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On wavelet-based algorithms for solving
differential equations

G. Beylkin

ABSTRACT We describe an order N method for computing the Green’s func-
tion of the two-point boundary value problem for elliptic differential operators
in the wavelet “system of coordinates.” For simplicity, we consider the ordinary
O(h?) finite-difference scheme, and use wavelets only to perform the “linear alge-
bra.” Our main tool is the diagonal preconditioning available for the periodized

differential operators in the wavelet bases.
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12.1 Introduction

The role of the orthonormal wavelet bases in solving integral equations has been
studied in [BCoR1], where it was observed that wide classes of operators have
sparse representations in the wavelet bases thus permitting a number of fast
algorithms for applying these operators to functions, solving integral equations,
etc. The operators which can be efficiently treated using representations in the
wavelet bases include Calderén—Zygmund and pseudo-differential operators. Let
us here summarize several points important for further considerations and refer
to [BCoR 1], [BCoR2], [Aetal] for the details. If we consider an integral operator
(Calderéon—-Zygmund or pseudo-differential operator),

T = / K () 0)dy, 121

and construct its matrix representation in a two-dimensional wavelet basis, then
we find that the rate of decay of the size of entries as a function of the distance
from the diagonal in the sub-blocks of such representation is faster than that of the
original kernel. The rate of decay depends on the number of vanishing moments
of the basis functions. For example, let the kemnel satisfy the conditions

1

Co
|O¥ K (x, )| + |8§"K(x,y)l < m (12.3)
for some M > 1. Then by choosing the wavelet basis with M vanishing moments,
the matrices of coefficients a/i'l, ﬁf,,, 'y{,l of the representation of the kernel K in
the non-standard form (see [BCoR1]) satisfy the estimate

Cu

e+ 1801+ | < g (12.4)
for all
i~ 1| >2M. (12.5)
And, if in addition to (12.2).and (12.3),
/ K(x.ydedy| < Cll| (12.6)
IxI

holds for all dyadic intervals I (the so-called “weak cancellation condition”),
then (12.4) is valid for all i,/. Thus, for a given accuracy, the representations
of operators which satisfy (12.2) and (12.3) are sparse since we may use banded
versions of aril ,B{',, f){’, for computing.
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We note that considering a banded approximation directly for the kernel satis-
fying (12.2) does not lead to a satisfactory numerical approximation. The method
of [BCoR1] uses the smoothness of the matrix away from the diagonal to increase
the rate of decay. Parts of the matrix which can be well approximated by the low
degree polynomials are represented by small coefficients in the wavelet system
of coordinates since the basis functions have vanishing moments. Once a sparse
representation is obtained, fast algorithms are available for a variety of tasks asso-
ciated with solving integral equations, for example, O(N) algorithm for solving an
integral equation or an iterative algorithm for constructing the generalized inverse
in O(N) operations ([BCoR 1], [BCoR2], [Aetal]).

In this paper we address the question “what are the implications of using
wavelet bases for solving differential equations?” The same problem often may be
posed both as a problem of solving the boundary value problem for a differential
equation and as a problem of solving an integral equation. From the point of
view of numerical analysis one would observe a significant difference in these
formulations. The discretization of a differential equation leads to a sparse linear
algebraic system with a “large” condition number of the corresponding matrix,
whereas the discretization of an integral operator leads to a dense matrix with
“small” condition number. More precisely, the condition numbers of matrices
representing differential operators usually have a polynomial growth with the
reduction of the step size (i.e., with the increase of the size of the system). For
example, the condition number of the matrix of the second order finite difference
operator grows as 1/h% (or N2), where £ is the step size (N is the number of
points of discretization). On the other hand, the condition number of the matrix of
the linear algebraic system obtained by discretizing the integral equations of the
second kind does not grow with the reduction of the step size (usually it actually
improves somewhat) but the matrix is dense (full).

We recall that the condition number of a matrix is defined as the ratio of the
largest and the smallest singular values. If matrix has a nuil space (the actual
null space or a null space for a given accuracy), then by the condition number
we understand the ratio of the largest singular value to the smallest singular
value above the threshold of accuracy. The condition number controls the rate
of convergence of a number of iterative algorithms for solving linear systems;
for example the number of iterations of the conjugate gradient method is O(,/x),
where & is the condition number of the matrix.

Naively, solving the linear system of size N x N obtained by discretizing the
- integral equations of the second kind seems to require O(N?) operations. Solving
the sparse linear system obtained by representing differential operators also seems
to require O(NV?) operations since the number of iterations is O(N).

