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ABSTRACT

We summarize the properties of the auto-correlation functions of compactly supported wavelets, their
connection to iterative interpolation schemes, and the use of these functions for multiresolution analysis
of signals. We briefly describe properties of representations using dilations and translations of these auto-
correlation functions (the auto-correlation shell) which permit multiresolution analysis of signals.

1. WAVELETS AND THEIR AUTOCORRELATION FUNCTIONS

The auto-correlation functions of compactly supported scaling functions were first studied in the context
of the Lagrange iterative interpolation scheme in [6], [5]. Let ®(z) be the auto-correlation function,

+o00
o) = [ ey - o)y, (11)
where ¢(z) is the scaling function which appears in the construction of compactly supported wavelets in [3].
The function ®(z) is exactly the “fundamental function” of the symmetric iterative interpolation scheme
introduced in [6], [5]. Thus, there is a simple one-to-one correspondence between iterative interpolation
schemes and compactly supported wavelets [12], [11].

In particular, the scaling function corresponding to Daubechies’s wavelet with two vanishing moments
yields the scheme in [6]. In general, the scaling functions corresponding to Daubechies’s wavelets with M
vanishing moments lead to the iterative interpolation schemes which use the Lagrange polynomials of degree
2M [5). Additional variants of iterative interpolation schemes may be obtained using compactly supported
wavelets described in [4].

Let us outline the derivation of the two-scale difference equation for the function ®(z). Let mg(¢) and
m1(&) be the 2w-periodic functions,

€)= L3 heeite (1.2)
mo(€) = —= Y hyel*é 1.2
0 \/§k=0 k
and
1 k=l . -
my (€) 3 grei®é = EH I (e 1), (1.3)

- Ek=0

satisfying the quadrature mirror (filter) condition,

Imo(&)? + |m1(&)]> = 1. (1.4)
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If we consider trigonometric polynomial solutions of (1.4), then from from (1.2) and (1.4) follows that

1 L/2

Imo(&)[? = 7t % > agk_1 cos(2k — 1)¢,
k=1

where {a;} are the auto-correlation coefficients of the filter H = {ht}o<k<r-1,

L-1-k
ap=2 Y Mhyr for k=1,...,L-1,
=0

and
as, =0 for k=1,...,L/2-1.

Using the two-scale difference equation for the scaling function ¢,

L-1
o(z) = V2> hip(2z - k),
k=0

it is easy to verify that

L/2

®(z) = ®(2z) + %Z agi—1 (®(2z =21 +1)+ P2z +21-1)).

=1

Introducing the autocorrelation function of the wavelet

¥ = [ :” By)(y — 2)dy,

where

L-1
P(z) = V2 Y grp(2z — k),
k=0

we also have
L/2

¥(z) = B(20) — % S ano1 (P25 — A+ 1) + B2z + 21 — 1)).

=1

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

By direct examination of (1.9) and (1.12), it is easy to see that both & and ¥ are supported within the

interval [-L + 1, L — 1]. Finally, ®(z) and ¥(z) have vanishing moments,

+o0
My = / 2™V (z)dz =0, for 0<m<L,

o0

+o0
My = / z"®(z)dz = 0, for 1<m<L,
-0

and oo

®(z)dz = 1.

— o0
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Figure 1: Plots of the auto-correlation function ®(z) and the Daubechies’s scaling function ¢(z) with L = 4.
(a) ®(z). (b) ¢(z). (c) Magnitude of the Fourier transform of ®(z). (d) Magnitude of the Fourier transform
of p(z).

It is also easy to obtain (see [1]) that even moments of the coefficients agk—1 from (1.6) vanish, namely

k=L/2
> a-12k =1 =0 for 1<m<M-—1, (1.16)
k=1

where M = L/2 (for wavelets in [3]).
Since L consecutive moments of the auto-correlation function ¥(x) vanish (1.13), we have

¥(¢) = 0(h), (1.17)

where ¥(¢) is the Fourier transform of W(z). Thus, ¥(£) may be viewed as the symbol of a pseudo-differential
operator which behaves like an approximation of the derivative operator (d/dz)’. Therefore, convolution
with ¥(z) behaves essentially like a differential operator in detecting changes of spatial intensity and is

designed to act at any desired scale. We display functions ®(z), (z), ¥(z), 3(z), and the magnitudes of
their Fourier transforms in Figures 1 and 2.
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Figure 2: Plots of the auto-correlation function ¥(z) and the Daubechies’s wavelet +(z) with two vanishing
moments and L = 4. (a) ¥(z). (b) ¥(z). (c) Magnitude of the Fourier transform of ¥(z). (d) Magnitude
of the Fourier transform of ¢(z).
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Figure 3: The Lagrange iterative interpolation of the unit impulse sequence with the associated quadrature
mirror filter of length L = 4, i.e., a1 = 9/8 and a3 = —1/8. Black nodes at z = 0 indicate 1 and white nodes
at £ = %1 have value 0. Shaded nodes have values other than 0 or 1. Note that the values of nodes existing
at the j-th scale do not change at the (j — 1)-th scale and higher. The result of repeating this procedure
converges to ®(z) as j — —oo. '

