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Iterated Spherical Means in Linearized Inverse Problems

Gregory Beylkin®

Abstract. We consider a representation of the function

[f F(p)eirdp,

F(x) =
x) @)™ s

in terms of the iterated spherical mean of F(p). Here, n is the dimension of the space. We
also review applications of such a representation to linearized inverse problems and present
as examples problems of diffraction tomography and inverse scattering in Born (and Rytov)
approximations. :

1. Introduction. Experiments in scattering usually yield the measured scattered field
as a function of two unit vectors which represent the direction of propagation of the
incident wave and the direction at which the field is recorded. In many cases (we provide
two examples in this article) if we fix the direction of the incident wave then what we
obtain in a single experiment is the Fourier transform of the quantity we would like to
fecover restricted to some sphere (or circle in the two-dimensional case). Recently
algorithms which make use of such data were suggested by A. J. Devaney (see Refs. [1-3]).
These algorithms which solve linearized inverse problems are based on the representation
of a function in terms of the iterated spherical mean of its Fourier transform. A uniform
derivation of such a representation independent of the dimension of the space is presented
in Ref. {4].

In this article we briefly describe the derivation of the representation of a function in
terms of the iterated spherical mean of its Fourier transform and consider applications of
this representation to linearized inverse problems. We treat problems ‘of inverse scattering
and diffraction tomography. In the case of diffraction tomography our consideration differs
from one presented in Ref. [11.

2. Sphei-ical Means, Iterated Spherical Means and the Fundamental Identity.
Let f be a continuous function in R™ The spherical mean of the function f is defined as

Ix,) = L fx + v)do,, @1

n jyj=1
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where w, = o is the surface area of the unit sphere in R™, x is a point in R”, v is a
F(—f)
unit vector in R" and dw, is_the standard measure on the unit sphere (the solid angle

differential form), such that deo, = o, The function I(x,r) is the normalized average of
=1 .
the function f on a sphere of radius |r| about the point x. We note that the function I(x,r)

is even with respect to r.

The iterated spherical mean M(x,a,8) is defined as follows

M) = ~= [ [ 1+ ap +Br)do,do,, 2.2)

o @n ul=l pl=l ’
where «,8 are real numbers and v,u are unit vectors in R". F. John [5] obtained the
fundamental identity '

Bta

200 [(r+8—) (tHB+a) (atr=B) (a—r+@] T r1Gxndr, (2.3)
(2aﬁ)n Wy B—a

which relates the iterated spherical mean of a function to the spherical mean of that
function.

2045y

M(x,a,8)=

3. The Representation of a Function in Terms of the Iterated Spherical Mean
of its Fourier Transform. The fundamental identity in (2.3) can be used (see [4]) to
obtain the representation of a function in terms of the iterated spherical mean of its Fourier
transform. Let us briefly describe the derivation.

We consider the function

f,(p) = F(p)ery, (3.1)

Il
(4k2—|p |2) (n—3)/2
where p and y belong to R® and the function I:“(p) has éupport inside the n-dimensional ball
By = {p: |p| < 2k}. 3.2)

Let vector y in (3.1) be a parameter. First, we compute the spherical mean 1,(0,r) of the
function fy(p). Then we compute the iterated spherical mean of the function fy(p), the
function M(0,k,k), using the fundamental identity in (2.3) and the definition in (2.2).
Comparing the results we obtain the following representation

kr |V — I_Ll N s
F(X) = e—— — F(kV"k}L)Cl(kv k) xd(l),,dw , (3‘3)
87 w1 a1 =1 (4—|y—p|» @32 "

where

F(x) = rf B(p)edp. (3.4)
Ipt< 2k

1
Qm)n

If (as we assumed initially) the support of the function F is contained in the ball By
described in (3.2) then the function F(y) defined in (3.4) coincides with the inverse
Fourier transform of F(p). The identity in (3.3) in this case is the representation of a
function in terms of the iterated spherical mean of its Fourier transform.
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If the support of F(p) is not restricted to the ball By in (3.2), then (3.4) defines the
low-pass-filtered version of the function whose Fourier transform is F(p). In this case (3.3)
is the representation of the low-pass-filtered version of the function in terms of the iterated
spherical mean of its Fourier transform.

The representation in (3.3) was derived in [4]. For n = 2 and n = 3 it reduces to
formulae obtained by A. J. Devaney [1,3].

4. Inverse Scattering in Born Approximations. The most simple example of an
- application of the representation in (3.3) is the inversion formula for inverse scattering
within Born approximation [3]. Let us consider the three-dimensional case for simplicity
and let e X (a plane wave) be the incident field. Consider the wave function ¥ (x,k,v)
which satisfies the Lippmann-Schwinger integral equation

1 giklx—yl

‘I’(X,k,v) = eiKV'X - _——'V(y) ‘P(Y7kal")dy’ (41)
4 < x—yl

where the potential V is such that for large |x|the solution of (4.1) has the asymptotics

1
x|}’

) iklx]
W(x,k,p) = elx + Ex—f(k,v,,.L) +0

where u = T);_l

If the solution ¥ (x,k,v) of the integral equation in (4.1) is known then the scattering

amplitude f(k,v,u) can be written as follows
1 ik
fvo) == 3~ [ eV (0 ¥ (x,k,) dx. 4.2)

Using Born approximation by setting ¥ (x,k,») = e~ in (4.2) we linearize the relation
between the potential and the scattering amplitude and obtain

- — _.1__ —ikp- ikv- = __l_. 9 —
fk,v,um) yym f e ke XV (x) e xdx yy Viku—kv) . 4.3)
Similarly, we derive that within Born approximation
1 -
fk,v,u)|? = ku—kv), 4.4
Iflk,v,u)l @ )ZQ(/.L v) (4.4)

where Q is the Fourier transform of the function
Q® = [V +y V() dy.
(The function Q(x) is the so-called interatomic distance function).

