)d

operations. Using a ‘‘fast’’ one-dimensional algorithm does not
help: a banded matrix has (bN)d entries, and matrix–matrix
multiplication takes (b2N)d operations. This fundamental diffi-
culty is the single greatest impediment to solving many real-
world problems and has been dubbed the curse of dimension-
ality (1).

In problems in physics where the underlying assumptions
permit, separation of variables has been the most successful
approach for avoiding the high cost of working in d dimensions.
Instead of trying to find a d-dimensional function that solves the
given equation (e.g., the multiparticle Schrödinger equation),
one only considers functions that can be represented as a
product:

f�x1, . . . , xd� � �1�x1�· · ·�d�xd�. [1]

By substituting Eq. 1 into the original equation, one often can
produce a system of d weakly coupled one-dimensional equa-
tions for the functions {�i(xi)} [e.g., via Hartree or Kohn–Sham
formulations (2)]. By iteratively solving the equation in xi for the
function �i, one obtains an approximate solution to the original

equation using only one-dimensional operations and thus avoid-
ing the exponential dependence on d. However, if the best
approximate solution of the form (Eq. 1) is not good enough,
there is no way to improve the accuracy.

The natural extension of Eq. 1 is the form

f�x1, . . . , xd� � �
l�1

r

sl�1
l �x1�· · ·�d

l �xd�. [2]

The key quantity in Eq. 2 is r, which we call the separation rank.
By increasing r, the approximate solution can be made as
accurate as desired. One way to use Eq. 2 is to fix the functions
{�i

l(xi)} from some (basis) set and try to solve for the coefficients
sl. This option includes the use of a tensor product basis as well
as configuration interaction methods. Although a wise choice of
functions {�i

l(xi)} may reduce the number of degrees of freedom
necessary to discretize the problem in each direction, N, it does
not affect the exponential scaling with the dimension. A second
option is to substitute Eq. 2 into the original equation. Unfor-
tunately, the resulting equations for the functions {�i

l(xi)} are
generally intractable, since the equations are strongly coupled.
There are many variations on these two approaches within
computational quantum mechanics (e.g., see ref. 2). Our ap-
proach is distinct from both of these traditional approaches.

Analytic consideration of Eq. 2 raises two questions. The first
question is, what class of functions can be represented efficiently
in this form? One can, for instance, characterize a class based on
the mixed derivatives of order k, for which the approximation
error is O(r�kd�(d�1)) (3). Along the same lines, the ‘‘sparse-
grids’’ (e.g., refs. 4 and 5) methods identify classes of functions
compatible with certain representations. For these functions,
reduction in the computational complexity from O(Nd) to
O(Nd�1lnN) can be achieved, but the complexity is still expo-
nential. Clearly, classes of functions in multiple dimensions are
extremely rich, and such approaches face great difficulties. In
contrast, our approach relies on properties of physically signif-
icant operators.

The second question is, how does one find the representation
in Eq. 2 for a given function? Optimized separated representa-
tions such as in Eq. 2 have been studied for more than 30 years
for statistical applications, and we refer to refs. 6–8 and the
references therein. Since the problems considered for statistics
have as input a dense d-dimensional data cube, their applications
have been limited to small dimensions (d �� 10, mostly d � 3).

Summary of the Paper
The contribution of this paper is twofold. First, we present a
computational paradigm. With hindsight it is very natural, but
this perspective was the most difficult part to achieve, and it has
far-reaching consequences. In our approach, we use the natural
extension of separation of variables in Eq. 2 but neither fix the
set {�i

l(xi)} nor try to find and solve equations for {�i
l(xi)}. We

use Eq. 2 simply as an approximation technique for functions and
operators and try to minimize the number of terms at each step
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of the algorithm. Second, we start the development of a theory
that demonstrates that separation ranks are low for many
problems of interest. We show here that certain physically
significant operators have small separation rank.

Operators can be represented in a form similar to Eq. 2,

A � �
l � 1

r

slB1
l � · · · � Bd

l . [3]

We observe that many linear algebra operations can be per-
formed while keeping all objects in the form of Eqs. 3 or 2. We
can perform operations in d dimensions using combinations of
one-dimensional operations and so achieve computational com-
plexity that scales linearly in d. We then solve the original
equation directly by some appropriate algorithm while main-
taining the intermediate functions and operators in the forms of
Eqs. 2 and 3, with adaptively chosen r. The same approach
applies to computing functions of operators, in particular poly-
nomials, exponentials, inverses, and sign functions, which form
the foundation for a numerical operator calculus.