Let us briefly review the properties of the autocorrelation functions in (1.1) and (1.10) and their relation
to interpolation. Following [6] and [5], let us consider the following problem: given values of f(z) on the

set Bg, where B, is the set of dyadic rationals m/2",m = 0,1,..., extend f to By, Bs,... in an iterative
manner. For z € Bn41 \ By, Dubuc in [6] has suggested the following formula to compute the value f(z),
9 1
[@) = 15 (f@=h)+ f(z+h) = 7= ((e = 3h) + f(z +3h)), (118)

where h = 1/2"*1, Figure 3 illustrates a few steps of this iterative process applied to the unit impulse.
This interpolation scheme is generalized futher in [5],

f(@)=)_ F(k/2)f(z+kh), for z € Bni1\B, and h=1/2""1, (1.19)
keZ
where the coefficients F(k/2) are computed by generating the function satisfying
F(z/2) =) F(k/2)F(z — k). (1.20)
keZ
Using the Lagrange polynomials with L = 2M nodes, we have

M
f(2) =) Pyi_1(0) (f(z— (2k —1)h) + f(z + (2k — 1)R)), (1.21)
k=1

where {PL _,(z)}_m+1<k<m is a set of the Lagrange polynomials of the degree L — 1 with nodes {-L+
1,-L+3,...,L—3,L—1},

M
Plﬂ_ ( ) — T — (2l - 1) ' Lo
2k—1(Z ,=_1\E1,I¢k (2k—-1)—(20-1) ( )
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In this case, (1.20) reduces to

M
Fr(z)=Fr(2z)+ Y Ps_,(0) (FL(2z — 2k + 1) + F(2z + 2k — 1)), (1.23)
k=1

where F is the fundamental function of Dubuc and Deslauriers. This special case of (1.19) is called the
“Lagrange iterative interpolation.” The original Dubuc’s scheme (1.18) corresponds to L = 4 in (1.21).
We have

F(z) = ®(z), (1.24)

where F(z) is the fundamental function defined in (1.20) and ®(z) is the auto-correlation function of the
scaling function ¢(z) (see [11]). Using the two-scale difference equation (1.9), we obtain

1
®(k/2) = B(k) + 5 > ag-1 (®(k—20+1)+®(k+2—1)). (1.25)
leN
and, therefore,

O(k/2) = ai/2. (1.26)

In other words, the two-scale difference equation for the function ® in (1.9) may be rewritten as
(z/2) =D (k/2)®(z— k). (1.27)

keZ

For any polynomial P of degree smaller than L, the Lagrange iterative interpolation of the sequence f(n) =
P(n), n € Z, via (1.21) is precisely the function f(z) = P(z) for any z € R.
If the number of vanishing moments M = 1 and L = 2 (the Haar basis), then we have

l1+z for —-1<z<0,
PHaar(@)=¢ 1—2z for0<z <1, (1.28)
0 otherwise.

The interpolation process then corresponds to the linear interpolation.
Using expressions (3.49)—(3.52) of [1], the relation (1.5) may be rewritten as

11 (M- 1P (=1)%1 cos(2k — 1)¢
Imo(©F =5+ 3 [(M Y 4M—1] k; @h=1) (M =m) (M + k=D (1.29)
If M — oo, then .
1 1& (=1)k
Imo(&)? — 5+5 DT cos(2k — 1)¢, (1.30)

which is the Fourier series of the characteristic function of [—m/2,7/2]. This implies that the corresponding

auto-correlation function is .
sinmz

Do (z) = sinc(z) = (1.31)

T
The interpolation process then corresponds to the so-called band-limited interpolation. If the number M of
the vanishing moments of the compactly supported wavelets approaches infinity, then (see [4])

Poo(T) = sinc(z). (1.32)
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As a result, we have the following relation,

Poo(z) = Poo (), (1.33)
and
ar sinwk/2
=== —— f keZ. 1.34
V2hy, 5 Y or k€ (1.34)

Thus, we have a family of the symmetric iterative interpolation schemes parameterized by the number of
vanishing moments 1 < M < oo.
The derivative of the function f(z) in (1.21) is computed via

