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I Introduction

The wavelet bases provide a system of coordinates in which wide classes of linear op-
erators are sparse. As a result, the cost of evaluating Calderón-Zygmund or pseudo-
differential operators on a function is proportional to the number of significant wavelet
coefficients of this function, i.e., the number of wavelet coefficients above a given thresh-
old of accuracy. Consequently, fast algorithms are now available for solving integral
equations with operators from these classes [3].

In order to use the wavelet bases for solving partial differential equations, one
is led to consider differential operators and operators of multiplication by a function.
Numerical issues of representing differential operators has been addressed in [2] and, it
turns out, such operators require O(1) coefficients for their description in the wavelet
bases (in the non-standard form).

On the other hand, the operator of the multiplication by a function a(x), x ∈ Rd,
seems to require O(N d) coefficients for its description independently of the properties of
the function a(x). Indeed, the operator of the multiplication by a(x) has the generalized
kernel a(x)δ(x − y) with the singularity along the diagonal x = y even if the function
a(x) is smooth and non-oscillatory.

Heuristically, if the solution of a partial differential equation is smooth and non-
oscillatory on most of its support but is singular or oscillatory at a few locations, then
solving in the wavelet bases should lead to fast and adaptive algorithms where the number
of operations is proportional to the number of the significant coefficients in the repre-
sentation of the solution in the wavelet bases. However, if in the process of solving this
equation it is necessary to multiply the solution by a smooth function then, due to our
previous remark, the algorithm will be insensitive to the smoothness properties of the
functions involved. Indeed, this point is most clear for the nonlinear equations. For
example, considering Burgers equation we observe that it is necessary to compute the
square of the solution at each time step and, therefore, the gains in the sparsity of the
representation of the solution are lost.
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In this paper we address the problem of pointwise multiplication of functions in
the wavelet bases. We will consider computing F (u) = u2 in the wavelet bases since the
product of two functions may be written as uv = 1

4
[(u+ v)2 − (u− v)2].

It appears that the straightforward algorithm which would require computing the
expansion of the products of the basis functions, storing and using them to perform the
multiplication is inefficient. Such algorithm requires computing the coefficients

c
j,j′,m
k,k′,l =

∫

+∞

−∞

ψ
j
k(x)ψ

j′

k′(x)ψm
l (x) dx,

where ψj
k(x) = 2−j/2ψ(2−jx − k) are the basis functions. While computing c

j,j′,m
k,k′,l does

not present a problem, the number of the nonzero of coefficients is large and, what is
more important, the number of operations to compute u2 is proportional to N 3

s , where
Ns is the number of significant coefficients in the representation of u.

In a number of applications the functions of interest are the functions that are
singular or oscillatory at a few locations. The number of significant wavelet coefficients
of such functions is O(1) on each scale so that Ns is proportional to log(N). Asymptoti-
cally the straightforward algorithm will perform better that an O(N) algorithm, but for
problems of practical size it is inefficient.

In this paper we develop a novel approach to the pointwise multiplication of
functions in the wavelet bases based on uncoupling the interactions between scales. The
complexity of this algorithm is automatically adaptable to the complexity of the wavelet
representation of u and is proportional to Ns. A preliminary version of this algorithm
was presented at INRIA [1]. The algorithm permits a generalization for computing F (u)
directly in the wavelet basis, where F is a smooth function and u is represented in a
wavelet basis.
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II Multiresolution algorithm for evaluating u2

II.1 Uncoupling the interaction between scales

Let us consider the projections of u ∈ L2(R) on subspaces Vj,

uj = Pju, uj ∈ Vj, (2.1)

where {Vj}j∈Z,is a multiresolution analysis of L2(R) . In order to uncouple the interac-
tion between scales, we write a “telescopic” series,

u2

0 − u2

n =
j=n
∑

j=1

[

(Pj−1u)
2 − (Pju)

2
]

=
j=n
∑

j=1

(Pj−1u+ Pju)(Pj−1u− Pju) (2.2)

Using Pj−1 = Pj +Qj, we obtain

u2

0 − u2

n =
j=n
∑

j=1

(2Pju+Qju)(Qju), (2.3)

or

u2

0 = 2
j=n
∑

j=1

(Pju)(Qju) +
j=n
∑

j=1

(Qju)(Qju) + u2

n. (2.4)

In (2.4) there is no interaction between different scales j and j ′, j 6= j ′. Let consider
each term of (2.4) as a bilinear mapping

M
j
V W : Vj × Wj → L2(R) = Vj

⊕

j′≤j

Wj′, (2.5)

and
M

j
WW : Wj × Wj → L2(R) = Vj

⊕

j′≤j

Wj′, (2.6)

and note that in (2.5) and (2.6) we select the representation of L2(R) depending on the
scale j.