Although each linear algebra operation leads to an object in
the form of Eqs. 3 or 2, the result will have larger separation
rank. If we allow r to grow uncontrollably, then the represen-
tation will quickly become untenable. Therefore, at each step of
the algorithm, we seek to minimize the separation rank r by
adaptively changing the coefficients {sl} and the functions {�j

l}
while maintaining the required accuracy. We present a numer-
ical algorithm to perform this reduction. We note that our
algorithm is similar to an algorithm used in statistics (e.g., ref. 8).
In our approach, however, we never handle a d-dimensional
cube.

We have observed that the reduced separation rank produced
by our algorithm is typically optimal or nearly optimal. It is an
interesting question if such algorithms can, in general, guarantee
optimality. For our purposes optimal representations are desired
but not required.

In this paper, we prove that both the multiparticle Schrödinger
operator and the inverse Laplacian can be represented with
separation rank r � O(log d). We feel strongly that the class of
operators with low separation rank is much wider than we can
demonstrate at present.

We conjecture that functions associated with such operators
inherit low separation rank. We know, for example, that if the
Green’s function and the initial�boundary condition have low
separation rank, then it follows immediately that the same holds
for the solution of the equation. We conjecture that eigenfunc-
tions inherit a low separation rank from the operator. We present
numerical results for the computation of the ground-state eigen-
function of a simplified model of a 30-electron Schrödinger
operator using the power method, with accuracies ranging from
10�2 to 10�7. Using a direct method this computation would be
impossible, since it would require on the order of 1080 opera-
tions, but with our approach it took a few hours on a desktop
computer. We conjecture that functions of operators inherit a
low separation rank and present a numerical example of the
computation of a sign function.

Finally, we note that some problems considered in statistical
analysis and other applications can be recast as scattered data
interpolation in d dimensions, which is feasible with our ap-
proach. Although the implications of this observation are very
interesting, we do not address them here.

The Separated Representation
In order to emphasize the underlying physical dimension, we
define operators and functions in d dimensions. To avoid
confusion between, e.g., a ‘‘vector in two dimensions’’ and a
‘‘matrix,’’ we clarify our notation and nomenclature. A function

f in dimension d is a map f : Rd 3 R from d-dimensional
Euclidean space to the real numbers. We write f as f(x1, . . . , xd),
where xi � R. A vector F in dimension d is a discrete represen-
tation of a function in dimension d on a rectangular domain. We
write it as F � F(j1, . . . , jd), where ji � 1, . . . , Ni. A linear
operator A in dimension d is a linear map A : S 3 S where S
is a space of functions in dimension d. A matrix � in dimension
d is a discrete representation of a linear operator in dimension
d. We write � � A(j1, j�1; . . . ; jd, j�d), where ji � 1, . . . , Ni and
j�i � 1, . . . , N�i. For simplicity we assume N�i � Ni � N for all i.

Definition 1 (separated matrix representation): For a given �, we
represent a matrix � � A(j1, j�1; j2, j�2; . . . ; jd, j�d) in dimension
d as

�
l�1

r

slV 1
l � j1, j�1�V 2

l � j2, j�2� · · · V d
l � jd, j�d�, [4]

where sl is a scalar, s1 � � � � � sr � 0, and �i
l are matrices in

dimension one with norm 1. We require the error to be less than �:

�� � �
l�1

r

sl�1
l � �2

l � · · · � �d
l �� �. [5]

We call the scalars sl separation values and the integer r the
separation rank. The smallest r that yields such a representation
for a given � is the optimal separation rank.

When possible, it is preferable to use the operator norm;
otherwise the Frobenius norm is used. The definition for a vector
is similar, with the matrices �i

l replaced by the vectors Vi
l.

