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We introduce new families of Gaussian-type quadratures for weighted integrals
of exponential functions and consider their applications to integration and interpo-
lation of bandlimited functions.

We use a generalization of a representation theorem due to Carathéodory to derive
these quadratures. For each positive measure, the quadratures are parameterized by
eigenvalues of the Toeplitz matrix constructed from the trigonometric moments of
the measure. For a given accuracy ε, selecting an eigenvalue close to ε yields an
approximate quadrature with that accuracy. To compute its weights and nodes, we
present a new fast algorithm.

These new quadratures can be used to approximate and integrate bandlimited
functions, such as prolate spheroidal wave functions, and essentially bandlimited
functions, such as Bessel functions. We also develop, for a given precision, an
interpolating basis for bandlimited functions on an interval.  2002 Elsevier Science (USA)

1. INTRODUCTION

In this paper we relate the Carathéodory representation of finite sequences in terms
of exponential sums with the computation of generalized Gaussian quadratures for
exponentials. Generalized Gaussian quadratures were investigated by Markov [17, 18],
Krein and Nudel’man [13], Karlin and Studden [12] and, more recently, by Yarvin and
Rokhlin [30]. In [30] the authors introduce practical algorithms for computing the nodes
and weights of generalized Gaussian quadratures. The resulting approximations have a
number of important applications in a variety of fast algorithms [3, 31].

The Carathéodory representation theorem asserts existence and uniqueness of the
representation of a finite sequence of complex numbers c = (c1, c2, . . . , cN), c �= 0, in
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the form

ck =
M∑
j=1

ρjeiπθj k, (1.1)

for k = 1,2, . . . ,N and M ≤ N , where −1 < θj ≤ 1 and ρj > 0. Carathéodory
representation (1.1) has been the foundation for a number of algorithms for spectral
estimation; in particular, [20] is known in electrical engineering literature as the Pisarenko
method. In this paper we develop a fast algorithm for finding M , the phases θ =
(θ1, . . . , θM) with |θj | ≤ 1, and the weights ρ = (ρ1, . . . , ρM). Our algorithm differs
from that described in [20], although the basic approach is similar. We achieve finite
but arbitrary accuracy and our algorithm requires O(N(logN)2) operations (O(N2) in a
simpler version).

One can view finding M , the phases θ, and the weights ρ as a nonlinear inverse problem
for the unequally spaced discrete Fourier transform [1, 5]. It is interesting to note that the
associated linear problem, namely the problem where M and |θj | ≤ 1 in (1.1) are given,
can be arbitrarily ill conditioned. In other words, the condition number of the Vandermonde
matrix {eiπ θj k}k,j=1,...,M can be arbitrarily large. On the other hand, the nonlinear problem
is well posed and we will show the l2-norm estimate

‖ρ‖2 ≤
√

2‖c‖2. (1.2)

The main goal of this paper is to extend Carathéodory representation and use it to
compute quadratures for integrals involving exponentials, as well as the Bessel and the
prolate spheroidal wave functions (PSWF). These bandlimited or essentially bandlimited
functions play a central role in many problems of signal processing and numerical
analysis. We also consider the associated interpolation problem involving these functions.
Specifically, we develop methodology to represent bandlimited functions on an interval
using exponentials {eicxtl}Ml=1, where the bandlimit c is a positive real constant and tl ,
|tl | ≤ 1, are phases computed for a given c and accuracy ε. With this approach, we are
no longer limited to representing periodic functions, as is the case with Fourier series.

In order to consider bandlimited functions on an interval, the PSWF were introduced
in [24] and [15]. Recently, a method for computing generalized Gaussian quadratures for
PSWF and, as a consequence, for bandlimited exponentials, was introduced in [29]. In [29]
the authors first construct quadratures for the PSWF using the fact that the first n of these
functions form a Chebyshev system, for any n. The approach for computing generalized
Gaussian quadratures in [30] relies on a variant of Newton’s method in conjunction with
a continuation procedure. As a method it is quite general but is computationally intensive,
although in many applications speed is not a limitation.

Our approach differs from that in [29]. We first develop a method for constructing
optimal nodes and weights for integrals involving exponentials and then show that the same
nodes and weights also provide quadratures for other essentially bandlimited functions,
e.g., the PSWF.

The reader familiar with Gaussian quadratures should be warned that our methodology
for generating quadratures is substantially different from the existing methods. The
resulting quadrature formulas do not coincide with any other existing quadrature but,
numerically, they are close to those in [29].
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As a method for constructing generalized Gaussian quadratures, our results are limited to
integrals (with a fairly arbitrary measure) involving exponentials. Our algorithm involves
finding eigenvalues and eigenvectors of a Toeplitz matrix constructed from trigonometric
moments of the measure and then computing the roots on the unit circle for appropriate
eigenpolynomials. In particular, each eigenpolynomial with distinct roots gives rise to an
identity which, for small eigenvalues, provides us with a Gaussian-type quadrature and also
with a representation of positive definite Hermitian Toeplitz matrices. In these identities the
size of the eigenvalue determines the accuracy of the quadrature formula.

It turns out that in the case of the weight leading to PSWF, the nodes of the corresponding
Gaussian quadratures are zeros (appropriately scaled to the interval [−1,1]) of discrete
PSWF corresponding to small eigenvalues.

As an application, we use the new quadratures to obtain efficient approximations of
nonperiodic bandlimited functions in terms of linear combinations of exponentials. In fact,
we consider integrals of the form

u(x)=
∫ 1

−1
eictx dµ(t), (1.3)

where dµ(t) is a measure, typically dµ(t) = w(t) dt , with w a weight function (w is a
real, nonnegative, integrable function with

∫ 1
−1 w(τ) dτ > 0). For a given bandlimit c > 0

and accuracy ε > 0, our goal is to approximate u(x) on the interval [−1,1] using the sum

ũ(x)=
M∑
k=1

wkeicθkx , (1.4)

where wk > 0 and M =M(c, ε), so that

|u(x)− ũ(x)| ≤ ε, for x ∈ [−1,1]. (1.5)

Since it is appropriate to view (1.4) as a quadrature, we will refer to θk as nodes and wk as
weights.

In order to find ũ as in (1.4)–(1.5), we sample the function u in (1.3) at equally spaced
points so that we exceed the sampling rate dictated by the Nyquist criterion. The equally
spaced samples of u can be viewed as the trigonometric moments of the (rescaled) measure
in (1.3). We extend Carathéodory representation to find M , the nodes {θk}Mk=1, and the
weights {wk}Mk=1. We then use the same M , nodes, and weights to define ũ in (1.4) for all
x ∈ (−1,1) and show that (1.5) holds if u in (1.3) was sufficiently oversampled.

For the interpolation problem for bandlimited functions, we consider the linear space of
functions Ec = {f ∈ L∞[−1,1]: f (x) =∑

k∈Z
akeibkx : {ak} ∈ l1, |bk| ≤ c, ∀k}. These

functions are not necessarily periodic in [−1,1]. The interpolation problem amounts to
representing, with accuracy ε, the functions in Ec by a fixed set of exponentials {eic tkx}Mk=1,
where M is as small as possible. We show that by finding quadrature nodes {tk}Mk=1
for exponentials with bandlimit 2c and accuracy ε2, we in fact obtain, with accuracy ε,
a basis for bandlimited functions with bandlimit c. The connection between the generalized
Gaussian quadratures for exponentials and the interpolation problem was first described
in [29]. We use similar results to construct interpolatory bases for arbitrary accuracy ε.
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The paper is organized as follows. We present a brief description of the Pisarenko
method to obtain the classical Carathéodory representation and we derive the estimate
(1.2) in Section 2. In Section 3 we discuss generalized Gaussian quadratures for weighted
integrals and prove some of their properties for weights supported inside [−1/2,1/2].
In Section 4 we introduce new families of Gaussian-type quadratures. We develop a fast
algorithm in Section 5 to compute the nodes and weights of these quadratures. We solve
the approximation problem (1.3)–(1.5) in Section 6 and use it in the next two sections
to obtain quadratures and interpolating bases for bandlimited functions. We also discuss
various examples to illustrate these results. Finally, conclusions are presented in Section 9.

2. CARATHÉODORY REPRESENTATION

Carathéodory representation solves the trigonometric moments problem and can be
stated as follows (see [8, Chap. 4]).

THEOREM 2.1. Given N complex numbers c = (c1, c2, . . . , cN ), not all zero, there
exist unique M ≤ N , positive numbers ρ = (ρ1, ρ2, . . . , ρM), and distinct real numbers
θ1, θ2, . . . , θM , −1< θj ≤ 1, such that

ck =
M∑
j=1

ρjeiπθj k, for k = 1,2, . . . ,N. (2.1)

Although the theorem applies to all finite sequences c of complex numbers, it is useful
in practical applications if there is a reason to seek representations of the form (2.1) with
positive weights ρj . For example, if the sequence c is the values of a covariance function,
then this theorem provides the foundation for several spectral estimation algorithms in
signal processing, e.g., the so-called Pisarenko method (see [20] for more details). In
this paper, we are interested in the case where the sequence c contains the trigonometric
moments of a positive weight.

Given c, finding M , the phases θ = (θ1, . . . , θM), |θj | ≤ 1 , and the positive weights ρ

can be viewed as a nonlinear inverse problem for the unequally spaced discrete Fourier
transform [1, 5].

As discussed in the introduction, the problem of finding ρ, where c, M , and |θj | ≤ 1
are given, can be arbitrarily ill conditioned. In contrast, the phases θj in Carathéodory
representation are related to the vector c and we have a stability estimate:

THEOREM 2.2. Vectors c and ρ as in Theorem 2.1 satisfy

‖ρ‖2 ≤
√

2‖c‖2.

For the proof see the Appendix.
Grenander and Szegő’s proof of Carathéodory representation [8] provides a method to

obtain M , the phases θ , and the weights ρ. It is also the foundation for Pisarenko’s method
for spectral estimation [20]. We now outline its main points.
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2.1. Algorithm I: Method to Obtain M , θ , and ρ

(1) Given c = (c1, c2, . . . , cN), we extend the definition of ck to negative k as
c−k = ck and we define c0 so that the (N + 1)× (N + 1) Toeplitz matrix T N of elements
(T N)kj = cj−k , has nonnegative eigenvalues and at least one eigenvalue is equal to zero.

(2) Define M as the rank of T N . By construction, we have M ≤N . We also say that
M is the rank of the representation (2.1).

(3) Let T M be the top left principal submatrix of order M + 1 of T N . That is, the
matrix T M has elements (cj−k)0≤k,j≤M . Find the eigenvector q corresponding to the zero
eigenvalue of T M .