L-2
f'(@) =) i (f(z+kh) = f(z = kh)), (1.35)

k=1

where h = 27", z € B,,,, where m < n, and

TR = /j:o o(r — k)%cp(:c)dw (1.36)

The coefficients r; may be computed (see [1]) by solving

L/2
T =2 [T% + 5D agi-1(Tak—2141 + T2k42-1) | (1.37)
=1
and
> krp=-1, (1.38)
keZ

where the coefficients ag;_; are given in (1.6). If the number of vanishing moments of the wavelet M > 2,

then equations (1.37) and (1.38) have a unique solution with a finite number of non-zero 7, namely, 7, # 0
for —-L+2<k<L-—2and

Th = —T_k. (1.39)

2. MULTIRESOLUTION REPRESENTATION OF SIGNALS

In theory, by analyzing the growth or decay from scale to scale of the coefficients of the orthonormal
wavelet expansions, it is possible to estimate the local behavior of signals. However, since the coefficients
of the orthonormal wavelet expansions are not shift invariant, redundant representations are being used in
order to simplify the analysis of coefficients from scale to scale (see e.g. [8]).

Another difficulty in using the compactly supported orthonormal wavelets for the analysis of signals is
their asymmetric shape (see [3]). On one hand, the quadrature mirror filters associated with compactly
supported wavelets are of finite size and, therefore, are exact in computer implementations. On the other
hand, the symmetric basis functions are preferred since their use simplifies finding zero-crossings (or ex-
trema) corresponding to the locations of edges in images at later stages of processing. There are several
approaches for dealing with this problem. The first approach consists in constructing approximately sym-
metric orthonormal wavelets and gives rise to approximate quadrature mirror filters [9]. The second consists
in using biorthogonal bases [2], [13], so that the basis functions may be chosen to be exactly symmetric.

Alternatively, a redundant representation using dilations and translations of the auto-correlation func-
tions of compactly supported wavelets (the auto-correlation shell), may be used for signal analysis instead
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of the wavelets per se [11]. The exact filters for the decomposition are the auto-correlation coefficients of
the quadrature mirror filter coefficients of the compactly supported wavelets. The decomposition filters
are, therefore, exactly symmetric. The recursive definition of the auto-correlation functions of compactly
supported wavelets leads to fast recursive algorithms to generate the multiresolution representations. One
of the interesting features of this representation is its convertibility to the orthonormal shell of the corre-
sponding compactly supported wavelets on each scale, independently of other scales. The algorithm for such
conversion is discussed in detail in [11].

Representation using the auto-correlation functions of compactly supported wavelets can also be viewed
as a way to obtain a continuous-like multiresolution analysis. Another approach to make the connection
between continuous and discrete multiresolution analyses is developed in [7], where the starting point is the
continuous version of the multiresolution analysis.

Representation using the auto-correlation functions of compactly supported wavelets may also be com-
pared with those using the approximation of the Laplacian of a Gaussian function (the so-called Mexican-hat
function) by the Difference of two Gaussian functions (the so-called DOG function) as

2
%G(m; o) = aG(az;0) — G(z;0), (2.40)
T

where )
G(z;0) = e /20" (2.41)

2no

and a = 1.6 as was suggested in [10]. It follows from (1.9) and (1.12) that

U(z) =20(2z) — O(z), (2.42)

which should be compared with (2.40).

Since the auto-correlation functions of the compactly supported wavelets may be viewed as pseudo-
differential operators of the even order, and essentially behave as the derivative operators of the same order,
the zero-crossings in this representation correspond to the locations of edges at different scales in the signal.
Dubuc’s iterative interpolation is naturally associated with such representation and allows us to define
zero-crossings for multiresolution representations of discrete signals. By using iterative interpolation, we
locate the zero-crossings and compute slopes at these points within the prescribed numerical accuracy. To
reconstruct the signal, we set up a linear system where the entries of the matrix are computed from the
values of the auto-correlation function and its derivative (at the integer translates of zero-crossings). The
original signal is then reconstructed within the prescribed accuracy by solving this linear system. For the
details of this algorithm, we refer to [11].

Examples of representation of signals in the auto-correlation shell are presented in Figures 4, 5 and 6.
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Figure 4: The expansion of two unit impulses in the auto-correlation shell using the auto-correlation functions

of the Daubechies’s wavelet with L = 2M = 4.
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Figure 5: The expansion of the signal in the auto-correlation shell using the auto-correlation functions of
the Daubechies’s wavelet with L = 2M = 4. The top row is the original signal. Note that the locations of
edges in the original signal correspond to the zero-crossings in this representation.
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Figure 6: The averages on different scales (the top row is the original signal).
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