Making use of the representation in (3.3), where we set the dimension n = 3, we
obtain

3 R
V@ = — 25 [ [ alfp,we® 90, do,,, .5)
A i ple
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and
3 )
-5 [ f b=l ,0) 12 €005y day, . 4.6)
T ll=l W=t
We note, that the sphere of radius 2k which contains the ball By in (3.2) is the so-called
Ewald limiting sphere.

Thus, we obtain that if we can measure the phase of the scattering amplitude we have
the explicit inversion formula in (4.5) for the reconstruction of the low-pass-filtered version
of the potential. In the case when the phase of the scattering amplitude cannot be directly
measured we can explicitly reconstruct the interatomic distance function using (4.6).
Formulae (4.5) and (4.6) were first obtained in Refr. [3].

Remark 1: In the case of inverse scattering in the n-dimensional space one obtains the
analogous result as soon as the scattering amplitude is properly defined.

Remark 2: We can always write

. K3 .
=] [ S — fk i(kv—ku)-
V(x) kln; 13 |#’[£1 |,7’[£1'V ul f( RIS "dw,,dw#

This statement is equivalent to the uniqueness theorem (if we know the scattering
amplitude for large k).

5. Diffraction Tomography in Born (and Rytov) Approximations. We use the
inhomogeneous Helmholtz equation to describe the wave propagation; namely, we consider

(A +k)U(x,k) = kK20(x) Ux,k), 5.1
where
Ox)=1-nx).

The Helmholtz equation in (5.1) describes the acoustic field in a fluid medjum. The
parameter k = 2#/X is the wavenumber (here \ is a wavelength). We call the function
O(x) an object profile. We assume that the index of refraction

n(x) =1,

if [x|> R for some R > 0. It means that the support of the object profile O(x) is contained
within the ball By = {x: |x|< R).

The inverse problem of diffraction tomography consists of determining the object
profile O(x) from the scattered acoustic field measured outside the ball Bg. This problem is
nonlinear. We will use the first Born approximation to obtain a linear relation between the
scattered field and the object profile. We consider the two-dimensional case for simplicity.

We start with the integral equation for the Fourier transform of the function U(x,k) in
(5.1), '

2 5
¥(p.k,v) = 8(p—kv) + m f O(p—p) ¥ (o' k,v)dp’, (5.2)

i
i
1
iH
2
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where
Vpk) = [ Ulke™idx,
5(p—kv) represents the incident plane wave, p is a vector in R? v is a unit vector in R? and
0 = [ 0Geriix.

We introduce a system of coordinates which is related to the direction of propagation of the
initial plane wave. We set

p=mv + &t (5.3)
where »* is the unit vector orthogonal to the vector v: v = (v;,vy) and vt = (—vyvy).

Let us consider the scattered field ‘Ifsc(p,k v) = ¥{(p,k,v) — 8(p—kv). We find

¥olp,k,v) = f O(p—p") ¥ (p' k,v)dp’, (5.4)

I 12
and in the system of coordinates (5.3) we have
____k__
K2—g2p2—
We take the inverse Fourier transform of the function ¥ in n-coordinate

W (p+évi k) = f Olaw+vi—p) ¥ (' k)’ (5.5)

1 T ;
Vo (y,E.kv) = T :[o ¥ (pr+évik,p)e™dy,

and obtain

Vo (y.Eky) = i kZVE-£1l
<¥.E,k v '_2 \/——2

for |¢| <k . We denote

e [ O vt p) Y (0 k)dp,  (5.6)
w= TI(_( k*—£2v+Evd  if y>O0,

and
p= %(—\/k2—-§2v+§v9 if y<0.

Here & is a unit vector. We also have klu-v|= Vk®-£%and sign(y) = sign(u-v). Thus,
i kefkew
2wl

Y (5ot k,p) = — [ Oku—p) ¥ k»)dp' . 6D

Using Born approximation by setting ¥ (p’,k,v) = 8(p'—k») in (5.7) we obtain
Otku—to) = 2l ey by e (5.8)

where \I’S"; denotes the scattered field in Born approximation.

We can measure the scattered acoustic field outside the ball Bg . Let us fix [y[>R and
note that sign(y) = sign(u-v) . We make use of the representation in (3.3) (where we set
n = 2) to obtain
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Opp(x) = % f f (1—(;1,'12)2)%];1,-1/]e—“‘l’“'[y‘l"sbc(y,u,k,v)ei(k"‘k“)'xd(u,,dwu .(5.9)
wl=1 |ul=t

The formula (5.9) is a backpropagation inversion formula which was first obtained by A. J.
Devaney [1] and is presented here in a slightly different form.

The case of Rytov approximation is analogous to Born approximation and can be found
in Ref. [1]. We note that in the case of a plane incident wave there is a .simple relation
between the scattered field in Born and Rytov approximations (see [1], for example), and
we can obtain the expression for O(ku—kv) in Rytov approximation using relation in (5.8).

In conclusion let us emphasize that the use of the representation in (3.3) in combination
with formulae (4.3), (4.9) and (5.8) allows us to compute contributions of each separate
experiment independently. (A separate experiment is a measurement made with a fixed
direction of the incident field). Then we integrate over all experiments. Such an integration
is a computation of a spherical mean and, thereby, is a stable numerical procedure.
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