(4) Construct the polynomial (eigenpolynomial) whose coefficients are the entries of
the eigenvector q . As shown in [8, p. 58], the M roots of this eigenpolynomial are distinct
and have absolute value 1. The phases of these roots are the numbers θj .

(5) Find the weights ρ by solving the Vandermonde system (2.1) for k = 1, . . . ,M .
They will, in addition, satisfy

∑
k ρk = c0.

Remark 2.1. With the extension of the sequence ck , (2.1) is valid for |k| ≤ N . If
q = (q0, . . . , qM) is the eigenvector obtained in part (3) of Algorithm 2.1, then

M∑
k=0

ck+sqk = 0, (2.2)

for all s,−N ≤ s ≤ 0. In other words, we have found an order-M recurrence relation for
the original sequence {ck}Nk=1.

Remark 2.2. In practice, we are interested in using Carathéodory representation if M is
small compared with N , or more generally, if most weights are smaller than the accuracy
sought. However, in such cases, T N has a large (numerical) null subspace that causes
severe numerical problems in determining c0, the rank M , and the eigenvector q .

Nevertheless, if the sequence c is the trigonometric moments of an appropriate weight,
we will be able to modify the previous method in order to obtain the phases θj in an
efficient manner. In this setting, the phases and weights in Carathéodory representation
can be thought of as the nodes and weights of a Gaussian-type quadrature for weighted
integrals. Once the phases are obtained, Theorem 2.2 assures that the computation of the
weights is a well-posed problem. In Section 5.2 we present a fast algorithm to obtain the
weights by evaluating certain polynomials at the nodes eiπθj .

Remark 2.3. Given any Hermitian Toeplitz matrix T , let us consider its smallest
eigenvalue λ(N). It is easy to see that Carathéodory representation implies the following
representation of T as a sum of rank-one Hermitian Toeplitz matrices,

(T − λ(N)I )kl =
M∑
j=1

ρjeiπθj (l−k), (2.3)

where ρj are positive and eiθj are the zeros of the eigenpolynomial corresponding to the
eigenvalue λ(N).
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3. GENERALIZED GAUSSIAN QUADRATURES FOR EXPONENTIALS

3.1. Preliminaries: Chebyshev Systems

In this section we collect some definitions and results related to Chebyshev systems. We
follow mostly Karlin and Studden [12] (see also [13]). Readers familiar with this topic may
skip this section.

A family of n+ 1 real-valued functions u0, . . . , un defined on an interval I = [a, b] is a
Chebyshev system (T-system) if any nontrivial linear combination

u(t)=
n∑

j=0

αjuj (t) (3.1)

has at most n zeros on the interval I . This property of a T-system can be viewed as a
generalization of the same property for polynomials. Indeed, the family {1, t, t2, . . . , tn}
provides the simplest example of a Chebyshev system.

Alternatively, a T-system over [a, b]may be defined by the condition that the n+1 order
determinant is nonvanishing,

det



u0(t0) u0(t1) · · · u0(tn)

u1(t0) u1(t1) · · · u1(tn)

· · · · · · · · · · · ·
un(t0) un(t1) · · · un(tn)


 �= 0, (3.2)

whenever a ≤ t0 < t1 < · · · < tn ≤ b. Without loss of generality, the determinant can be
assumed positive.

Let u0, . . . , un be a T-system on the interval I . The moment space Mn+1 with respect
to u0, . . . , un is defined as the set

Mn+1 =
{

c= (c0, . . . , cn) ∈R
n+1

∣∣∣∣cj =
∫
I

uj (t) dµ(t), j = 0, . . . , n

}
, (3.3)

where the measure µ(t) ranges over the family of nondecreasing right-continuous
functions of bounded variation on the interval I . It can be shown that the moment space is
a closed convex cone. We will denote the interior of the moment space Int(Mn+1).

Let us consider a representation of a point c= (c0, . . . , cn) ∈Mn+1

cj =
m∑
k=1

ρkuj (tk), j = 0, . . . , n, (3.4)

where ρk > 0, a ≤ tk ≤ b, k = 1, . . . ,m. The index I(c) of a point c ∈Mn+1 is defined
as the minimum number of points tk that are used in the representation (3.4), where the
boundary points tk = a and tk = b are counted as 1/2 and the points in the interior of the
interval a < tk < b are counted as 1.

The representation (3.4) induces a generalized Gaussian quadrature for the integral
with the measure that defines the point c in the moment space while the index describes
the number of nodes necessary for the quadrature. The following theorems (see [12]
and [13]) generalize to any T-system the usual Gaussian quadratures for the polynomials
{1, t, . . . , tn}.
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THEOREM 3.1. A point c ∈Mn+1, c �= 0, is a boundary point of Mn+1 if and only if
I(c) < (n+ 1)/2.

THEOREM 3.2. Let u0, . . . , u2m be a T-system on [a, b] and let c be a boundary point
of M2m+1. Then there exists a unique representation with the index less than m+ 1 which
involves no more than m+ 1 nodes.

THEOREM 3.3. Let u0, . . . , u2m be a T-system on [a, b] and let c be an interior point of
M2m+1. Then there exist at least two representations with the index m+ 1/2 (with m+ 1
terms). Both of them have m+ 1 nodes, one of which is the end point of the interval.

If the functions u0, . . . , un are periodic on the interval I and satisfy (3.2), then they
define a periodic T-system. A periodic T-system always involves an odd number of
functions. Indeed, since the system is defined on a circle, the equally spaced values
(t0, . . . , tn) can be continuously rotated into (tn, . . . , t0). If the number of functions were
even, such rotation would change the sign of the determinant in (3.2) and, due to the
continuous dependence on (t0, . . . , tn), would force the determinant to vanish at some
intermediate point.

For periodic systems holds [12, 13]:

THEOREM 3.4. Let u0, . . . , u2m be a periodic T-system on [−1,1] and let c be an
interior point of M2m+1. Then for each point t0, −1 ≤ t0 ≤ 1, there exists a unique
representation with the index I(c)=m+ 1 (with m+ 1 terms) involving t0 as a node.

3.2. Generalized Gaussian Quadratures for Exponentials

Let us consider a family of real periodic functions

1, cos(πt), sin(πt), . . . , cos(πmt), sin(πmt) (3.5)

on the interval [−1,1]. We treat the boundary points −1 and 1 as identical so that (3.5)
is defined on the circle. The system of functions in (3.5) is a periodic Chebyshev system
(T-system) in [−1,1] (see [12, 13] and Section 3.1 for a brief summary).

We also consider this family on a proper subinterval of [−1,1]. On any subinterval
[a, b] ⊂ [−1,1], the family in (3.5) is a T-system.

Let us consider the moments of the measure ω(τ) dτ , where ω(τ) is a weight function,

αk =
∫ 1

−1
ω(τ) cos(πkτ) dτ, k = 0,1, . . . ,m, (3.6)

and

βk =
∫ 1

−1
ω(τ) sin(πkτ) dτ, k = 1, . . . ,m. (3.7)

We also consider complex-valued moments,

γk = αk + iβk =
∫ 1

−1
ω(τ)eiπkτ dτ, k = 1, . . . ,m. (3.8)

Let M2m+1 be the moment space and let Int(M2m+1) be its interior, as defined in
Section 3.1. We have
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THEOREM 3.5 [12, VI, Sec. 4]. For the periodic T-system (3.5), a point c = {α0,

α1, β1, . . . , αm,βm} is a point of the moment space M2m+1 if and only if the Toeplitz
matrix {γk′−k}k,k′=0,...,m is nonnegative definite.

Furthermore, c ∈ Int(M2m+1) if and only if the Toeplitz matrix {γk−k′ }k,k′=0,...,m is
positive definite.

We also have

THEOREM 3.6 [12, VI, Sec. 2]. A point c = {α0, α1, β1, . . . , αm,βm} is a boundary
point of the moment space M2m+1 if and only if there is a unique representation

γk =
m′∑
j=1

ωjeiπθj k, (3.9)

where m′ ≤m and −1≤ θj ≤ 1.
If c ∈ Int(M2m+1), then for each τ0 ∈ [−1,1], there exists a unique representation with

m+ 1 nodes, including τ0 as a node; that is,

γk =
m∑
j=1

ωjeiπθj k +ω0eiπτ0k, (3.10)

where −1≤ θj ≤ 1.

Let us consider weights ω supported in a subinterval of [−1,1]. We then prove

THEOREM 3.7. Let ω be a weight supported in some interval I = [a, b], I ⊆ [−1,1].
Then there exists a unique representation

∫ 1

−1
ω(t)eiπkt dt =

m∑
j=1

ωj eiπθj k +ω0 (−1)k, for |k| ≤m, (3.11)

where a < θj < b and ωj > 0 for j = 0, . . . ,m.
Moreover, if I = [−a, a], where 0 < a ≤ 1/2, then

ω0 ≤
4
∫ 1/2
−1/2 ω(t) dt

2+ (2+√3)m + (2−√3)m
. (3.12)

Proof. Let us start by considering the periodic T-system (3.5) and c= {α0, α1, β1, . . . ,

αm,βm} the point in the moment space obtained from the measure dµ(t) = ω(t) dt . It
is easy to show that the Toeplitz matrix {γj−k}, obtained for the moments in (3.8), is
positive definite (see (4.7)). Thus, Theorem 3.5 and (3.10) with τ0 = 1 imply a unique
representation (3.11) with−1< θj < 1 and k = 0, . . . ,m. Since the weights are real, (3.11)
also holds for k =−m, . . . ,−1. We want to show that, in fact, a < θj < b.

Since the weight ω is supported in [a, b] ⊆ [−1,1], we can also consider [a,1] as its
interval of definition. We note that the functions in (3.5) form a Chebyshev system on
this interval (in fact, on any subinterval of [−1,1]). Using Theorem 3.3 we construct
a representation which includes the boundary point 1 of the interval [a,1] as a node.
However, this representation also holds on [−1,1], where (3.11) guarantees uniqueness.
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Thus, to avoid a contradiction, we conclude that a < θj ≤ 1 in (3.11). Similarly, let us
consider the weight ω in [−1, b]. By the same argument we obtain that −1 ≤ θj < b

(the points −1 and 1 are identical on [−1,1]). Therefore, we conclude that a < θj < b

and (3.11) is established.
Let us now consider a periodic trigonometric polynomial

vm(t)= Tm(1− cos(πt)), (3.13)

where Tm is the Chebyshev polynomial of degree m. Since the degree of vm(t) does not
exceed m, we have from (3.11)

∫ 1/2

−1/2
vm(t)ω(t) dt =

m∑
j=1

ωjvm(θj )+ω0vm(1), (3.14)

where −1/2< θj < 1/2.
Let us compute vm(1) = Tm(2). Using the three-term recursion for the Chebyshev

polynomials, we obtain

vm(1)= ((2+√3)m + (2−√3)m)/2. (3.15)

Since in the interval [−1/2,1/2] the absolute value of vm does not exceed 1,

ω0vm(1)=
∣∣∣∣
∫ 1/2

−1/2
vm(t)ω(t) dt −

m∑
j=1

ωjvm(θj )

∣∣∣∣≤
∫ 1/2

−1/2
ω(t) dt +

m∑
j=1

ωj . (3.16)

Setting k = 0 in (3.11), we obtain

m∑
j=1

ωj =
∫ 1/2

−1/2
ω(t) dt −ω0 (3.17)

and, combining with (3.16), we arrive at (3.12).