In dimension d � 2, the separated representation in Eq. 4
reduces to a form similar to the singular value decomposition
(SVD), and in fact we can construct an optimal representation
using an ordinary SVD algorithm but with an unusual pairing of
indices. Instead of separating vectors in dimension 2 in the input
coordinate (j�1, j�2) from vectors in dimension 2 in the output
coordinate (j1, j2), we separate matrices in dimension 1 in the j1
direction from matrices in dimension 1 in the j2 direction. Thus,
common matrix operators that have full rank as operators may
still have low separation rank. For example, the identity is
trivially represented as I1 R I2 R � � � R Id, with separation rank
one.

When d � 2 this representation is not unique even when r is
the optimal separation rank. The optimal representations for
different values of � are not nested, so we cannot simply add or
delete terms from Eq. 4 when � changes and retain a represen-
tation with optimal separation rank. The numbers sl, matrices �i

l,
and separation rank r all will change as � changes. Issues related
to such generalizations of the SVD have been studied extensively
(e.g., see refs. 6 and 7 and the references therein).

To illustrate many of these issues for d � 2, we consider a sine
wave in the diagonal direction, sin(x1 � � � � � xd), and attempt
to represent it in the separated form using only real functions.
We can use the usual trigonometric formulas for sums of angles
to obtain a separated representation, but then we will have r �
2d�1 terms. The numerical algorithm described below, however,
uncovered a trigonometric identity in d dimensions, using exactly
d terms.

LEMMA 1.

sin��
j�1

d

xj� � �
j�1

d

sin�xj� �
k�1, k	j

d sin�xk � �k � �j�

sin��k � �j�
, [6]

for all choices of {�j} such that sin(�k � �j) 	 0 for all j 	 k.
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This identity illustrates several key points. First, the ‘‘obvious’’
(analytic) separated representation may be woefully inefficient.
Second, even when � � 0 and r is optimal, there may be entire
families of separated representations. Third, among these
separated representations, some may have large separation
values, leading potentially to cancellations and, hence, poor
conditioning.

The Multiparticle Schrödinger Operator
We consider the Schrödinger operator H for a d-electron system
and show that the separation rank of an appropriate approxi-
mation of H grows only logarithmically in d. Without changing
the basic in formalism in Eq. 4, we choose to use three-
dimensional operators as our elementary building blocks. The
operator H is equal to �
 � N � E, where the Laplacian 
 is
defined by


 � �
1 � I2 � · · · Id� � · · · � �I1 � · · · � 
d�,
[7]

the nuclear potential portion N is defined by

N � �V1 � I2 � · · · Id� � · · · � �I1 � · · · � Vd�,
[8]

and the electron–electron interaction portion E is defined by

E � �
i�1

d�1 �
m�i�1

d

Wim, [9]

where Vi is the operator that multiplies by the nuclear potential
function v(x) in the (three-dimensional) variable xi, and Wim is
multiplication by the electron–electron interaction (Coulomb)
potential w(xi � xm). Since any numerical treatment must be on
a finite domain and use a finite step size, we state our results for
an approximation to H that has been suitably limited in space
and in wave number. We choose a fixed but arbitrary precision
� to which to approximate H and assume that we are working in
finite precision arithmetic with roundoff error 	.

The following theorem provides bounds on the separation
rank for 
 and N, and its proof provides a construction for their
separated representations.

THEOREM 2. Let A � �i�1
d Bi, where Bi is the bounded operator B

acting in direction i. We can represent A to within � in the operator
norm with separation rank

r � O� log�d	B	���

log�1�	� � log�d	B	���
. [10]

Proof: Consider the auxiliary operator-valued function of the
real variable t

G�t� � 	B	 �

i�1

d

�Ii � tBi�	B	�, [11]

and note that G�(0) � A. Using an appropriate finite difference
formula of order r, we approximate

G��0� � �
j�1

r

�jG�tj� � 	B	�
j�1

r

�j �

i�1

d

�Ii � tjBi�	B	�, [12]

thus providing a separation rank r approximation for A. As with
all finite difference approximations, the error bound for an order
r formula has the form 	�h � hr	G(r�1)	, where h is the step size.
The bound on r follows by optimizing over h.