Remark 1. For the numerical purposes we need formulas (2.3) or (2.4) with a finite
number of scales, though it is clear that by taking limits j → ∞ and j → −∞ we have

u2 =
∑

j∈Z

(2Pju+Qju)(Qju), (2.7)

which is essentially the para-product of J.M. Bony [5], [6], [4], [7].
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II.2 Computing u2 in the Haar basis

Let us start by considering an example of (2.4) in the Haar basis. We have the following
explicit relations,

(χj
k(x))

2 = 2−j/2χ
j
k(x),

(hj
k(x))

2 = 2−j/2χ
j
k(x), (2.8)

χ
j
k(x)h

j
k(x) = 2−j/2h

j
k(x),

where χj
k(x) = 2−j/2χ(2−jx−k), hj

k(x) = 2−j/2h(2−jx−k), χ is the characteristic function
of the interval (0, 1) and h is the Haar function, h(x) = χ(2x) − χ(2x− 1).

Expanding u0 into the Haar basis,

u0(x) =
j=n
∑

j=1

∑

k∈Z

d
j
kh

j
k(x) +

∑

k∈Z

sn
kχ

n
k(x), (2.9)

and using (2.8), we obtain from (2.4)

u2

0(x) = 2
j=n
∑

j=1

2−j/2
∑

k∈Z

d
j
ks

j
k h

j
k(x)+

j=n
∑

j=1

2−j/2
∑

k∈Z

(dj
k)

2 χ
j
k(x)+2−n/2

∑

k∈Z

(sn
k)2 χn

k(x). (2.10)

On denoting

d̂
j
k = 2−j/2+1d

j
ks

j
k,

ŝ
j
k = 2−j/2(dj

k)
2, (2.11)

ˆ̂s
n

k = 2−n/2(sn
k)

2,

we rewrite (2.10) as

u2

0(x) =
j=n
∑

j=1

∑

k∈Z

d̂
j
k h

j
k(x) +

j=n
∑

j=1

∑

k∈Z

ŝ
j
k χ

j
k(x) +

∑

k∈Z

ˆ̂s
n

k χ
n
k(x). (2.12)

Remark 2. We note that if the coefficient dj
k is zero then there is no need to keep

the corresponding average sj
k. In other words, we need to keep averages only near the

singularities, i.e., where the wavelet coefficients dj
k ( or products sj

kd
j
k) are significant for

a given accuracy.

Finally, to compute the coefficients of the wavelet expansion of the function u2
0,

we need to expand the second sum in (2.12) into the wavelet basis. Starting from the
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scale j = 1, we compute the differences and averages d̄j+1

k and s̄
j+1

k . We then add s̄
j+1

k

to ŝj+1

k before expanding it further according to the following pyramid scheme

{ŝ1
k} −→ {s̄2

k} −→ {s̄2
k} + {ŝ2

k} −→ {s̄3
k} −→ {s̄3

k} + {ŝ3
k} · · ·

↘ ↘ ↘

{d̄2
k} −→ {d̄2

k} + {d̂2
k} {d̄3

k} −→ {d̄3
k} + {d̂3

k} · · ·

(2.13)

(The formulas for evaluating the differences and averages d̄j+1

k and s̄j+1

k may be found in
[3]). As a result, we compute d̄j

k, j = 2, . . . , n, (we set d̄1
k = 0) and s̄n

k and obtain

u2

0(x) =
j=n
∑

j=1

∑

k∈Z

(d̂j
k + d̄

j
k) h

j
k(x) +

∑

k∈Z

(s̄n
k + ŝn

k + ˆ̂s
n

k)χn
k(x). (2.14)

It is clear, that the number of operations for computing the Haar expansion of u2
0

is proportional to the number of significant coefficients dj
k in the wavelet expansion of u0.