Remark 3.1. Since the numerator in (3.12) remains bounded and the denominator
grows exponentially fast with m, the coefficient ω0 is very small even for m of moderate
size.

4. A NEW FAMILY OF GAUSSIAN-TYPE QUADRATURES

Let us consider the trigonometric moments of a weight w(τ),

tk =
∫ 1

−1
eiπτkw(τ) dτ. (4.1)

In our approach, it is essential to consider only weights supported inside [−1/2,1/2]. Only
then can the moments tk be viewed as values of a properly sampled bandlimited function
(see (6.2) and (6.3)).
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In this section we start by using Carathéodory representation and Theorem 3.7 from
the previous section, to construct two different Gaussian quadratures for integrals with
weight w. These quadratures are exact for trigonometric polynomials of appropriate
degree.

We then generalize these types of quadratures further and develop a new family of
Gaussian-type quadratures. This family of quadrature formulas is parameterized by the
eigenvalues of the Toeplitz matrix

T = {tl−k}0≤k, l≤N. (4.2)

Among these new quadrature formulas, only those corresponding to eigenvalues of small
size are of practical interest. In fact, the size of the eigenvalue determines the error of the
quadrature formula. To compute the weights and nodes of these quadratures, we develop
a new algorithm which may be viewed as a (major) modification of Algorithm 2.1. The
new algorithm is described in Section 5. The main results of this section are gathered in
Theorem 4.1.

We start by using Theorem 3.7 to write

tk =
N∑
j=1

ωj eiπφj k +ω0(−1)k, for |k| ≤N, (4.3)

for unique positive weights ωj and phases φj in (−1,1). Then, for any A(z) =∑
|k|≤N akz

k in ,N , the space of Laurent polynomials of degree at most N , we have

∫ 1

−1
A(eiπτ )w(τ) dτ =

∑
|k|≤N

aktk =
N∑
j=1

ωjA(e
iπφj )+ω0A(−1), (4.4)

for unique positive weights ωj and nodes eiπφj .
Alternatively, using Carathéodory representation (2.1) applied to the sequence ck = tk ,

1≤ k ≤N ,

∫ 1

−1
A(eiπτ )w(τ) dτ =

M∑
j=1

ρjA(eiπθj )+ (t0 − c0)
1

2

∫ 1

−1
A(eiπτ ) dτ

=
M∑
j=1

ρjA(eiπθj )+ λ(N) 1

2

∫ 1

−1
A(eiπτ ) dτ , (4.5)

where c0 =∑M
j=1 ρj and {eiπθj } are the roots of the eigenpolynomial corresponding to the

smallest eigenvalue λ(N) of T .
Note that (4.5) is again valid for all A(z) in ,N and that the positive weights ρj and

phases θj in (−1,1] are unique.
Thus, we have two different quadratures that may not coincide. However, by considering

w(τ) supported inside (−1/2,1/2), (3.12) implies that w0 in (4.4) decreases exponentially
fast with N and, since minw(τ)= 0 for |τ | ≤ 1, we have

lim
N→∞λ(N) = 0, (4.6)
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as shown in [8, p. 65]. In consequence, for large N , the difference between these two
quadratures can be made smaller than the accuracy sought.

A similar reasoning could be applied to other small eigenvalues of T provided we can
generalize (4.5) to other eigenvalues and roots of the corresponding eigenpolynomials. For
that purpose, we first describe some properties of these eigenpolynomials.

4.1. Toeplitz Matrices for Trigonometric Moments

We summarize in this section properties of eigenpolynomials of the Toeplitz matrix T

with entries {tl−k}k,l=0,...,N . The matrix T is self-adjoint and positive definite since, for all
x ∈CN+1,

〈T x,x〉 =
∑

k,l=0,...,N

tl−kxlxk =
∫ 1

−1
|Px(eiπτ )|2w(τ) dτ, (4.7)

where 〈x,y〉 =∑
k xkyk is the usual inner product of two vectors and Px(z)=∑

k xk z
k .

More generally, for all x,y ∈ C
N+1, T induces a weighted inner product for trigo-

nometric polynomials,

〈T x,y〉 =
∫ 1

−1
Px(eiπτ )Py(eiπτ )w(τ) dτ. (4.8)

Since T is positive definite, there exists an orthonormal basis {v(k)}k=0,...,N of eigenvectors
of T corresponding to eigenvalues λ(0) ≥ λ(1) ≥ · · · ≥ λ(N) > 0. The corresponding
eigenpolynomials V (k)(z)=∑

j v
(k)
j zj satisfy

∫ 1

−1
V (k)(eiπt )V (l)(eiπt ) dt = 2δkl (4.9)

and, because of (4.8),

∫ 1

−1
V (k)(eiπt )V (l)(eiπt )w(t) dt = δkl λ

(k). (4.10)

For a vector x = (x0, . . . , xN), let us define the reciprocal vector of x as

x∗ =
(
xN, . . . , x0

)
and, similarly, for a trigonometric polynomial P(z), the reciprocal polynomial of P as

P∗(z)= P (z−1)= P(z−1). (4.11)

Since T is Toeplitz Hermitian, we have

T x∗ = λx∗, if T x = λx.

In particular, if λ is a simple eigenvalue, its corresponding eigenspace can be generated
by a self-reciprocal eigenvector x, i.e., x∗ = x, and the associated (self-reciprocal)
eigenpolynomial will have roots in pairs {γ, γ−1}.
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4.2. Gaussian-Type Quadratures on the Unit Circle

In this section we present the main results of the paper. We derive new Gaussian-
type quadratures valid for any eigenvalue of the matrix T rather than just the smallest
eigenvalue λN . These quadratures allow us to select the desired accuracy and thus, to
construct accuracy-dependent families of quadratures.

The nodes of the quadrature in (4.5) are the roots of the eigenpolynomial corresponding
to the least eigenvalue of T and, because of Carathéodory representation, we know that
these roots are on the unit circle and that the weights are positive numbers. In our
generalization, this standard property for the nodes and weights is no longer enforced.
However, we will show that for nodes on the unit circle, the corresponding weights are
real. Moreover, in all examples we have examined, for all small eigenvalues λ of T , their
negative weights are associated with the nodes outside the support of the weight and are
comparable in size with λ. We believe this property to hold for a wide variety of weights.

We prove the following

THEOREM 4.1. Assume that the eigenpolynomial V (s)(z) corresponding to the
eigenvalue λ(s) of T has distinct, nonzero roots {γj }Nj=1. Then there exist numbers {wj }Nj=1
such that

(i) For all Laurent polynomials P(z) of degree at most N ,

∫ 1

−1
P(eiπt )w(t) dt =

N∑
j=1

wjP(γj )+ λ(s)
1

2

∫ 1

−1
P(eiπt ) dt. (4.12)

(ii) For each root γk with |γk| = 1, the corresponding weight wk is a real number and

wk =
∫ 1

−1
|Ls

k(e
iπt )|2w(t) dt − λ(s)

1

2

∫ 1

−1
|Ls

k(e
iπt )|2 dt, (4.13)

where

Ls
k(z)=

V (s)(z)

(V (s))′(γk) (z− γk)
(4.14)

is the Lagrange polynomial associated with the root γk .
(iii) If λ(s) is a simple eigenvalue, then for k = 1, . . . ,N , the weight wk is nonzero

and

1

wk

=
∑

0≤l≤N
l �=s

V (l)(γk)V
(l)∗ (γk)

λ(l) − λ(s)
, (4.15)

where V (l)∗ (z)= V (l)(z−1) is the reciprocal polynomial of V (l)(z).
In particular, for each γk with |γk| = 1,

1

wk

=
∑

0≤l≤N
l �=s

|V (l)(γk)|2
λ(l) − λ(s)

. (4.16)

(iv) If λ(s) is a simple eigenvalue and all roots γk are on the unit circle, then the set
{wk}Nk=1 contains exactly s positive numbers and N − s negative numbers.
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In particular, if s = 0 or s =N , then all wk are negative or positive, respectively.

Remark 4.1. Our approach to obtain Gaussian quadratures does not use Szegő
polynomials and is therefore substantially different than the one in [11]. We briefly explain
the approach in [11]. Note that (4.9) and (4.10) show that the polynomials {V (k)(z)} are
orthogonal with respect to both the usual inner product for trigonometric polynomials and
the weighted inner product with weight w(t). We can also construct Szegő polynomials
{pk(z)} orthogonal with respect to w(t) and such that each pk(z) has precise degree k [26].
For any k, the roots of pk(z) are all in |z|< 1 [8].

Szegő polynomials and their reciprocals induce para-orthogonal polynomials [11],

Bn(z)= pn(z)+ ξn z
n (pn)∗(z),

where ξn are complex constants, |ξn| = 1. The roots of Bn(z) are on the unit circle and can
be used as the nodes for Gaussian quadratures with respect to the weight w(t).

Under appropriate assumptions to guarantee uniqueness, the quadratures in [11] should
coincide with those obtained in Theorem 3.7.

In contrast to these exact quadratures, in Theorem 4.1 we derive a new family of
Gaussian-type quadratures where, for each eigenvalue of the Toeplitz matrix (4.2), there is
a corresponding quadrature formula. Even for the smallest eigenvalue λ(N), the quadratures
in (4.12) and in Theorem 3.7 are different because of the extra integral term in (4.12).
The size of this extra term is controlled by the size of the corresponding eigenvalue and,
thus, it is never exactly zero. However, in applications, this extra term can be made as
small as desired via oversampling (see (6.1)–(6.3) and note that (4.6) is valid for all small
eigenvalues, not just the smallest [8, p. 65]).

Remark 4.2. For an eigenvalue λ(s) of small size, the integral term on the right-hand
side of (4.12) can be neglected. This is the case of practical interest.

Remark 4.3. Even though the weights wk could be complex valued, an important
consequence of Theorem 4.1 is that in many important cases wk are, in fact, real.

Remark 4.4. We have observed (see Table I) that the weights wk corresponding to
nodes outside the support of the weight w(t) are small, negative, and roughly of the size of
the eigenvalue λ(s). Although we now present a heuristic explanation of this behavior, we
do not know if a proof can be obtained along this path.