The estimate in Eq. 10 implies that, as long as 	B	d�� �� 1�	,
the separation rank is O[log(	B	d��)]. Thus, for fixed �, the
separation rank grows only as log(d). Another implication of
these estimates is the restriction � � 	B	d	 on the accuracy
attainable using the form of Eq. 12. Note that if we choose to
approximate with relative precision and assume 	A	 � d	B	,
then the separation rank is independent of the dimension.

For E, we use a similar theorem and construction.

THEOREM 3. Let A � �i�1
d�1 �m�i�1

d BiBm, where Bi is the bounded
operator B acting in direction i. We can represent A to within � in
the operator norm with separation rank

r � O� log�d2	B	2���

log�1�	� � log�d2	B	2���
�. [13]

Proof: With G defined in Eq. 11, note that G(0) � 2A�	B	. We
can thus use the same approach as in Eq. 12, simply substituting
a second derivative finite difference.

To use this result for E, we first symmetrically separate a single
term in Eq. 9 to obtain the representation

�Wim � �
k�1

K�

W i
kW m

k �� � [14]

for some separation rank K� and collection of (multiplication)
operators W i

k. This can be accomplished using, for example, the
SVD. We then substitute Eq. 14 into 9 and exchange the order
of summation to obtain

�
k�1

K� �
i�1

d�1 �
m�i�1

d

W i
kW m

k , [15]

which gives a separated representation with separation rank
K��d(d � 1)�2. For each value of k, however, we apply Theorem
3. Since K� is independent of d, we conclude that the separation
rank of E grows only logarithmically in d rather than quadratically.

The Inverse Laplacian
It can be shown (9) that for 0 � 
 � y � D and any � � 0, there
exist M � O{log[D�(
�)]} numbers �l, �l � 0 such that

� 1
y

� �
l�1

M

�lexp���l y��� �. [16]

We can use this approximation to construct a separated repre-
sentation for the inverse of �
 on part of its spectrum. Similar
arguments can be made for other classical Green’s functions.

THEOREM 4. For the interval [
, D] of the spectrum of �
, we have

��
�1 � �
l�1

r

�lexp��l
��� �. [17]

with separation rank r � O{log[D�(
�)]}.
For functions with Fourier transform supported in the annulus

(�i�1
d �i

2)1/2 � [�
, �D], we thus have a separated represen-
tation for the Green’s function:

�
l�1

r

�l �

i�1

d 1
4�l

exp��xi
2�4�l�. [18]
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For periodic problems it may be more natural to restrict the wave
number to the ‘‘cubic annulus’’ max1�i�d ��i� � [�
, �D], in
which case the approximation (Eq. 17) needs to be valid on the
interval [
�d, dD], and thus the separation rank grows as r �
O{log[d2D�(
�)]} with the dimension d.

Basic Linear Algebra
The main point of the separated representation is that the
elementary objects on which we operate are one-dimensional, so
that linear algebra in dimension d is performed using only
one-dimensional operations. The computational complexities
are linear in d rather than exponential.

We assume that all objects have been discretized using N
points in each direction, so a vector in dimension d has Nd

entries. In d dimensions, a dense matrix has (N2)d entries,
whereas a banded matrix has (bN)d entries. In the separated
representation (Eq. 4), we will need to store d�r�N2 entries if the
matrices �i

l are dense or d�r�bN entries if they are banded. The
banded case demonstrates the effect of combining the separated
representation with a fast one-dimensional algorithm.

Addition of two matrices in d dimensions takes (N2)d opera-
tions if they are dense and (bN)d if they are banded. In the
separated representation the addition �̃ � �̂ is merely the
merging of two sums and then resorting. Thus addition is
essentially free but yields a matrix with separation rank r � r̂ � r̃.

Multiplication of matrices is the most important operation for
the applications we have in mind. In d dimensions, multiplication
takes (N3)d operations for dense matrices and (b2N)d operations
for banded matrices. In the separated representation, multipli-
cation can be done using only one-dimensional operations:

�̂�̃ � �
l̂ �1

r̂ �
l̃�1

r̃

ŝ l̂ s̃ l̃��̂1
l̂�̃1

l̃� � · · · � ��̂d
l̂ �̃d

l̃ �. [19]

We have r � r̂ r̃ pairings, each of which costs d one-dimensional
matrix–matrix multiplications. Thus, we need d�r̂�r̃�N3 operations
if the one-dimensional matrices are dense and d�r̂�r̃�b2�N opera-
tions if they are banded. The resulting matrix has separation rank
r � r̂ r̃.