Asis shown in [BCoR 1], the dense matrices obtained by discretizing the integral
equations of the second kind may be replaced by sparse matrices in the wavelet
system of coordinates (for operators satisfying the conditions (12.2) and (12.3),
for example), thus leading to O(N) algorithms for solving such integral equations.
. As we demonstrate in this paper, if our starting point is a differential equation
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with boundary conditions then in the wavelet system of coordinates there is a
diagonal preconditioner which allows us to perform algebraic manipulations only
with the sparse matrices whose condition humber is O(1), thus also leading to
O(N) algorithms for solving the corresponding linear systems. '

We describe a method for solving the two point boundary value problem for
elliptic differential operators in the wavelet “system of coordinates.” To illustrate
the difference between our approach and the existing numerical methods for
solving the two-point boundary value problems of this kind, such as multigrid (see,
e.g., [Bri]) or multilevel (hierarchical) methods or the very simple and elegant
algorithm of [GR], we construct the Green’s function (the inverse operator) in
O(N) operations. We note that the numerical methods mentioned above allow us
to find the solution of the problem in O(N) operations. However, since the ordinary
matrix representation of the Green’s function requires O(N?) significant entries,
fast algorithms for its construction are not readily available. Our method permits
solving the problem in O(N) operations as well, but since the representation of the
Green’s function in the wavelet bases requires (for a given accuracy) only O(N)
entries, we concentrate on describing a fast algorithm for its construction.

Once the Green’s function is obtained, finding the solution reduces to the
matrix-vector multiplication, which in the wavelet system of coordinates is an
O(N) procedure. In addition, if the entries of the vector are values of a smooth
and nonoscillatory function then the vector is sparse in the wavelet system of
coordinates. In this case the number of operations to apply the Green’s function
to a vector is proportional to the number of significant coefficients of this vector
in the wavelet system of coordinates. We illustrate these properties further by
considering a modification of the Crank—Nicolson method, which we convert into
an explicit and adaptive scheme in the wavelet system of coordinates.

The main tool in our approach is the diagonal preconditioning available for
the periodized differential operator in the wavelet bases [B]. The idea of pre-
conditioning has long been one of the main ideas in the multilevel and multigrid
methods. Among a great number of papers on preconditioning we would like to
note [BrPX], where the authors explicitly consider orthonormal chains of sub-
spaces (similar to that of the multiresolution analysis) in order to construct the
multilevel preconditioners. Apparently unfamiliar with multiresolution analysis
and wavelet bases, they remark that “in practice, an orthonormal basis ... is
seldom available.” In fact, orthonormal wavelet bases provide a very convenient
tool for implementing the preconditioners. Moreover, since the inverse operator
is sparse in the wavelet bases, it is possible to construct it numerically in O(N)
operations.

S. Jaffard in [J] gives a theoretical analysis of solving the elliptic boundary
value problem in the wavelet bases and considers the diagonal preconditioning.
However, he does not provide a practical method. In this paper our considera-
tions are restricted to the two-point boundary value problems, since a practical
construction of the wavelet bases in an arbitrary domain is not available at this
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time. We approach the multidimensional problems using the alternating direc-
tions technique, which is modified since we are able to numerically construct the
Green'’s functions of the two-point boundary value problems. We note that our
use of the diagonal preconditioning differs from that in [J] since we apply it to
the periodized differential operators and solve the boundary value problem by
rank-one perturbation.

For simplicity, we consider the ordinary O(k?) finite-difference scheme for
the two-point boundary value problem, and use the periodized wavelets only
to perform the “linear algebra.” Such an approach enables us to make a clear -
comparison with other techniques. On the other hand, it also carries some of the
limitations of the finite-difference scheme. A more consistent approach which
uses the wavelet bases of the interval [Cetal] to achieve an approximation of
order /¥, where p is arbitrary, is currently being developed and will be described
elsewhere.

12.2 The two-point boundary value problem

Let us consider the two-point boundary value problem

d
fu=2 (a(x) E") = f(x) (12.7)
with the Dirichlet boundary conditions u(0) = u(1) = 0. We assume that a is a
sufficiently smooth function and a(x) > 0, x € (0, 1). The method that we describe
is applicable to more general elliptic operators, e.g.,

d du
Lu=— (a0 E&) — b, (12.8)
where b(x) > 0.
Discretizing this problem on a’staggered grid, we obtain the following system
of linear algebraic equations

ai1ptiog — @io1pp + Qisip)Ui + Gl = B, i=1,...,N, 129 -
where u; = u(x;), aivip = alxpap), f; =), x; = ih and Xip0 = (@ + 1/2)h and
where we explicitly set ug = uy+; = 0.