Let us split the sum in (4.16),

1

wk

=
∑

l: λ(l)>λ(s)

|V (l)(γk)|2
λ(l) − λ(s)

−
∑

l: λ(s)>λ(l)

|V (l)(γk)|2
λ(s)− λ(l)

. (4.17)

If λ(s) is in the range of the exponential decay of the eigenvalues, the first term in (4.17)
turns out to be much smaller than the second term, which is approximately

1

λ(s)

∑
l: λ(s)>λ(l)

|V (l)(γk)|2.
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For γk outside the support of the measure, we have observed (Figs. 2, 3, and 5–8) that

∑
l: λ(s)>λ(l)

|V (l)(γk)|2

is a constant of moderate size.
Thus, the second term in (4.17) is O(1/λ(s)) and the weight is indeed negative and

roughly of the size of the eigenvalue.

Remark 4.5. For the weight with value 1 in (−1/2,1/2) and 0 otherwise, the
eigenpolynomials are the discrete PSWF. For these functions, we know that all eigenvalues
are simple and that all eigenpolynomial roots are on the unit circle [23].

COROLLARY 4.1. Under the assumptions of Theorem 4.1, it follows that the Toeplitz
matrix T in (4.2) has the following representation as a sum of rank-1 Toeplitz matrices,

(T − λ(s)I )kl =
N∑
j=1

wjγ
l−k
j ,

where λ(s), wj , and γj are as in (4.12).

This corollary should be compared with Remark 2.3 noting that, in the corollary, λ(s) is
not necessarily the least eigenvalue of T . For an alternative derivation see [4].

Proof of Theorem 4.1. (1) For x = (x0, . . . , xN) ∈CN+1, let us define

Ax(z)=




L∑
l=−L

xl+Lzl, if N = 2L,

L∑
l=−L+1

xl+L−1z
l, if N = 2L− 1.

The values of Ax on the unit circle have a phase shift with respect to those of Px . In fact,
depending on the parity of N , Ax(eiπt ) is either Px(eiπt )e−iπtL or Px(eiπt )e−iπt(L−1).

Hence, (4.8) holds replacing Px by Ax , and then (4.9)–(4.10) also hold for the shifted
eigenpolynomials.

We prove the theorem for the case N = 2L. (The case N = 2L− 1 is similar.) For this
case, using the same notation V (k) for the shifted eigenpolynomials, we have

V (k)(z)=
L∑

l=−L
v
(k)
l+Lz

l.

(2) Since {γj } are distinct, we define {wj }Nj=1 as the unique solution of the Vandermonde
system

N∑
j=1

γ−kj wj =
∫ 1

−1
e−iπtkw(t) dt, for k = 1, . . . ,N. (4.18)



346 BEYLKIN AND MONZÓN

(3) Let P ∈,N ; then zNP(z) is a polynomial of at most degree 2N , and since zLV (s)(z)

is a polynomial of degree N , by Euclidean division, there exist polynomials q(z) and r(z)

of degrees at most N and N − 1 such that

zNP(z)= zLV (s)(z)q(z)+ r(z).

Thus,

P(z)= V (s)(z)Q(z)+R(z), (4.19)

where Q(z) ∈,L and R(z) has the form R(z)=∑N
k=1 rkz

−k and hence

∫ 1

−1
R(eiπt ) dt = 0.

Using the fact that {V (l)}Nl=0 is a basis of ,L, we write

Q(eiπt )=
N∑
l=0

dl V
(l)(eiπt ),

where dl are some complex coefficients.
Using (4.10) and (4.18), we multiply both sides of (4.19) by w(t) and integrate to obtain

∫ 1

−1
P(eiπt )w(t) dt =

N∑
l=0

dl

∫ 1

−1
V (s)(eiπt )V (l)(eiπt )w(t) dt +

∫ 1

−1
R(eiπt )w(t) dt

= dsλ
(s) +

N∑
j=1

wjR(γj ).

Now, (4.19) implies that the last sum equals
∑N

j=1 wjP(γj ). To find the constant ds , we
integrate both sides of (4.19) and use (4.9) to obtain

∫ 1

−1
P(eiπt ) dt =

N∑
l=0

dl

∫ 1

−1
V (s)(eiπt )V (l)(eiπt ) dt = 2ds,

and thus (4.12).
(4) Let us assume that the node γk has unit norm, |γk| = 1, and let P(z) =

Ls
k(z) (L

s
k)∗(z). We have P(γr)= δrk and since P ∈,N−1, (4.12) implies

∫ 1

−1
|Ls

k(e
iπt )|2w(t) dt = λ(s)

1

2

∫ 1

−1
|Ls

k(e
iπt )|2 dt +wk.

Clearly wk is real.
(5) We now show that, for 1≤ k, j ≤N ,

wk

∑
0≤l≤N
l �=s

V (l)(γj )V
(l)∗ (γk)

λ(l) − λ(s)
= δkj , (4.20)
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and thus, considering k = j , (4.15) follows. Note that we need λ(s) to be simple to
guarantee λ(l) − λ(s) �= 0, l �= s in (4.20).

If we view the left hand side of (4.20) as the entries Akj of a matrix A and let B be the
matrix of entries

Blk = V (l)(γk), where 0≤ l ≤N, l �= s, and 1≤ k ≤N, (4.21)

we can prove (4.20) by showing that BA= B and that B is nonsingular.
For the latter claim, we simply check that the columns of B are linearly independent.

Indeed, let al, l �= s, be constants such that

∑
l �=s

alV
(l)(γk)= 0, for k = 1, . . . ,N.

It follows that the polynomial P(z) = ∑
l �=s alV (l)(z) ∈ ,L has the N = 2L distinct

roots γk . Since P and V (s) have the same degree and the same N distinct roots,
P(z) = cV (s)(z), for some constant c. By (4.9), V (s)(z) is orthogonal to all the other
eigenpolynomials and so al = 0.

To show that BA= B , we first substitute P(z)= V (l)(z)V
(m)∗ (z) in (4.12) to obtain∫ 1

−1
V (l)(eiπt )V (m)(eiπt )w(t) dt = λ(s)

1

2

∫ 1

−1
V (l)(eiπt )V (m)(eiπt ) dt

+
N∑
j=1

wjV
(l)(γj )V

(m)∗ (γj ).

Using (4.9)–(4.10), we rewrite the previous equation as

δlm(λ
(l) − λ(s))=

N∑
j=1

wjV
(l)(γj )V

(m)∗ (γj ) (4.22)

and thus,

(BA)mn =
∑
j

V (m)(γj )wj

∑
l �=s

V (l)(γn)V
(l)∗ (γj )

λ(l) − λ(s)

=
∑
l �=s

V (l)(γn)

λ(l) − λ(s)

∑
j

wjV
(m)(γj )V

(l)∗ (γj )

= V (m)(γn)= Bmn.

(6) To prove the last assertion of the theorem, we consider (4.20) when all γk have unit
norm and thus all wk are real. In this case,

V (l)∗ (γk)= V (l)((γk)∗)= V (l)(γk),

and we can rewrite (4.20) as a matrix identity

B∗7B =W, (4.23)
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where B is the invertible matrix defined in (4.21), B∗ is its adjoint, and 7 and W

are diagonal matrices with real entries {1/(λ(l) − λ(s))}0≤l≤N, l �=s and {1/(wl)}1≤l≤N ,
respectively.

Using Sylvester’s law of inertia [10, Theorem 4.5.8], (4.23) implies that 7 and W have
the same inertia, that is, the same number of positive, negative, and zero eigenvalues. The
result follows because we assumed λ(s) to be simple and then λ(0) ≥ · · · ≥ λ(s−1) > λ(s) >

λ(s+1) ≥ · · · ≥ λ(N).

Techniques similar to those used in the proof of Theorem 4.1 allow us to derive several
results for eigenpolynomials corresponding to multiple eigenvalues or for the case where
their roots lie outside the unit circle. Here we limit our attention to the case of simple
eigenvalues or eigenpolynomials with all roots on the unit circle.

Trench [27] has shown that both the multiplicity of the eigenvalues and the number of
the eigenpolynomial zeros outside of the unit circle depend on the oscillations of the weight
function w(τ). We state two of the results in [27] for T as in (4.2).

THEOREM 4.2 [27, Theorem 2.1]. If λ is an eigenvalue of T with multiplicity m, then
w(τ)− λ changes sign at least 2m− 1 times in (−1,1).

THEOREM 4.3 [27, Theorem 3.1]. Let u(z) be a self-reciprocal eigenpolynomial
corresponding to the eigenvalue λ of T . If u(z) has 2m(m ≥ 1) zeros that are not on
the unit circle, then w(τ)− λ changes sign at least 2m+ 1 times in (−1,1).

4.3. Examples

We consider three examples with different weights and construct the appropriate
quadratures. See Fig. 1.

FIG. 1. Decay of the eigenvalues of the matrix T in Examples 1–3. The scale of the vertical axes is
logarithmic (log10), whereas the horizontal axes display indices of eigenvalues. We note the exponential rate
of decay. The flat portion of the graph for large indices is due to the limited precision of our computations. Thus,
these graphs also illustrate the practical difficulty of finding the eigenpolynomial corresponding to the smallest
eigenvalue.
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FIG. 2. Modified eigenpolynomial e−iπt(N/2)V (30)(eiπt ) on the interval [−1,1], where N = 97 and
V (30)(eiπt ) is the eigenpolynomial corresponding to the eigenvalue λ(30) in Example 1. The phase factor
e−iπtN/2 is introduced to make this function real.

EXAMPLE 1. First we consider the weight

w(t)=
{

1, t ∈ [−a, a], a ≤ 1/2,
0, elsewhere.

(4.24)

For this weight, the eigenpolynomials V (l)(eiπt ) of the N + 1×N + 1 Toeplitz matrix T

are the discrete PSWF [23]. Thus the eigenpolynomial V (l)(eiπt ) has all of its zeros on the
unit circle. Moreover, it has exactly l zeros for t in the interval (−a, a) and N zeros for t
in [−1,1]. In this example we have selected N = 97, a = 1/6, c= 15π . We then construct
the matrix T and compute the eigenpolynomial corresponding to the eigenvalue

λ(30) = 9.77306136381891632828 · 10−16. (4.25)

The eigenpolynomial V (30)(eiπt ) is shown in Figs. 2 and 3. Locations of the zeros on the
unit circle are displayed in Fig. 4. We then use the quadrature formula corresponding to
this eigenvalue and tabulate the weights in Table I. Note that the weights for nodes inside
the interval [−1/6,1/6] are positive and those for nodes outside this interval are negative
and roughly of the size of λ(30).

FIG. 3. The same function as in Fig. 2 on the interval [−1/6,1/6].
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FIG. 4. Location of the zeros on the unit circle for the eigenpolynomial V (30) in Example 1.