Several other operations are also efficient in the separated
representation, in particular the computation of inner products,
Frobenius norm, trace, matrix–vector multiplication, etc. We will
not discuss these, since they follow the same pattern as matrix–
matrix multiplication. It is also possible to solve a linear system
in the separated representation by posing the problem as a
least-squares problem and then doing a variant of the separation
rank reduction algorithm described below.

The following are examples of algorithms that use only matrix
and vector operations that can be done in the separated repre-
sentation with computational cost linear in d.

1. Power method (Fk�1 � �Fk) to determine the largest eig-
envalue and its eigenvector for a matrix �.

2. Schulz iteration (�k�1 � 2�k � �k��k) to construct ��1.
3. Sign iteration [�k�1 � (3�k � �k

3)�2] to construct sign(�)
(10).

4. Scaling and squaring ([exp(��2n)]2n
) to construct the matrix

exponential exp(�).
5. Inverse power method (�Fk�1 � Fk) for computing the

smallest eigenvalue and its eigenvector for a matrix �.

Since the basic linear algebra operations increase the separation
rank, after each step in these algorithms we reduce it using the
algorithm in the following section. In all our experiments we
observe that the final and intermediate matrices have low
separation rank, and we conjecture that this is true for a wide
class of problems.

Finding ‘‘Optimal’’ Representations
The key to the success of our approach is finding a separated
representation with low separation rank for matrices of interest.
We assume that � is given to us in the separated representation
but with larger separation rank r than necessary, as occurs, for
example, when we multiply two matrices to form �. We have
found the algorithm described here to be effective in practice,
although it is not guaranteed to find the optimal representation.
This algorithm uncovered the trigonometric identity (Eq. 6) and
the derivative formulation (Eq. 12) for the multiparticle Schrö-
dinger operator and produced the numerical results described
below. Although it is a problem of ongoing interest to find the
optimal separation rank (e.g., see refs. 6–8, 11, and 12), it is not
required for our approach. In fact, a suboptimal representation
is preferred when it has better conditioning or can be obtained
faster. For example, when d � 2 we find it much more efficient
to use a faster algorithm that produces a suboptimal solution,
even though the SVD is available in this dimension.

Our overall strategy is to find the best approximation with
separation rank r̃, beginning with r̃ � 1, and then increase r̃ and
try again until the residual is less than �. This strategy allows us
to take our solution at one value of r̃, add another term (obtained
e.g. by a power method) and use it as our initial approximation
for separation rank r̃ � 1. Although the best representations of
different separation ranks are not actually nested, this strategy
provides us with a good initial approximation at each r̃. Other
initialization strategies exist (see also ref. 11).

Before starting, we reduce our search space by rotating each
direction into an efficient basis. For each fixed direction i, the
matrices {�i

l}l�1
r each have N2 (or bN) entries and span a vector

space of dimension Mi � min(r, N2). By computing a basis for
the span, we can express the matrix �i

l in this basis as a vector Vi
l

of length Mi. The matrix � is thereby expressed as the vector

A � �
l�1

r

slV1
l � V2

l � · · · � Vd
l . [20]

We will reduce the separation rank of A and then undo the
change of basis to recover the matrix �. For simplicity we will
assume Mi � M for all i.

Alternating Least Squares
For a given separation rank r̃, the best separated representation
is that which minimizes the error (Eq. 5), i.e. solves the nonlinear
least-squares problem. To make this problem tractable, we
exploit the multilinearity of the problem and use an alternating
least-squares approach. This approach is also used in statistics
(e.g., see refs. 8 and 11). Besides a few technical details, the key
conceptual difference in our approach is that our input is a vector
in the separated representation rather than a dense data vector
in dimension d, and thus we can consider much larger values of
N and d.