We write (12.9) as

Lu=Ff, (12.10)
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where the N x N matrix L is as follows

—(aip + a3pn) asx o -~ 0 0 0
asp —(@p +asp) asp - 0 0 0
L=
0 0 0 - ayap —(@n-aptan-r) v
0 0 0 - 0 an-\p —(an-1p + anwin) ]

(12.11)
There are two reasons for the condition number of the matrix L to be large.
Ifax)=1in (12.7) and (12.11), then we obtain the central difference matrix
representation of the second derivative d%/dx®. It is clear that the matrix L has the
condition number O(N?). On the other hand, noting that the size of the function
a might be different in the subintervals of (0,1), we observe that the condition
number of the operator of multiplication by the function a(x) could be arbitrarily
large. _

Our goal is to construct the matrix L~! numerically in O(—N log €) operations,
where ¢ is the desired accuracy. This seemingly hopeless task (it is easy to check
for small N that the matrix L™} is dense in the ordinary representation) has, in
fact, a simple solution in the wavelet system of coordinates. '

The kemnel of the inverse operator for the problem (12.7) (the Green'’s function
for the Dirichlet problem for an elliptic operator) has a sparse representation in
the wavelet bases since such a kernel satisfies the estimates of the type in (12.2),
(12.3) (see [BCoR1]). Let us show how to construct L~! numerically starting
with the matrix L.

L=}

12.3 Reduction to the periodized problem

In the wavelet bases the preconditioner for the periodized differential operator is

- a diagonal matrix. The condition number of the rescaled operater is O(1) and
depends only on the choice of the basis [B]. Moreover, any finite difference matrix
representation of periodized differential operators may be rescaled by a diagonal
preconditioner. We use this fact to solve the two-point boundary value problem
using a fairly standard discretization scheme in (12.10).- The wavelets play an
auxiliary role in that they provide a system of coordinates in which the condition
numbers of the sparse matrices (involved in the computations) are under control.
We use such a “mixed” approach for two reasons. First, it provides a simple way
to see the advantages of computing in the wavelet bases. Second, it provides a
practical way to.significantly improve the performance of commonly used finite
difference schemes.
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In order to use periodized differential operators, we consider the matrix L as a
finite rank perturbation of a periodized matrix. Indeed, we have

L=A- al/zele,{, — aN+1/zeNe{, (12.12)
where
—(aip +asp) aip o - 0 0 aip
a3 —(asp +asp) asp - 0 0 0
A=
0 0 0 - avosn —(anvosp+an-ip) an-p
ansip 0 o - 0 Av-p —(an_1p +anup)
(12.13)
and the unit vectors e;, ey are given by
1 0
0 0
€ = ey = . (1214)
0 0
0 1

In this section we consider the case where the size of the function a does not
change significantly over the interval (0,1). To illustrate the effect of diago-
nal preconditioning in the wavelet system of coordinates, let us set @ = 1 and
consider A =D,

-2 1 0 0 0 1
1 -2 1 0 0 0
D=1 : @ @ -t (12.15)
0 0 0 - 1 =2 1
1 0 0 -0 1 -2

In the following two examples we compute the standard form D,, of the periodized
second derivative D of size N X N, where N = 2", and rescale it by the diagonal
matrix P,

D2 = PD, P,

where Py = 632/, 1 < j < n, and where J is chosen depending on i,/ so that
N —=N/Y1'+1<i,l <N —N/Y, and Pyy = 2". The matrix P is illustrated in
Figure 12.1.
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L, 32

FIGURE 12.1
An example (n = 5) of the diagonal matrix P used to rescale the matrix of the periodized
second derivative D,, in the wavelet system of coordinates.

Tables 12.1 and 12.2 compare the original condition number x of D (and D,
since it is obtained by an orthogonal transformation) and «;, of DY,. Since matrices
D, D,, and D%, have a null space (of dimension one), the condition numbers are
computed on the range of these matrices.