TABLE I
Table of Weights for the Quadrature Formula with λ(30) in Example 1

# Weights # Weights

1 −1.0328 · 10−17

2 −1.0328 · 10−17

3 −1.0329 · 10−17

.

.

.
.
.
.

33 −1.3518 · 10−17

34 −1.6030 · 10−17

35 0.00580295532842819966
36 0.01310603337477264417
37 0.01959211245475268191
38 0.02506789313597245367
39 0.02954323947353217723
40 0.03313334531810570720
41 0.03598544514201341779
42 0.03823923547752508920
43 0.04001188663952018400
44 0.04139574827622469674
45 0.04246105337417774134
46 0.04325984471286061543
47 0.04382960375644760677
48 0.04419611220330997984
49 0.04437549133235668283

50 0.04437549133235668283
51 0.04419611220330997984
52 0.04382960375644760677
53 0.04325984471286061543
54 0.04246105337417774134
55 0.04139574827622469674
56 0.04001188663952018400
57 0.03823923547752508920
58 0.03598544514201341779
59 0.03313334531810570720
60 0.02954323947353217723
61 0.02506789313597245367
62 0.01959211245475268191
63 0.01310603337477264417
64 0.00580295532842819966
65 −1.6030 · 10−17

66 −1.3518 · 10−17

.

.

.
.
.
.

96 −1.0329 · 10−17

97 −1.0328 · 10−17

Note. The weight #1 corresponds to the node γ1 =−1 (see Fig. 4).
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FIG. 5. Modified eigenpolynomial (see Fig. 2) on the interval [−1,1] corresponding to the eigenvalue λ(28)

in Example 2.

EXAMPLE 2. We consider the weight

w(t)=
{ |t|/a, t ∈ [−a, a], a ≤ 1/2,

0, elsewhere.
(4.26)

In this example we have selected N = 61, a = 1/4, c = 15π . We then construct the
matrix T and compute the eigenpolynomial corresponding to the eigenvalue

λ(28) = 1.11598931688523706280 · 10−14. (4.27)

The eigenpolynomial V (28)(eiπt ) is shown in Figs. 5 and 6.

EXAMPLE 3. We consider a nonsymmetric weight

w(t)=
{

1+ t/a, t ∈ [−a, a], a ≤ 1/2,
0, elsewhere.

(4.28)

FIG. 6. The same function of Fig. 5 on the interval [−1/4,1/4].
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FIG. 7. Modified eigenpolynomial (see Fig. 2) on the interval [−1,1] corresponding to the eigenvalue λ(28)

in Example 3.

In this example we have selected N = 61, a = 1/4, c = 15π . We then construct the
matrix T and compute the eigenpolynomial corresponding to the eigenvalue

λ(28) = 4.68165338379692121389 · 10−15. (4.29)

The eigenpolynomial V (28)(eiπt ) is shown in Figs. 7 and 8. Although we do not have a
proof at the moment, it appears that there is a class of weights for which eigenpolynomials
corresponding to small eigenvalues mimic the behavior of the discrete PSWF with respect
to locations of zeros. In Example 3 we know that all zeros are on the unit circle due to
Theorems 4.2 and 4.3.

In Table II we illustrate the performance of quadratures for different bandlimits c. This
table should be compared with [29, Table 1]. The performance of both sets of quadratures is
very similar. Yet these quadratures are quite different as can be seen by comparing Table III
with [29, Table 5]. Although the accuracy is almost identical, approximately 10−7, the
positions of nodes and weights differ by approximately 10−3–10−4.

FIG. 8. The same function of Fig. 7 on the interval [−1/4,1/4].
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TABLE II
Quadrature Performance for Varying Bandlimits

c # of nodes Maximum errors

20 13 1.2 · 10−7

50 24 1.1 · 10−7

100 41 1.6 · 10−7

200 74 1.8 · 10−7

500 171 1.4 · 10−7

1000 331 2.4 · 10−7

2000 651 1.2 · 10−7

4000 1288 3.7 · 10−7

5. A NEW ALGORITHM FOR CARATHÉODORY REPRESENTATION

5.1. Algorithm 2

We now describe an algorithm for computing quadratures via a Carathéodory-type
approach based on Theorem 4.1. It is easy to see that, although there are similarities with

TABLE III
Quadrature Nodes for Exponentials with Maximum Bandlimit c = 50

Node Weight

−0.99041609489889 2.42209284787E-02
−0.95238829377394 5.04152570050E-02
−0.89243677566550 6.82109308489E-02
−0.81807124037876 7.96841731718E-02
−0.73438712699465 8.71710040243E-02
−0.64454148960251 9.22000859355E-02
−0.55050369342444 9.56668891250E-02
−0.45355265507507 9.80920675810E-02
−0.35456254990620 9.97843340729E-02
−0.25416536256280 1.00930070892E-01
−0.15284664158549 1.01641529848E-01
−0.05100535080412 1.01982696564E-01

0.05100535080412 1.01982696564E-01
0.15284664158549 1.01641529848E-01
0.25416536256280 1.00930070892E-01
0.35456254990620 9.97843340729E-02
0.45355265507507 9.80920675810E-02
0.55050369342444 9.56668891250E-02
0.64454148960251 9.22000859355E-02
0.73438712699465 8.71710040243E-02
0.81807124037876 7.96841731718E-02
0.89243677566550 6.82109308489E-02
0.95238829377394 5.04152570050E-02
0.99041609489889 2.42209284787E-02

Note. The maximum error is ≈1.1 · 10−7.
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Pisarenko’s method, the corresponding algorithms are substantially different. We plan to
address implications for signal processing in a separate paper.

(1) Given tk , the trigonometric moments of a measure, we construct the (N + 1)× (N +
1) Toeplitz matrix T N with elements (T N)kj = tj−k . This matrix is positive definite and
has a large number of small eigenvalues.

(2) For a given accuracy ε, we compute the inverse of the Toeplitz matrix T N − εI .
For a self-adjoint Toeplitz matrix, it is sufficient to solve (T N − εI )x0 = e0, where
e0 = (1,0, . . . ,0)t . After x0 is found, we use the Gohberg–Semencul representation of
the inverse of the Toeplitz matrix [7] (see also [6] for a modern perspective) in order to
apply it to a vector. If ε is too close to an eigenvalue of T N , it might be necessary to
slightly modify the value of ε and repeat this step.

This step requires O(N2) operations if we use the Levinson algorithm. However, we
know how to build a stable O(N(logN)2) algorithm for this purpose, which we will present
elsewhere.

(3) Using the power method for (T N − εI )−1, we find an eigenvalue λ(q) close to ε

and the corresponding eigenvector q . This step requires O(N logN) operations due to the
Gohberg–Semencul representation of the inverse.

(4) Next, compute all zeros on the unit circle of the eigenpolynomial corresponding to
the eigenvector q .

This requires O(N logN) operations since we use the unequally spaced fast Fourier
transform [1, 5] to evaluate the trigonometric polynomial on the unit circle. We pick out
the zeros within the support of the measure and denote their number by M .

(5) Using the algorithm described below, we find the weights ρ by solving the
Vandermonde system for all nodes (including those outside the support). This algorithm
takes O(N logN) operations.

5.2. Solving Vandermonde Systems Using Polynomial Evaluation

To obtain the weights in step (5) of Algorithm 5.1, we need to solve an M × M

Vandermonde system with nodes on the unit circle. In this section we discuss an algorithm
to obtain the solution by evaluating certain polynomials on the Vandermonde matrix nodes.
The algorithm can be derived from more general results [9, 16, 21]. Here we give a simpler
presentation adapted to our particular application. Note that general algorithms to solve
Vandermonde systems are unstable, unless there is a particular arrangement of the nodes.

Let {γ1, . . . , γM} be distinct complex numbers and define

V =




1 . . . 1
γ1 γM
...

...

γM−1
1 . . . γM−1

M


 ∈C

M×M.

Since the nodes {γr } are distinct, detV �= 0 and thus, given b= (b0, . . . , bM−1)
t , there is a

unique ρ = (ρ1, . . . , ρM)t such that

V ρ = b. (5.1)
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If we define

Q(z)=
M∏
k=1

(z− γk)=
M∑
k=0

qkz
k, (5.2)

then, for any polynomial P of degree at most M − 1,

P(z)

Q(z)
=

M∑
r=1

P(γr)

Q′(γr )(z− γr)
.

Thus, for |z|< min |γr |−1,

zM−1

zM

P(z−1)

Q(z−1)
=

M∑
r=1

P(γr)

Q′(γr)

+∞∑
k=0

γ k
r z

k =
+∞∑
k=0

(
M∑
r=1

P(γr)

Q′(γr )
γ k
r

)
zk. (5.3)

Now choose P to be the unique polynomial with P(γr) = ρr Q
′(γr ) for 1 ≤ r ≤M , and

let B(z)=∑M−1
k=0 bkz

k . Substituting in (5.3),

zM−1P(z−1)

zMQ(z−1)
=

M−1∑
k=0

M∑
r=1

ρ(r)γ k
r

︸ ︷︷ ︸
bk

zk + higher powers= B(z)+ zM(· · ·).

If we denote

P̃ (z)= zM−1P(z−1), Q̃(z)= zMQ(z−1),

then

P̃ (z)= Q̃(z)B(z)+ zMQ̃(z)(· · ·), (5.4)

and thus the coefficients of P̃ correspond to the first M coefficients of Q̃(z)B(z).
As a result, we have the following algorithm.

5.3. Algorithm to Solve Vandermonde Systems

(1) Given {γk}, compute q = (q0, . . . , qM).
(2) Given b and q , compute

p̃(s)=
s∑

l=0

q̃(s − l)b(l)

for 0≤ s ≤M − 1.
(3) Compute ρ as

ρr = P(γr )

Q′(γr)
=−γr P̃ (1/γr)

Q̃′(1/γr)
for 1≤ r ≤M .
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This algorithm is equivalent to the following factorization of the inverse of the
Vandermonde matrix in terms of a diagonal matrix, its transpose V t , and a triangular
Hankel matrix,

V −1 =




1

Q′(γ1)
. . . 0

. . .

0 . . .
1

Q′(γM)


V t




q1 q2 . . . qM

q2 . . . qM 0
...

...

. . . 0
qM . . . 0 0


 . (5.5)

This description is a particular case of the inversion formulae for Löwner–Vander-
monde [21] or close to Vandermonde matrices [9, Corollary 2.1, p. 157]. We can state
those results as (see [21, p. 548])

V −1 =


x1 . . . 0

. . .

0 . . . xM


V t




−y2 −y3 . . . 1
−y3 . . . 1 0
...

...

. . . 0
1 . . . 0 0


 ,

where the vectors x = (x1, . . . , xM)
t and y = (y1, . . . , yM)t are solutions of

V x = (0, . . . ,1)t and V ty = [γM
r ]Mr=1.