In the alternating least-squares approach one starts with an
initial approximation

Ã � �
l̃�1

r̃

s̃ l̃Ṽ1
l̃ � Ṽ2

l̃ � · · · � Ṽd
l̃ [21]

to A in Eq. 20, and then iteratively refines it. We loop through the
directions k � 1, . . . , d. For each direction k, fix the vectors in
the other directions {Ṽ i

l̃}i	k and then solve a linear least-squares
problem for new Ṽk

l
˜

(and s̃l̃). Repeat the loop in k iteratively until
convergence is detected or 	A � Ã	 � �. Although it is easy to
prove that the norm of the residual (	A � Ã	) decreases at each
step, in general this process is not guaranteed to converge to the
best representation with separation rank r̃.
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This linear least-squares problem naturally divides into sep-
arate problems for each coordinate. For fixed direction k, form
the matrix � with entries

B� l̂ , l̃ � � �
i	k

�Ṽi
l̃ , Ṽi

l̂�. [22]

Then, for a fixed coordinate jk, form the vector bjk
with entries

bjk
� l̂ � � �

l�1

r

slV k
l � jk��

i	k

�Vi
l, Ṽi

l̂�. [23]

The normal equations for the direction k and coordinate jk
become

�cjk
� l̃� � bjk, [24]

which we solve for cjk
(l̃) as a vector in l̃. After computing cjk

(l̃)
for all coordinates jk, we let s̃l̃ � 	cjk(l̃)	 and Ṽ k

l̃ (jk) � cjk(l̃)�s̃l̃, where
the norm is taken with respect to the coordinate jk.

For fixed direction k and coordinate jk, it requires r̃2�d�M
operations to compute �, r̃r�d�M to compute bjk

, and r̃3 to solve
the system. Since � and the inner products in bjk

are independent
of the coordinate jk, computing for another value of jk has
incremental cost rr̃ � r̃2. Similarly, many of the computations
involved in � and bjk

are the same for different k. Thus, one
full alternating least-squares iteration costs O[d�r̃(r̃2 � r�M)].
Because this algorithm uses inner products that can only be
computed to within roundoff error 	, the best accuracy
obtainable is � � �	.

We have found it prudent to monitor the conditioning of the
matrix � in Eq. 22 by detecting small pivots during the linear
solve of Eq. 24. If a small pivot is detected, it means the set
of vectors {Ṽ1

l̃ R � � � R Ṽd
l̃ } that make up �̃ have become nearly

linearly dependent. If the separation values are large, it signals
a legitimate but poorly conditioned representation, in which case
we should raise r̃ to alleviate the conditioning. If the separation
values are not large, we can instead discard the vector corre-
sponding to the small pivot and reduce r̃ by one.

Numerical Examples
In this section we provide numerical evidence to support our
conjectures and to demonstrate that our approach can be used
successfully.

Alternating Least-Squares Tests. In the first series of tests we
generate a random separated vector of norm one (Eq. 20) and
then look for a representation (Eq. 21) with the same separation
rank using our algorithm. On a typical run with d � 30, M � 100,
and r � 100, the residual decreased steadily but slowly as r̃ was
increased and was still 2�10�2 when r̃ � 99. At r̃ � 100 the error
dropped to 2�10�8, the best obtainable in double precision. The
entire process took 2,900 seconds on a 360-MHz Sun Ultra10.

The second test is to find a representation for sin(�j�1
d xj),

starting with the separated representation with r � 2d�1 terms,
obtained via ordinary trigonometric formulas. When started
with r̃ � d, the alternating least-squares algorithm quickly finds
separated representations with r̃ � d terms, thereby generat-
ing an instance of the trigonometric identity (Eq. 6). When
started with r̃ � d, however, it pursued poorly conditioned
representations.

The third test is the proton-type potential (Eq. 8), which
nominally has r � d. In dimensions d � 100, our algorithm found
representations of the correct form (Eq. 12), which was unknown
to us at the time of the experiment. It did not, however, find truly
optimal representations and occasionally encountered badly
conditioned matrices (Eq. 22).

Computation of a Spectral Projector. For a diagonalizable matrix �
with real eigenvalues, we can compute sign(�) using the follow-
ing recursion:

�0 � ��	�	2

�k � 1 � �3�k � �k
3��2, k � 0, 1, . . .

[25]

Using the sign function, we can compute spectral projectors (10),
which are useful for computing electron densities, in some
wave-propagation problems and in model reduction.