Let us now describe a method for solving the two-point boundary value problem
in the wavelet system of coordinates. Denoting the matrix of the discrete wavelet
transform by W (though the actual transform is applied via a pyramid algorithm,
see, e.g., [BCoR1]) and observing that W is an orthogonal transformation, we
rewrite (12.10) and (12.12) in the wavelet system of coordinates,

(A, — aip®18l — anapéneDa =1 (12.16)
where
A, = WAW", (12.17)
i = Wu (12.18)
f=Wwf (12.19)

and é[ = We1, = 1,N.
Computing the discrete (periodized) wavelet transform of a vector of size
N = 2" and using n scales, we obtain on the most sparse scale a single coefficient




On wavelet-based algorithms 457

Table 12.1. Condition numbers of the
matrix of periodized second derivative (with
and without preconditioning) in the system
of coordinates associated with Daubechies’
wavelets with three vanishing moments

M =3.

N K Kp
32 0.10409 - 103 8.021
64 0.41535 - 10° 9.086

128 0.16605 - 10* 10.019

256 0.66405 - 10* 10.841

512 0.26562 - 103 11.562

1024 0.10625 - 108 12.197

for differences and a single coefficient for averages which we call the total average.
We note that the total average of a vector is proportional to the direct sum of the
elements of the vector. The sum of the entries in the rows of the matrix A is
identically zero and, therefore, the matrix A,, has the following structure:

B 0
A, = , (12.20)
¢ 0

where B is an (N — 1) x (W — 1) full rank matrix with the condition number
proportional to N2. Let us now determine the vector ¢”. If we compute A,, by
first applying the transformation to the columns of A we obtain the last row of the

Table 12.2. Condition numbers of the
matrix of periodized second derivative (with
and without preconditioning) in the system
of coordinates associated with Daubechies’
wavelets with six vanishing moments M = 6.

N K Ky
32 0.10409 - 10° 5.2002
64 0.41535-103 5.2610

128 0.16605 - 10* 5.2897

256 0.66405 - 10* 5.3035

512 0.26562 - 10° 5.3103

1024 0.10625 - 10° 5.3137
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transformed matrix as
panap — aip)el —ek), (12.21)

where p is a factor which depends on the size of the matrix A. In order to obtain
A,,, we have to transform further by applying the wavelet transform to the rows
of the intermediate result. Thus, we obtain

(c",0) = plans1p — a1)@] — &), (12.22)
Let us introduce the following notation:

T
& = ( 1), [=1.N, (12.23)
p ,

where r; are vectors of size N — 1 and p is a scalar factor (common to both vectors),

d

i= < ) , (12.24)
Ry
fd

f = (fs> ) (12.25)

Also, let 2a = ajp + anvip, @ = aip/Qa), B = an«12/(2a), so that oo+ 3 = 1. We
now rewrite (12.16) as

B 0 ” arlr,{,+ﬂrNr1T plar; + PBry) d i
o) T\ parf+ D) P s) \r)

and

(12.26)
where
' =2ap(8 — )T - r). (12.27)
By eliminating s,
T+ T d s .
S ln tfryd £ (12.28)

: p 2ap?°
we obtain the (V — 1) x (N — 1) system of linear algebraic equations for d,

s

[B+2a(a’r; — Bry)(] —rf)]d =4 — ’% (ar; + Bry). (12.29)

Our method for solving the two-point boundary value problem (12.7) is based
on the fact that the matrix B~} is sparse and could be computed in O(NV) operations.
We will construct the matrix B~! in the next section and let us assume here that
it is available. Given the matrix B!, we solve (12.29) using Sherman—Morrison
formula for the rank-one update of the inverse matrix. We obtain

d =[B! —oB™ (@’r, - Frw)(ri —ra)TB] [ - J-; (ary+ )|, (12:30)

e
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where
2a

77 T+2a(r; — g B-L(a2r; — o)

(12.31)

REMARK 12.1 The condition number of the sparse matrix B after rescaling by
P is O(1) as is illustrated in Tables 12.1 and 12.2. Thus, the linear system (12.29)
may be solved using (12.30) by the standard iterative methods (e.g., conjugate
gradient) in O(N) operations since using (12.30) only involves finding the solution
of the linear system Bx =y. |

We look for the inverse operator in the form

L' = ( FT p) , (12.32)
qQ v
and obtain
I'= B! —oB ' (’r; — BPry)r —v) B, (12.33)
p=-— -[1; [B~!(ar; +Bry) — ok BNt — BPry)], (12.34)
q =- % [(or] +Bri)B~! — oky(r; —ry)' B, (12.35)
1 1
v = ? (/e3 —~ OKaK| — Z) , (12.36)
where
k1 = (r; — ry) B Yar; + fry) (12.37)
Kk = (ar] + Br)B 1 (a?r; — FPry), (12.38)
and
k3 = (ar] + Br)B ! ar; + Bry). (12.39)

All matrix-vector multiplications in (12.33)~(12.39) involve the sparse matrix
B~! and the sparse vectors r; and ry. Thus, the problem of constructing L~! is
reduced to that of computing the matrix B!