Since γr are the roots of Q(z), we can take y = −(q0, . . . , qM−1)
t , and if B(z) = zM

in (5.4), then P(z)= 1 and x = (1/Q′(γ1), . . . ,1/Q′(γM))t .

Remark 5.1. For Algorithm 5.1, we first obtained the eigenvector q corresponding to an
eigenvalue close to ε. Thus, step (1) of the Vandermonde algorithm is already accomplished
and step (2) can be performed using the FFT. Furthermore, the nodes γk belong to the unit
circle and, via the unequally spaced fast Fourier transform, we have a fast algorithm to
obtain the weights.

Remark 5.2. As an example, we use this approach to derive the solution of the
Vandermonde system with nodes at γr = ei2π(r−1)/M , 1 ≤ r ≤M . In this case, Q(z) =
1−zM and P̃ (z)= zM−1P(z−1)= Q̃(z)B(z)+zM(· · ·)=−B(z)+zM(· · ·). We conclude
P =−B̃(z) and thus

ρr = P(γr )

Q′(γr)
= −γ

M−1
r B(γr )

−MγM−1
r

= 1

M

M−1∑
k=0

bke
−i2πrk/M.

As expected, we obtained the inverse of the discrete Fourier transform matrix.

6. APPROXIMATION OF BANDLIMITED FUNCTIONS

Let us consider the problem stated in (1.3)–(1.5); that is, given

u(x)=
∫ 1

−1
w(τ)eicτx dτ, (6.1)
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construct the function ũ(x) in (1.4) such that (1.5) holds. We show in this section that the
approximation obtained with exponential sums holds in any subinterval of (−1,1). In fact,
in Theorem 6.1, we prove the existence of such an approximation even though our proof
does not provide a practical method to obtain the nodes and weights in the exponential
sum. In practice, we obtain them using Algorithm 5.1.

We assume that we have access to values of u(x) for x uniformly sampled. We select
the sampling rate to be at least twice the Nyquist sampling rate for u(x). We have observed
that this is the minimal rate for which our method works properly.

In fact, let us discretize u(x) at nodes xk = k/N , for |k| ≤ N , and pick N such that
N ≥ 2c/π . The value of N determines our sampling rate. The resulting values are

uk = u(xk)=
∫ 1

−1
w(τ)eicτ(k/N)d τ. (6.2)

Defining ν = c/πN , then ν ≤ 1/2, and by changing variables t = ντ ,

uk =
∫ ν

−ν
σ (t)eiπtk dt, for |k| ≤N, (6.3)

are the trigonometric moments of a new weight σ(t) = 1
ν
w(t/ν) supported in (−ν, ν) ⊆

[−1/2,1/2].
Now, assume we can approximate

∫ 1
−1 σ(t)e

iπty dt by
∑N

j=1 wjeiπθjy for |y| ≤ N .
Then, since

u(x)=
∫ 1

−1
w(τ)eicτx dτ =

∫ ν

−ν
σ (t)eiπtNx dt,

we can approximate u(x) for |x| ≤ 1.
Indeed, we now show that, for any d , 0 < d < 1, we can approximate u(x) for |x| ≤ d .

THEOREM 6.1. Let σ be a weight supported in [−ν, ν], 0 < ν ≤ 1/2, and let ε and d

be positive numbers with d < 1. Then, for N sufficiently large, there exist real constants
{w1, . . . ,wN } and {θ1, . . . , θN }, with wj > 0 and |θj |< ν, such that

∣∣∣∣∣
∫ 1

−1
σ(t)eiπty dt −

N∑
j=1

wjeiπθjy

∣∣∣∣∣< ε, for |y| ≤ dN + 1. (6.4)

For the proof, we will use the fact that exponential functions can be well approximated
by splines interpolating them at integer values.

For fixed t ∈ [−π,π] and positive integer m, consider the exponential Euler spline of
order 2m− 1,

S2m−1(x, eit )=
∑
k∈Z

eitkL2m−1(x − k), (6.5)

where Ln(x) is the fundamental cardinal spline of order n, Ln(r)= δr0, for all r ∈ Z.
We will use the following properties (see [22, pp. 29, 30, and 35]) valid for all x, t ∈R,∣∣S2m−1(x, eit )

∣∣≤ 1, (6.6)∣∣eiπtx − S2m−1(x, eiπt)
∣∣< 3|t|2m, (6.7)

|L2m−1(x)| ≤ dm e−αm|x|, (6.8)

for positive constants dm and αm.
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Proof of Theorem 6.1. Let

u(y)=
∫ 1

−1
σ(t)eiπty dt,

and, for each m, define the spline of order 2m− 1 interpolating u(y) at the integers,

a(y)=
∑
k

u(k)L2m−1(y − k)=
∫ 1

−1
σ(t)S2m−1(y, eiπt) dt.

By (6.7),

|u(y)− a(y)| ≤ 3
∫ ν

−ν
σ (t)|t|2m dt ≤ 3ν2m‖σ‖1,

where ‖σ‖1 =
∫ 1
−1 σ(t) dt . We choose m such that 3ν2m‖σ‖1 < ε/4.

On the other hand, for each N , Theorem 3.7 allows us to represent the moments u(k),
|k| ≤N ,

u(k)=
∫ 1

−1
σ(t)eiπkt dt =

N∑
j=1

wjeiπθj k +w0(−1)k, (6.9)

where

w0 ≤ 4‖σ‖1

2+ (2+√3)N + (2−√3)N
. (6.10)

Let

ũ(y)=
N∑
j=1

wjeiπθj y;

then u(k)= ũ(k)+w0(−1)k for |k| ≤N , and defining

ã(y)=
∑
k

ũ(k)L2m−1(y − k)=
N∑
j=1

wjS2m−1(y, eiπθj ),

(6.7) gives the estimate

|ũ(y)− ã(y)| ≤ 3
N∑
j=1

wj |θj |2m ≤ 3ν2m(u(0)−w0)≤ 3ν2m‖σ‖1 <
ε

4
.

We have shown that u(y) is close to a(y) and ũ(y) is close to ã(y). To finish the proof, we
need to show that |a(y)− ã(y)|< ε/2, for |y| ≤ dN + 1. Now,

a(y)− ã(y)=
∑
|k|≤N

w0(−1)kL2m−1(y − k)+
∑
|k|>N

(u(k)− ũ(k))L2m−1(y − k)

=w0S2m−1(y, eiπ)+
∑
|k|>N

(u(k)− ũ(k)−w0(−1)k)L2m−1(y − k)

and

|u(k)− ũ(k)−w0(−1)k| ≤ |u(k)| + |ũ(k)| +w0 ≤
N∑
j=0

wj +
N∑
j=1

wj +w0

≤ 2u(0)= 2‖σ‖1,

where we used (6.9).
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Using (6.6) and (6.8),

|a(y)− ã(y)| ≤w0 + 2‖σ‖1 dm
∑
|k|>N

e−αm|y−k|.

Hence, for large N , we can estimate w0 using (6.10), and for the last sum, when |y| ≤
dN + 1,

∑
|k|>N

e−αm|y−k| =
∞∑

k=N+1

(e−αm(k−y)+ e−αm(k+y))= eαmy + e−αmy

1− e−αm
e−αm(N+1)

≤ 2

1− e−αm
e−αm(1−d)N.

Remark 6.1. In the proof of Theorem 6.1, we used Theorem 3.7 to represent the
moments (6.3) as

∫ ν

−ν
σ (t)eiπtk dt =

N∑
j=1

wj eiπθj k +w0(−1)k,

where w0 decreases exponentially with N . The approximation in (6.4) is obtained using
these wj and θj . Nevertheless, in practice, we use instead the weights and nodes from the
quadratures in (4.12). We also note that, as the proof of the theorem indicates, for (1.5) to
hold on most of the interval (−1,1), we should appropriately oversample the function u

in (1.3).

7. APPROXIMATION OF INTEGRALS BY LINEAR COMBINATIONS OF

EXPONENTIALS

In this section we show that by solving the problem (1.3)–(1.5) for x ∈ [−1,1], we
also find quadratures for functions that can be considered as a linear combination of
exponentials with bandlimit c. We provide two examples with Bessel functions and with
PSWF.

PROPOSITION 7.1. For x ∈ [−1,1], let us consider

v(x)=
∫ 1

0
w(τ)J2n(cxτ) dτ, (7.1)

where w ≥ 0 is a weight, J2n is the Bessel function of order 2n, n≥ 0, and c is a positive
real constant. Then we have

|v(x)− ṽ(x)| ≤ 2

π
ε, (7.2)

where

ṽ(x)=
M∑
k=1

wkJ2n(cxθk), (7.3)

and the nodes θk and the weights wk are as in (1.4) but for the weight w̃ defined as
w̃(τ )=w(τ)/2 for 0≤ τ ≤ 1 and w̃(τ )=w(−τ )/2, −1≤ τ ≤ 0.
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Since J2n is an even function, we have

v(x)=
∫ 1

−1
w̃(τ )J2n(cxτ) dτ. (7.4)

Using

J2n(ξ)= (−1)n

π

∫ 1

−1

T2n(y)√
1− y2

eiyξ dy, (7.5)

we obtain

v(x)− ṽ(x)= (−1)n

π

∫ 1

−1

T2n(y)√
1− y2

[∫ 1

−1
w̃(τ )eicxyτ dτ −

M∑
k=1

wkeicxyθk

]
dy. (7.6)

Since |y| ≤ 1, we have (by selecting nodes and weights as in (1.4))

∣∣∣∣∣
∫ 1

−1
w̃(τ )eicxyτ dτ −

M∑
k=1

wkeicxyθk

∣∣∣∣∣≤ ε (7.7)

for x ∈ [−1,1]. Thus, we obtain

|v(x)− ṽ(x)| ≤ ε

π

∫ 1

−1

|T2n(y)|√
1− y2

dy

= ε

π

∫ π

0
| cos(2nx)|dx =




2

π
ε, if n �= 0,

ε, if n= 0.
(7.8)

A similar result holds for the PSWF, which are defined as the eigenfunctions of the
operator

Fc(φ)(x)=
∫ 1

−1
eicxtφ(t) dt, (7.9)

where c is a positive real constant (bandlimit) and Fc: L2[−1,1] → L2[−1,1]. These
bandlimited functions satisfy

λjψj (x)=
∫ 1

−1
eicxtψj (t) dt, (7.10)

where the eigenvalues λj , j = 0,1, . . . , are all nonzero and simple, and are arranged so
that |λj−1|> |λj |, j = 1,2, . . . .