In the worst case, if the original function is represented by a vector of the length N , then
the number of operations is proportional to N . If the original function is represented
by O(log2N) significant Haar coefficients, then the number of operations to compute its
square is proportional to log2N . The algorithm in the Haar basis easily generalizes to
the multidimensional case.

II.3 Computing u2 in the wavelet bases

We now return to the general case of wavelets and derive an algorithm to expand (2.4)
into the wavelet bases. Unlike in the case of the Haar basis, the product on a given
scale ”spills over” into the finer scales and we develop an efficient approach to handle
this problem. We use compactly supported wavelets though our considerations are not
restricted to such wavelets. We denote the scaling function by φ and the wavelet by ψ.
The wavelet basis is then given by ψ

j
k(x) = 2−j/2ψ(2−jx − k), k, j ∈ Z (see [8]). We

consider the multiresolution analysis associated with such basis.
In order to expand each term in (2.4) into the wavelet basis we are led to consider

the integrals of the products of the basis functions, for example

M
j,j′

WWW (k, k′, l) =
∫

+∞

−∞

ψ
j
k(x)ψ

j
k′(x)ψ

j′

l (x) dx, (2.15)

where j ′ ≤ j. It is clear, that the coefficients M j,j′

WWW (k, k′, l) are identically zero for
|k − k′| > k0, where k0 depends on the overlap of the supports of the basis functions.
The number of necessary coefficients may be reduced further by observing that

M
j,j′

WWW (k, k′, l) = 2−j′/2

∫

+∞

−∞

ψ
j−j′

0 (x)ψj−j′

k−k′(x)ψ0

2j−j′k−l(x) dx, (2.16)
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so that
M

j,j′

WWW (k, k′, l) = 2−j′/2M̃
j−j′

WWW (k − k′, 2j−j′k − l). (2.17)

We also observe that the coefficients in (2.17) decay as the distance r = j − j ′

between the scales increases. Rewriting (2.17) as

M̃ r
WWW (k − k′, 2rk − l) = 2−r

∫

+∞

−∞

ψ(2−rx)ψ(2−rx− k + k′)ψ(x− 2rk + l) dx, (2.18)

and recalling that the regularity of the product ψ(2−rx)ψ(2−rx−k+k′) increases linearly
with the number of vanishing moments of the function ψ, we obtain

|M̃ r
WWW (k − k′, 2rk − l)| ≤ C2−rλM (2.19)

with some λ (see [8], [9]).
Let us define j0 as the distance between the scales such that for a given ε all the

coefficients in (2.19) with labels r = j − j ′, r > j0, have absolute values less than ε. For
the purpose of computing with accuracy ε, we replace the mappings in (2.5) and (2.6)
by

M
j
V W : Vj × Wj → Vj

⊕

j0≤j′≤j

Wj′, (2.20)

and
M

j
WW : Wj × Wj → Vj

⊕

j0≤j′≤j

Wj′. (2.21)

Since
Vj

⊕

j0≤j′≤j

Wj′ = Vj0−1, (2.22)

and
Vj ⊂ Vj0−1, Wj ⊂ Vj0−1, (2.23)

we may consider the bilinear mappings (2.20) and (2.21) on Vj0−1 × Vj0−1. For the
evaluation of (2.20) and (2.21) as mappings

Vj0−1 × Vj0−1 → Vj0−1, (2.24)

we need significantly fewer coefficients than for the mappings (2.20) and (2.21). Indeed,
it is sufficient to consider only the coefficients

M(k, k′, l) = 2−j/2

∫

+∞

−∞

φ(x− k)φ(x− k′)φ(x− l) dx, (2.25)

and it easy to see that M(k, k′, l) = 2−j/2M0(k − l, k′ − l), where

M0(p, q) =
∫

+∞

−∞

φ(x− p)φ(x− q)φ(x) dx. (2.26)
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Though it is a simple matter to derive and solve a system of linear equations to find
M0(p, q), we advocate a different approach to evaluate (2.24) in the next subsection.