12.4 Computing the inverse of the periodized operator

We start by rescaling the (N — 1) x (N — 1) matrix B by the diagonal matrix
P, where Py = 632/, 1 < j < n, and where j is chosen depending on i,/ so that
N —N/Y~14+1<i,l <N —N/¥ (see Figure 12.1). We have

B, =PBP, (12.40)
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FIGURE 12.2

Matrix B (in the case A = D) of size 255 x 255 in the system of coordinates associated with
the basis of Daubechies’ wavelets with 3 vanishing moments. Entries with the absolute
value greater than 10~!4 are shown black.

and the condition number of the matrix B, is O(1) (see Tables 12.1 and 12.2). The
matrices B and B, are sparse matrices which is illustrated in Figure 12.2. Also,
the matrices B and B, are full rank.
Our main tool in computing the inverse matrix B, ! is the iterative algorithm
(S]
X =2X - XiB, X, (12.41)
which is initialized by setting
Xo = oBp, (12.42)

where o is chosen so that 0 < o < 2/o; with o is the largest singular value of B,,.

For the full-rank matrices the iteration (12.41) converges to B;l . The number of
iterations is proportional to the logarithm of the condition number of the matrix B,
and, thus, is O(1). For the full-rank matrices the iteration (12.41) is self-correcting
and we use this property as described below.

The iteration (12.41) provides an O(N) algorithm to compute the inverse matrix
if By, B“ and all the intermediate matrices X, have a sparse representation in the
wavelet basis ([BCoR3], [BCoR2], [Aetal]). Since we know in advance that B!

p——
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FIGURE 12.3

Matrix B~! computed via iterative algorithm of this section with diagonal rescaling. Entries
with the absolute value greater than 10~ are shown black and the matrix verifies [ BB~' ||,
(BB —I|| =~ 107°.

is sparse in the wavelet basis (for a given accuracy €), we only need to maintain
sparsity of the intermediate matrices X;.

Since the iteration is self-correcting, we first compute the low-accuracy inverse
by removing all entries with absolute value less than a given threshold (e.g., 1072)
after each iteration. Once the iteration converges we improve the accuracy of
the inverse matrix by continuing the iteration and decreasing the threshold of
accuracy. The sparsity of the resulting matrix B;’ is illustrated in Figure 12.3.

Finally, to obtain B™!, we have

B! =PB,'P. (12.43)

We note that since the matrix P is a diagonal matrix, there is no loss of accuracy
in computing via (12.40) or (12.43), since only the operation of multiplication is
involved. In our particular case the multiplication is by the powers of 2 only and,
thus, no rounding errors are introduced.
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12.5 Various extensions

12.5.1 Preconditioning to compensate for variations in a

In Section 12.3 we assumed that the function a does not change significantly
over the interval (0, 1). If @ is such that the finite difference scheme in (12.9) is
appropriate for solving the two-point boundary value problem, then we rescale
(12.9) by multiplying the matrix of the system in (12.9) on both sides by the

diagonal matrix

ai-172 v Qi1 t Aiv12 . Aiv12 Vit = R fi
Vi1 — i i+l = ——,
ai—1a; ai V4iisi . Vai
where
Vi = Uj\/Q; 121,,N

This corresponds to considering the operator

=2 (a2
a(x) Ox x
instead of the operator £ in (12.7).
If a is sufficiently smooth, then we have

Jﬁli@-—HoW)
Valx — Ba(x) ’
_ 1 1
alx— 5 h)+a(x+ s h) _ 2+0(h2),
a(x)
and
a(x + %h) _ 9
a@alx+h) L+ 0G0

Thus, the matrix L corresponding to (12.45) may be written as

L =Ly +#°R,

i=

...