PROPOSITION 7.2. For all nonnegative integers j , let us consider integrals

vj =
∫ 1

−1
w(τ)ψj (τ ) dτ, (7.11)

where w ≥ 0 is a weight and ψj is the PSWF corresponding to the bandlimit c > 0. Then

|vj − ṽj | ≤
√

2

|λj |ε, (7.12)
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where

ṽj =
M∑
k=1

wkψj (θk), (7.13)

and the nodes θk and the weights wk are the same as in (1.4).

For large c, the spectrum of Fc can be divided into three groups. The first group contains
approximately 2c/π eigenvalues with absolute value very close to 1. They are followed by
order log c eigenvalues whose absolute values make an exponentially fast transition from 1
to 0. The third group consists of exponentially decaying eigenvalues that are very close to
zero. For precise statements see [14, 24, 25, 29].

Therefore, it follows from (7.12) that, for the first ≈2c/π eigenfunctions, the integrals
in (7.11) are well approximated by the quadratures in (7.13). To prove (7.12), use (7.10),
to write

vj − ṽj = 1

λj

∫ 1

−1

(∫ 1

−1
w(τ)eicτ t dτ −

M∑
k=1

wkeicθkt

)
ψj(t) dt. (7.14)

Since |t| ≤ 1, we have ∣∣∣∣∣
∫ 1

−1
w(τ)eicτ t dτ −

M∑
k=1

wkeicθkt

∣∣∣∣∣≤ ε, (7.15)

and ‖ψj‖2 = 1 implies
∫ 1
−1 |ψj(t)|dt ≤

√
2.

Remark 7.1. If the weight function w is chosen as in (8.39), then the eigenpolynomials
are the discrete PSWF [23] (see Example 1 in Section 4.3). In this case, the nodes {θk}
are zeros of a discrete PSWF corresponding to a small eigenvalue. Therefore, these nodes
are Gaussian nodes for PSWF (appropriately scaled to the interval [−1,1]) as stated in
Proposition 7.2.

8. INTERPOLATING BASES FOR BANDLIMITED FUNCTIONS

In this section we construct bases for bandlimited functions with bandlimit c > 0 using
exponentials {eictlx}Ml=1, where {tl} are some quadrature nodes with |tl |< 1. In particular,
we derive interpolating bases as linear combinations of such exponentials.

We start by constructing, for some ε > 0 and bandlimit 2c > 0, the nodes |tl| < 1 and
the weights wl > 0, l = 1, . . . ,M , where M =M(c, ε), such that for all x ∈ [−1,1],∣∣∣∣∣

∫ 1

−1
e2icxt dt −

M∑
l=1

wle2icxtl

∣∣∣∣∣< ε2, (8.1)

where, for each l, there exists l′ such that tl′ = −tl and wl′ =wl .
Since

∫ 1
−1 e2icxt dt = sin(2cx)/cx , we have from (8.1)

∣∣∣∣∣
sin c(x − t)

c(x − t)
− 1

2

M∑
l=1

wleic(x−t )tl
∣∣∣∣∣<

ε2

2
, (8.2)

where |x|, |t| ≤ 1.
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In considering bandlimited functions we will use the PSWF (see [15, 24], and a more
recent paper [29]). The PSWF are real eigenfunctions of the operator Fc in (7.9) with
eigenvalues λj , j = 0,1, . . . , such that |λ0|> |λ1|> · · ·> 0. They are also eigenfunctions
of the operator Qc = (c/2π)F ∗c Fc , namely,

1

π

∫ 1

−1

sin c(x − t)

(x − t)
ψj (t) dt = µjψj (x), (8.3)

with eigenvalues

µj = c

2π
|λj |2, j = 0,1, . . . . (8.4)

We prove

THEOREM 8.1. For x in [−1,1] and for any |b| ≤ c and ε > 0, there exist coefficients
{αl}Ml=1 and constants A1, A2 such that

∥∥∥∥∥eibx −
M∑
l=1

αleictlx

∥∥∥∥∥∞
≤A1ε (8.5)

and
∥∥∥∥∥eibx −

M∑
l=1

αleictlx

∥∥∥∥∥
2

≤A2ε, (8.6)

where the nodes |tl |< 1, l = 1, . . . ,M , are the same as in (8.1) and do not depend on b.

In other words, for a given precision ε, the functions {eictlx}Ml=1 form an approximate
basis for bandlimited functions.

The proof of this theorem uses the fact that the PSWF are uniformly bounded

‖ψj‖∞ ≤ C∞, j = 0,1, . . . , (8.7)

whereC∞ does not depend on j . Through direct numerical examination, it is not difficult to
verify that C∞ is a fairly small constant that weakly depends on the bandlimit c. However,
we are not aware of a proof that provides a tight bound in (8.7). A proof that C∞ exists
can be constructed using the fact that, for j � c, the functions ψj approach the Legendre
polynomials. In order to obtain appropriate estimates, one can use the recurrence relations
derived in [29].

Proof of Theorem 8.1. Let us start by expanding eibx into the basis {ψj }∞j=0
corresponding to the bandlimit c. We have

eibx = eic(b/c)x =
∞∑
j=0

λjψj (b/c)ψj (x), (8.8)
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where |b/c| ≤ 1, and by (8.7)∣∣∣∣∣eibx −
M−1∑
j=0

λjψj (b/c)ψj(x)

∣∣∣∣∣≤
∞∑

j=M
|λj | |ψj(b/c)| |ψj(x)|

≤C∞
∞∑

j=M
|λj | |ψj(x)|. (8.9)

Thus we obtain

∥∥∥∥∥eibx −
M−1∑
j=0

λjψj (b/c)ψj(x)

∥∥∥∥∥∞
≤ C2∞

∞∑
j=M
|λj |, (8.10)

and, using (8.8) and the orthonormality of ψj on [−1,1],
∥∥∥∥∥eibx −

M−1∑
j=0

λjψj (b/c)ψj(x)

∥∥∥∥∥
2

=
√√√√ ∞∑

j=M
|λj |2 |ψj(b/c)|2 ≤ C∞

√√√√ ∞∑
j=M
|λj |2. (8.11)

From (7.10), we have ∫ 1

−1
e−ict tlψj (t) dt = λ̄jψj (tl), (8.12)

and, using (8.2)–(8.3) and the relationship between µj and λj in (8.4), we obtain

∣∣∣∣∣
M∑
l=1

wle
icxtl λ̄j ψj (tl)− |λj |2ψj (x)

∣∣∣∣∣≤ ε2
∫ 1

−1
|ψj(t)|dt ≤

√
2ε2. (8.13)

Thus, we arrive at

∥∥∥∥∥
M∑
l=1

wleicxtl ψj (tl)− λj ψj (x)

∥∥∥∥∥∞
≤√2

ε2

|λj | (8.14)

and ∥∥∥∥∥
M∑
l=1

wleicxtlψj (tl)− λjψj (x)

∥∥∥∥∥
2

≤ 2
ε2

|λj | . (8.15)

Combining (8.10) and (8.14), we have

∥∥∥∥∥eibx −
M∑
l=1

M−1∑
j=0

wleicxtlψj (b/c)ψj(tl)

∥∥∥∥∥∞
≤ C2∞

∞∑
j=M
|λj | +

√
2C∞

M−1∑
j=0

ε2

|λj | . (8.16)

Similarly, combining (8.11) and (8.15), we obtain

∥∥∥∥∥eibx −
M∑
l=1

M−1∑
j=0

wleicxtlψj (b/c)ψj(tl)

∥∥∥∥∥
2

≤ C∞

√√√√ ∞∑
j=M
|λj |2 + 2C∞

M−1∑
j=0

ε2

|λj | . (8.17)
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By setting

αl =wl

M−1∑
j=0

ψj(b/c)ψj(tl), (8.18)

and observing that |λM | ≈ ε and that |λj |  |λM | for j >M , we obtain (8.5) and (8.6).

We now construct two useful bases as linear combinations of the functions {eictlx}Ml=1.
First, let us consider the following algebraic eigenvalue problem,

M∑
l=1

wle
ictmtlAj (tl)= ηjAj(tm), (8.19)

where tl and wl are the same as in (8.1). By solving (8.19), we find ηj and Aj(tl). We then
consider functions Aj , j = 1, . . . ,M , defined for any x as

Aj(x)= 1

ηj

M∑
l=1

wleicxtlAj (tl). (8.20)

The functions Aj in (8.20) are linear combinations of the exponentials {eicxtl}nl=1. We will
show that the functions Aj are nearly orthonormal and we will use them as an approximate
basis for weighted bandlimited functions with bandlimit c.

Remark 8.1. The functions Aj mimic the PSWF. However, one has to be careful
relating ψj and Aj . Since a large number of eigenvalues λj satisfy both, |λj | is close
to
√

2π/c and ηj − λj =O(ε2), then, in solving (8.19), we also obtain a large number of
eigenvalues ηj with absolute value close to

√
2π/c. Therefore, in spite of the fact that all

λj are distinct, we may obtain a group of eigenvalues that are identical within the precision
of the computation. In this case the functions Aj correspond to linear combinations of
the PSWF. In other words, we need to impose additional conditions in (8.19) to maintain a
proper correspondence with the PSWF. However, in many applications there is no apparent
need to make such an identification since in all cases the resulting functions span the same
subspace.

PROPOSITION 8.1. The functions Aj , j = 1, . . . ,M , are nearly orthogonal and satisfy

∣∣∣∣
∫ 1

−1
Aj(t)Aj ′(t) dt − δjj ′

∣∣∣∣< ε2 ∑M
k=1 wk

|ηj | |ηj ′ | . (8.21)

Proof. We start by defining qjl =
√
wlAj (tl). We substitute in (8.19) to obtain

M∑
l=1

√
wmeictmtl√wl q

j
l = ηj q

j
m. (8.22)

The vectors {qj } are eigenvectors of the matrix S, Sml =√wmeictmtl√wl . If we take into
account the symmetry of nodes tl and weights wl in (8.1), we obtain that the matrix S is
normal, SS∗ = S∗S, and, in addition, S̄ = S∗. In Proposition 8.2 we show that, for such
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matrices, there exists an orthonormal basis of real eigenvectors. Thus, computed via (8.22),
we assume qjl to be a real orthogonal matrix and then

M∑
j=1

√
wl Aj (tl)Aj(tm)

√
wm = δlm (8.23)

and
M∑
l=1

Aj(tl)wl Aj ′(tl)= δjj ′ . (8.24)

We have

∫ 1

−1
Aj(t)Aj ′(t) dt = 1

ηjηj ′

M∑
l,l′=1

wlwl′Aj(tl)Aj ′(tl′)
∫ 1

−1
eict (tl+tl′ ) dt (8.25)

and, from (8.1), we obtain∣∣∣∣∣
∫ 1

−1
Aj(t)Aj ′(t) dt − 1

ηjηj ′

M∑
l,l′=1

wlwl′Aj(tl)Aj ′(tl′)
M∑
k=1

wkeictk(tl+tl′ )
∣∣∣∣∣

≤ ε2 ∑M
k=1 wk

|ηj | |ηj ′ | . (8.26)

For the last inequality we also used Schwarz inequality and (8.24) to estimate
∣∣∣∣∣

M∑
l,l′=1

wl wl′ Aj(tl)Aj ′(tl′)

∣∣∣∣∣≤
∑
l

wl |Aj(tl)|
∑
l

wl |Aj ′(tl)| ≤
(

M∑
l=1

wl |Aj(tl)|
)2

≤
(

M∑
l=1

wl

)(
M∑
l=1

wl |Aj(tl)|2
)
=

M∑
l=1

wl.