Let us now explain the reasons for considering (2.20) and (2.21) as mappings
(2.24). On a given scale j the procedure of ”lifting” the projections Pju, Qju into a
”finer” subspace is accomplished by the pyramid reconstruction algorithm (see e.g. [3]).
Let us assume that only a small number of the coefficients of Qju are above the threshold
of accuracy. We note (see Remark 2 for the Haar basis) that only those coefficients of
Pju that contribute to the product (Pju)(Qju) (above the threshold ε) need to be kept.
In fact, one may consider the function Qju as a ”cutoff function” for Pju.

Computing Qju and the corresponding part of Pju in the ”finer” subspaces
Vj−1,Vj−2, . . . ,Vj0−1 via the pyramid reconstruction algorithm roughly doubles the
number of the coefficients on each scale. The procedure is similar to that of ”over-
sampling” by the factor of two (from scale to scale) and, as we reach Vj0−1, we have
increased the number of coefficients by the factor of approximately 2j0. This factor is a
dominant constant in the complexity estimate of the algorithm. As an example, to main-
tain the single precision accuracy (ε ≈ 10−6), we have j0 = 6 and the ”oversampling”
factor 2j0 = 64 (for wavelets with six vanishing moments).

Examples of functions for which it is indeed necessary to use j0 = 6 are the basis
functions themselves. It is clear that the smoother are the basis functions, the smaller is
the distance j0. The compactly supported wavelets, however, are not very smooth since
there is a trade-off between the number of vanishing moments and the smoothness of the
function (see [8]).

Fortunately, in many applications the projections Pju and Qju may be smoother
than the basis functions. In this case the scale distance j̃0 may be chosen according to
the smoothness of Pju and Qju and, thus, will be less that j0. If we use the coefficients
in (2.15) for computing the product, then we cannot make use of this observation in an
adaptive manner. On the other hand, by computing Qju and the corresponding part of
Pju in the ”finer” subspaces we may decide to terminate the process adaptively.

We note that the number of operations for this step of the algorithm is propor-
tional to the number of the significant wavelet coefficients of the function.

II.4 Relations between values of functions and their wavelet

coefficients.

The result of ”oversampling” Pju and Qju is that their product (for a given accuracy ε)
is in the same subspace as the multiplicands (see (2.24)) . To compute the product, one
may use the coefficients (2.26) but such approach does not lead to an efficient algorithm
in the multidimensional case.
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Instead of (2.24), it is sufficient to consider the mapping

V0 × V0 → V0. (2.27)

It is easy to see that for f ∈ V0,

f(x) =
∑

k

fkφ(x− k), (2.28)

the values of f at integer points may be written as

f(m) =
∑

k

φmkfk, (2.29)

where φmk = φ(m−k). Computing φ−1

mk allows us to evaluate the coefficients fl from the
values of the function at integer points,

fl =
∑

m

φ−1

lmf(m). (2.30)

Formula (2.30) is the quadrature formula for f ∈ V0. For most wavelets the entries of
the matrix φ−1

mk = φ−1(m−k) decay fast away from the diagonal and for a given accuracy
ε the sum in (2.30) has very few terms.

The algorithm to evaluate the product via mapping in (2.27) is now clear. First,
we compute the values of the multiplicands at the integer points using (2.29). Then we
compute the product via ordinary multiplication at these points. Finally, we use (2.30)
to obtain the coefficients of the product.

The virtue of this approach is that both operations (2.29) and (2.30) are convolu-
tions. In the multidimensional case, the convolutions are separable and, therefore, lead
to a faster algorithm than the algorithm using coefficients in (2.26).

Remark 3. Daubechies’ wavelet with five vanishing moments is the only wavelet for
which the author found that the decay of entries of the matrix φ−1

mk away from the diagonal
is relatively slow. Wavelet with five vanishing moments and with ”almost linear phase”,
however, yields φ−1

mk with a fast decay.

Remark 4. The use of (2.30) requires an a priori knowledge that the product is in the
same subspace as the multiplicands.
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France.

[8] I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure
and Appl. Math., 41:909–996, 1988.

[9] I. Daubechies and J. Lagarius. Two-scale difference equations, I. Global regularity of
solutions & II. Local regularity, infinite products of matrices and fractals. SIAM J.
Math. Anal., 1991.

9