We now give an example of the computation of a sign function.
Here we test the principle of using a separated representation to
compute functions of matrices. We compare the run times using
the ordinary representation with dense matrices and sparse
matrices in wavelet coordinates and the separated representa-
tion with dense and sparse one-dimensional matrices �i

l.
We compute sign(H � 50I) for the Hamiltonian

H � �
 � 20 cos�x1
2 � x2

2�, [26]

on a periodic domain in dimension d � 2. This Hamiltonian is
a simplified single-atom independent-electron model for a crys-
tal. The shift 50 separates out the five eigenfunctions with lowest
eigenvalues. Even in this dimension the computation is very
expensive. The sign function does not have an explicit solution
and cannot be simplified by separation of variables. We perform
30 iterations (Eq. 25) and truncate the sparse matrices at 10�5

relative precision. Table 1 gives run times on a Sun Ultra2 with
a 300-MHz processor, thus demonstrating that the separated
representation removes the dimension d � 2 from the exponent.

Computation of the Smallest Eigenvalue via the Power
Method in Dimension 30
For a diagonalizable matrix �, we can compute the spectral
radius �(�) with the power method. Beginning with a random
vector F0, we compute

Gk � �Fk

Fk � 1 � Gk�	Gk	, k � 0, 1, . . . .
[27]

The norm 	Gk	 will converge to �(�), and if the corresponding
eigenvalue is distinct, then Fk is the eigenvector.

For the operator, we choose the Hamiltonian

H � �
 � 2d �
i�1

d

cos�xi� � �
i�1

d �
k�i

d

cos�xi � xk�, [28]

which is a simplified single-atom interacting d-electron model.
We discretize H to form the matrix �. Since the smallest
eigenvalue of � corresponds to the lowest energy state, we apply
the power method to � � Cd� � � for a suitable shift Cd �
	�	�2 to determine that eigenvalue. Usually the power method

Table 1. Run times in seconds for a sign iteration in d � 2

N

Ordinary Separated

Dense Sparse Dense Sparse

8 1.4�100 1.4�100 2.2�100 4.4�100

16 9.8�101 7.9�101 1.3�101 2.3�101

32 2.9�104 3.1�102 9.2�101 7.7�101

64 (est.)�106 2.2�103 7.3�102 2.3�102

128 (est.)�108 (est.)�104 4.9�103 7.8�102

256 (est.)�1010 (est.)�105 (est.)�104 3.0�103

Observed order N6 N3 N3 N1.5
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is not used to compute the smallest eigenvalue, in particular due
to the large number of iterations required. However, it provides
a simple demonstration of the ability to compute in higher
dimensions.

The initial vector F0 is chosen with separation rank one. After
each iteration, we reduce the separation rank of Fk using Fk�1 as
the initial approximation in the alternating least-squares algo-
rithm. For small values of k, Fk does not have the properties of
the target eigenvector, and so it may have large separation rank.
To prevent the power method from slowing down, we use an
adaptively changing accuracy �k.

For this example we choose dimension d � 30 and a
one-directional discretization with N � 20. These choices make
	�	 � 8�104, so we choose Cd � 5�104. The matrix � has apparent
separation rank 2d � d(d � 1) � 930 using trigonometric
identities, but we represent it with separation rank r � 22 using
the derivative formulation in Eq. 12, accurate to relative preci-
sion � � 10�7 in the operator norm. We iterate until the norm
	Gk	 has converged within 10�7 relative accuracy and use this as
the correct value for �(�). We then examine earlier iterates that
are accurate to within �, for various values of �. In Table 2 we
vary � and present the number of iterations needed to obtain that
precision, the separation rank of Fk, and the run time in seconds
on a Sun Ultra10 with a 360-MHz processor.

Although we did not enforce antisymmetry in this example, it
is possible to guide the iteration to a fermionic rather than
bosonic eigenspace. We plan to perform computations with the
full Schrödinger operator, including the antisymmetry condition,
and will present results as they become available.
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Table 2. Computation of the smallest eigenvalue for a model
Schrödinger operator in dimension 30

� Iterations r(Fk) Time, sec

10�2 521 1 2.7�101

10�3 2,557 2 1.4�102

10�4 4,130 5 1.5�103

10�5 5,230 6 6.4�103

10�6 6,160 11 2.0�104

10�7 6,368 12 2.2�104
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