To finish, using (8.19) and (8.24), we simplify (8.26) and arrive at (8.21).

We still need to prove

PROPOSITION 8.2. Let S be a normal matrix such that S̄ = S∗. Then there exists an
orthonormal basis of real eigenvectors of S.

Proof. First, since S is normal, eigenspaces corresponding to different eigenvalues
are orthogonal. Thus, it is sufficient to prove the proposition for any eigenspace E(λ) =
{x: Sx = λx}. Also, normality of S implies that, for any x ∈ E(λ), we have x̄ ∈ E(λ).
Indeed, from S∗x = λ̄x and S̄ = S∗, it follows that Sx̄ = λx̄. Consequently, if {vk}mk=1 is a
basis of E(λ), then E(λ) can be spanned by the real and imaginary parts of vk ,

A= {Re(vk), Im(vk)}mk=1,

where, for any vector x = (x1, . . . , xM), Re(x)= (Re(x1), . . . ,Re(xm)), and similarly for
Im(x). By Gram–Schmidt orthonormalization of the 2m (linearly dependent) vectors A,
we obtain the desired result. See another proof in [10, Theorem 4.4.7].
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Let us now construct interpolating bases as linear combinations of the exponentials
{eicxtl}nl=1. We define functions Rk , k = 1, . . . ,M , as

Rk(x)=
M∑
l=1

rkleicxtl , (8.27)

where

rkl =
M∑
j=1

wkAj (tk)
1

ηj
Aj (tl)wl =

M∑
j=1

√
wkq

j
k

1

ηj
q
j
l

√
wl. (8.28)

By direct evaluation in (8.19) and (8.23), we verify that functions Rk are interpolating,

Rk(tm)= δkm. (8.29)

Let us show that the integration of Rk(t)eiat , where |a| ≤ c, yields a one-point quadrature
rule of accuracy O(ε).

PROPOSITION 8.3. For |a| ≤ c, let

Ek =
∫ 1

−1
Rk(t)eiat dt −wkeiatk . (8.30)

Then we have

|Ek| ≤ ‖E‖2 ≤
√
M

maxk=1,...,M |wk|
mink=1,...,M |ηk| ε

2, (8.31)

where ‖E‖2 =
√∑M

k=1 |Ek|2.

Proof. Using (8.27) and (8.29),

M∑
l=1

rkl

M∑
m=1

wmeictm(tl+a/c) =
M∑
m=1

wmRk(tm)e
iatm =wkeiatk , (8.32)

and, therefore, Ek in (8.30) can be written as a matrix-vector multiplication Ek =∑M
l=1 rklsl, where

sl =
∫ 1

−1
eict (tl+a/c) dt −

M∑
m=1

wmeictm(tl+a/c). (8.33)

The inequality (8.31) is then obtained via the usual l2-norm estimates, taking into
account that the matrices qjk and q

j

l in (8.28) are orthogonal and that, for functions eiax ,
where |a| ≤ c, (8.1) implies |sl | ≤ ε2.

We have observed (via computation) that maxk=1,...,M |wk| = O(1) and
mink=1,...,M |ηk| = O(ε) in (8.31), thus resulting in ‖E‖2 = O(ε). Next we derive a weak
estimate showing that the functions Rk are close to being an interpolating basis for band-
limited exponentials.
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PROPOSITION 8.4. For every b, |b| ≤ c, let us consider the function

Fb(t)= eibt −
M∑
k=1

eibtkRk(t). (8.34)

Then, for every |a| ≤ c, we have

∣∣∣∣
∫ 1

−1
Fb(t)eiat dt

∣∣∣∣≤
(

1+M
maxk=1,...,M |wk|
mink=1,...,M |ηk|

)
ε2. (8.35)

Proof. Using (8.30), we have

∫ 1

−1
Fb(t)eiat dt =

∫ 1

−1
ei(b+a)t dt −

M∑
k=1

wk ei(b+a)tk −
M∑
k=1

eibtkEk, (8.36)

where

Ek =
∫ 1

−1
Rk(t)eiat dt −wkeiatk . (8.37)

Applying (8.1), we obtain

∣∣∣∣
∫ 1

−1
Fb(t)eiat dt

∣∣∣∣≤ ε2 +√M ‖E‖2. (8.38)

The estimate (8.35) then follows from Proposition 8.3.

Remark 8.2. Using the functions Rk , k = 1, . . . ,M , on a hierarchy of intervals, it
is possible to construct a multiresolution basis (for a finite number of scales) similar to
multiwavelet bases. We will consider such construction and its applications elsewhere.

8.1. Examples

For the weight

ω(t)=
{

1, t ∈ [−a, a], a ≤ 1/2,
0, otherwise,

(8.39)

we construct a 30-node quadrature formula so that (8.1) is satisfied with ε2 ≈ 10−15. We
display the error in Fig. 9. For bandlimit c = 7.5π , we construct an interpolating basis
{Rk}30

k=1 and display one of the functions in Fig. 10. We then demonstrate the performance
of the interpolation using this basis for three examples,

g1(t)= cos(ct), (8.40)

g2(t)= t, (8.41)

g3(t)= P9(t), (8.42)
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FIG. 9. Error in (8.1) for Example 1.

where P9 is the Legendre polynomial of degree 9. These three functions are not periodic
and we use

g̃1(t)=
30∑
l=1

cos(ctl)Rl(t), (8.43)

g̃2(t)=
30∑
l=1

tlRl(t), (8.44)

g̃3(t)=
30∑
l=1

P9(tl)Rl(t), (8.45)

as approximations. We display the function g1 in Fig. 11 and the error of approximation by
g̃1 in Fig. 12. Similarly, we display the function g2 in Fig. 13 and the error of approximation
by g̃2 in Fig. 14, the function g3 in Fig. 15, and the error of approximation by g̃3 in Fig. 16.

9. CONCLUSIONS

In this paper we have introduced a new family of Gaussian-type quadratures for
weighted integrals of exponentials. These quadratures are parameterized by the eigenvalues
of the positive definite Toeplitz matrix constructed from the trigonometric moments of
the weight. The eigenvalues of this matrix accumulate toward zero and appear to have

FIG. 10. Interpolating function R7(t) on the interval [−1,1].
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FIG. 11. Function g1(t) on the interval [−1,1].

FIG. 12. Difference g1(t)− g̃1(t) on the interval [−1,1].

FIG. 13. Function g2(t) on the interval [−1,1].
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FIG. 14. Difference g2(t)− g̃2(t) on the interval [−1,1].

FIG. 15. Function g3(t) on the interval [−1,1].

FIG. 16. Difference g3(t)− g̃3(t) on the interval [−1,1].
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exponential decay (see Fig. 1). For small eigenvalues, these quadratures are of practical
interest.

The remarkable feature of these quadratures is that they have nodes outside the support
of the measure and, as it turns out, the corresponding weights are negative and small,
roughly of the size of the eigenvalue. The case corresponding to the smallest eigenvalue is
equivalent to the classical Carathéodory representation.

As an application of the new quadratures, we show how to approximate and integrate
several (essentially) bandlimited functions. We also have constructed, using quadrature
nodes and for a given precision, an interpolating basis for bandlimited functions on an
interval.

In the paper we made a number of observations for which we do not have proofs.
Let us finish by stating two unresolved issues. First, it is desirable to have tight uniform
estimates for the L∞-norm of the PSWF (with a fixed bandlimiting constant) or, ideally,
for the eigenfunctions associated with more general weights. Second, we conjecture that
in Theorem 4.1, it is not necessary to require distinct roots for the eigenpolynomial since
it might be a consequence of the eigenvalue being simple. We have neither a proof nor a
counterexample at this time.

APPENDIX: PROOF OF THEOREM 2.2

We use a technique that goes back to [2] (see [28, Theorem 7.3] and [19, Chapter 5] for
more details) which involves the Fejér kernel,

FL(x)=
∑
|k|≤L

(
1− |k|

L+ 1

)
eiπkx = sin2((L+ 1)πx2 )

(L+ 1) sin2 πx
2

, (A.1)

for real x .
We need the following result.

THEOREM A.1 [19, Theorem 8, Chapter 5]. For |k| ≤N , let

ck =
M∑
j=1

ρjz
k
j ,

where ρj ≥ 0 and |zj | = 1. Then, for all L, 0≤ L≤N ,

(L+ 1)‖ρ‖2
2 ≤ c2

0 + 2
L∑
k=1

|ck|2.

Proof. Let ak = 1 − |k|/L+ 1 be the coefficients of the Fejér kernel FL and write
zj = eiπθj . Since ρj ≥ 0 and FL(θ)≥ 0 for all θ ,

∑
|k|≤L

ak|ck|2 =
∑
|k|≤L

ak
∑
j,l

ρj ρl

(
zj

zl

)k

=
∑
j,l

ρjρlFL(θj − θl)≥ FL(0)
M∑
j=1

ρ2
j = (L+ 1)

M∑
j=1

ρ2
j .

The theorem follows because a0 = 1 and ak ≤ 1.
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Proof of Theorem 2.2. We first use (2.1) to extend the definition of ck as c−k = ck

for k = 1, . . . ,N and c0 =∑M
j=1 ρj . We then define the Toeplitz matrix T N , (T N)kj =

(cj−k)0≤k,j≤N , and the polynomial

Q(z)=
M∏
j=1

(z− eiπθj )=
M∑
k=0

qkz
k.

Then q = (q0, . . . , qM,0, . . . ,0)t belongs to the null subspace of T N because, for all l,

M∑
k=0

M∑
j=1

ρj eiπθj (k−l)qk =
M∑
j=1

ρje−iπθj lQ(eiπθj )= 0,

since, for all j , Q(eiπθj )= 0.
The matrix A = T N − c0I has the eigenvalue −c0 because T N is singular. We can

bound c2
0 by the Frobenius norm of A to obtain

c2
0 ≤ 2

N∑
j=1

j |cN+1−j |2 ≤ 2N‖c‖2
2.

To finish the proof, we use Theorem A.1 with L=N .
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