(12.44)

9N7

(12.45)

(12.46)

(12.47)

(12.48)

(12.49)

(12.50)

(12.51)




On wavelet-based algorithms 463

where
-2 1 0 0 0 O
1 -2 1 0 0 O
Lo=1| : e . (12.52)
o o o0 --- 1 -2 1
o 0 0 --- 0 1 2

We note that in computing entries of the matrix #’R via #*R = L — L one should
be careful to obtain a sufficient number of significant digits.
Given the operator L 1 we have

L' =Ly @+ ALy 'R)! (12.53)

and, therefore, we need to compute a+ thg IR)~!. Again we use the iteration
in Section 12.4 and note that if the largest singular value of the operator T=
—tha IR is less than one, then the iteration in Section 12.4 takes a particular
simple form since we have

a-n"'=[Ja+ T?). (12.54)
=0

12.5.2 Additional remarks

REMARK 12.2 Itis clear that the generalized inverse D! (which on the range of
the matrix D is the matrix B~! in Figure 12.3) plays a special role in our approach.
Therefore, we may compute this matrix in advance. Considering A in (12.13)
as a perturbation of D, we may use the iteration in Section 12.4 to compute the
inverse (similar to that in (12.53)). In fact, the matrix D! may be stored and
used in the nonstandard form [BCoR 1], which will result in additional efficiency
of computation. |

REMARK 12.3 Our approach uses an O(K?) finite-difference scheme in the
wavelet system of coordinates. We may use Richardson extrapolation to improve
the accuracy of the solution and, also, of the inverse operator. i

I

12.6 Wavelet-based adaptive Crank—Nicolson scheme

Let us now consider some of the implications of the fact that the Green'’s functions
of the elliptic two-point boundary -value problems. are available numerically as
sparse matrices. As an example, we consider the implicit Crank-Nicolson scheme
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to solve
u=Lu (12.55)

with the Dirichlet boundary conditions u(z, 0) = u(¢, 1).= 0 and the initial condition
u(0,x) = ug(x). Approximating (12.55) by a system of ordinary differential
equations, we obtain

du 1
= - - 2.
7 7 Lu, (12.56)

X

where the matrix L is given in (12.11) and &, is the step size in x-coordinate.

Applying trapezoidal rule to (12.56) (in time), we obtain the Crank-Nicolson
method

h
ut —u = 2—};2 (Lu™b + Lu®), (12.57)

X

where A, is the step size in time. We have -

h
(1 - %L) uh (1+ EéL) u®, (12.58)

a well known implicit scheme for solving (12.55).

In the standard Crank—Nicolson method the inverse matrix is never computed
since it is a dense matrix. Instead, one solves a tridiagonal linear system at each
time step.

We note that the matrix (I — (h,IZh)%)L)_l is sparse in the wavelet system
of coordinates and may be computed explicitly by a procedure similar to that
described in the previous sections. Thus, by converting (12.58) into the wavelet
basis, we obtain an explicit scheme by computing (I — (h,/ZhE)L)'l. We have

a4+ = ca®, (12.59)
where
C= (I M WLW*) B <1+ M WLW*> , (12.60)
283 212
& = Wu, (12.61)

and W denotes the matrix of the discrete wavelet transform. The matrix C is a
sparse matrix of the structure similar to that of matrices in Figures 12.2 and 12.3.

Such an approach applied to the higher order schemes might have serious
advantages. Also, the advantages of the conversion from an implicit to an explicit
scheme are apparent if the vector i is sparse in the wavelet system of coordinates.
In this case the number of operations per time-step is proportional to the number
of the significant entries of the vector i™.

The vectors i become more and more sparse in the wavelet system of co-
ordinates as n (time) increases since the oscillatory modes which correspond to
larger eigenvalues of the operator £ decay faster than those corresponding to the
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smaller eigenvalues. Thus, the speed of the computation via (12.59) is adaptable
to the regularity of the solution which is not the case for the standard scheme.

As an example let us consider computing the smallest eigenvalue of the operator
L. One of the ways to compute the smallest eigenvalue of the operator L is to
use (12.58) and renormalize the solution after each time-step. Only the modes
corresponding to the smallest eigenvalue will remain as a part of the solution
after several time-steps. We notice that the eigenvector which corresponds to
the smallest eigenvalue is smooth and nonoscillatory. Let us choose the initial
condition to be a constant vector. Since such a vector is sparse in the wavelet -
system of coordinates (in fact, it might be represented by just one number) and
since we know that the solution of (12.55) remains smooth and nonoscillatory, we
conclude that a time-step requires only O(1) operations.

We note that generalizing this approach to the multidimensional case and using
the Crank—Nicolson scheme with alternating directions, obtaining a fast method
for computing the smallest eigenvalues for the multidimensional elliptic operators
appears feasible.
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