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On Multiresolution Methodsin Numerical AnalysisGregory BeylkinAbstract. As a way to emphasize several distinct features of the mul-tiresolution methods based on wavelets, we describe connections betweenthe multiresolution LU decomposition, multigrid and multiresolution re-duction/homogenization for self-adjoint, strictly elliptic operators. Wepoint out that the multiresolution LU decomposition resembles a directmultigrid method (without W-cycles) and that the algorithm scales prop-erly in higher dimensions.Also, the exponential of these operators is sparse where sparsity is de�nedas that for a �nite but arbitrary precision. We describe time evolutionschemes for advection-di�usion equations, in particular the Navier-Stokesequation, based on using sparse operator-valued coe�cients. We pointout a signi�cant improvement in the stability of such schemes.1991 Mathematics Subject Classi�cation: 65M55, 65M99, 65F05, 65F50,65R20, 35J, 76D05Keywords and Phrases: multigrid methods, fast multipole method,wavelet bases, multiresolution analysis, multiresolution LU decompo-sition, time evolution schemes, exponential of operators, advection-di�usion equations1 IntroductionMultiresolution methods have a fairly long history in numerical analysis, goingback to the introduction of multigrid methods [10], [18] and even earlier [22]. Arenewed interest in multiresolution methods was generated recently by the develop-ment of wavelet bases and other bases with controlled time-frequency localization[23], [20], [13], [19], [12], [2], [1], etc.. The introduction of these new tools allowsus to relate numerical analysis with harmonic analysis and signal processing bythe fundamental need of an e�cient representation of operators and functions.It is useful to compare the wavelet approach with the multigrid method (MG)and the Fast Multipole Method (FMM). For most problems the wavelet approach,FMM, and MG provide the same asymptotic complexity. The di�erences aretypically in the \constants" of the complexity estimates. These di�erences will,most likely, diminish in the future.Documenta Mathematica � Extra Volume ICM 1998 � III � 481{490



482 Gregory BeylkinA typical MG is a fast iterative solver based on a hierarchical subdivision.Hierarchical subdivision is also used in FMM which was initially proposed forcomputing potential interactions [21], [17]. This algorithm requires order N oper-ations to compute all the sumspj =Xi6=j qiqjjxi � xj j ; where xi 2 R3 i; j = 1; : : : ; N; (1)and the number of operations is independent of the con�guration of charges. In theFMM, the reduction of the complexity of computing the sums in (1) from orderN2to �N log �, where � is the desired accuracy, is achieved by approximating the far�eld e�ect of a cloud of charges located in a box by the e�ect of a single multipoleat the center of the box.Although both MG and FMM have been extended well beyond their originalapplications, neither of these methods use the notion of bases in their developmentand, speci�cally, orthonormal bases1. On the conceptual level using bases makes iteasier to consider e�cient representations of functions and operators that handlesmooth, oscillatory, and scaling behavior.In particular, to emphasize several distinct features of the wavelet approach,we consider two topics. First, we describe connections between the multiresolutionLU decomposition, MG, and multiresolution reduction/homogenization for self-adjoint, strictly elliptic operators. Second, we describe the e�ects of computing theexponential of such operators on numerical properties of time evolution schemesfor advection-di�usion equations.The essence of the �rst topic is that multiresolution LU decomposition (theusual LU decomposition interlaced with projections) is equivalent to the directMG, i.e., a MG without W-cycles. The reason for the absence of W-cycles is thaton every scale we construct equations for the orthogonal projection of the truesolution. Once these equations are solved, there is no need to return to a coarserscale to correct the solution (which is the role of W-cycles in MG). Moreover,equations obtained in this manner on coarser scales are of interest by themselves,since they can be interpreted as \homogenized" or reduced equations, leading to(numerical) multiresolution reduction and homogenization.The essence of the second topic is that we can drastically improve propertiesof time evolution schemes for advection-di�usion equations by using the exponen-tial of operators. As it turns out, for self-adjoint, strictly elliptic operators L theexponential exp (�tL) is sparse in wavelet bases (for a �nite but arbitrary preci-sion) for all t � 0. This observation makes the construction of exp (�tL) feasiblein two and three spatial dimensions. Given a proper choice of basis and severaladditional algorithms, we are led to adaptive numerical schemes for the solutionof advection-di�usion equations [8].1We note that the representation of functions via their values and via coe�cients in an ex-pansion are closely related. In fact if one uses interpolating bases functions then there is a wayto simplify this relation (see [3]).Documenta Mathematica � Extra Volume ICM 1998 � III � 481{490



On Multiresolution Methods in Numerical Analysis 4832 Multiresolution Direct SolversDirect solvers are not used for problems in multiple dimensions since the standardLU decomposition will �ll most of the matrix and, thus, render the method in-e�cient. This is even without considering additional di�culties due to the highcondition numbers typical in these problems. It turns out that both di�cultiescan be overcome for self-adjoint, strictly elliptic operators by using wavelet basesand multiresolution LU decomposition [7], [16].As usual, we consider multiresolution analysis (MRA), a chain of subspaces: : : � V2 � V1 � V0 � V�1 � V�2 � : : :such that \j Vj = f0g and[j Vj = L2(Rd):Let the subspace Vj be spanned by an orthonormal basis formed by the tensorproduct of scaling functions f�jk(�) = 2�j=2�(2�j � �k)gk2Z, where � satis�es thetwo-scale di�erence equation (see e.g. [13] for details). Let us denote by Wj theorthogonal complement of Vj in Vj�1, Vj�1 = Vj �Wj. We use Pj and Qj todenote the projection operators onto Vj andWj . If x 2 Vj , we write sx = Pj+1xand dx = Qj+1x, where sx 2 Vj+1 and dx 2Wj+1.Given a bounded linear operator S on L2(Rd), let us consider its projectionSj on Vj , Sj = PjSPj and represent the operator Sj as a (possibly in�nite)matrix in that basis. With a slight abuse of notation, we will use the same symbolSj to represent both the operator and its matrix. Since Vj = Vj+1 �Wj+1, wemay also write Sj : Vj ! Vj in a block formSj = � ASj BSjCSj TSj � : Vj+1 �Wj+1 ! Vj+1 �Wj+1; (2)where ASj = Qj+1SjQj+1, BSj = Qj+1SjPj+1, CSj = Pj+1SjQj+1, andTSj = Sj+1 = Pj+1SjPj+1. Each of the operators may be considered as a matrixand in the matrix form the transition from Sj in (2) to � ASj BSjCSj TSj � requiresapplication of the wavelet transform. We refer to ASj , BSj , CSj and TSj as theA, B, C, and T blocks of Sj .Consider a bounded linear operator Sj : Vj ! Vj and a linear equationSjx = f; (3)which we may write as� ASj BSjCSj TSj �� dxsx � = � dfsf � : (4)Formally eliminating dx from (4) by substituting dx = A�1Sj (df � BSjsx)(Gaussian elimination) yields(TSj �CSjA�1Sj BSj )sx = sf �CSjA�1Sj df : (5)Documenta Mathematica � Extra Volume ICM 1998 � III � 481{490



484 Gregory BeylkinWe call (5) the reduced equation, and the operatorRSj = TSj �CSjA�1Sj BSj (6)the one-step reduction of the operator Sj . The right-hand side of (6) is also knownthe Schur complement of the block-matrix � ASj BSjCSj TSj �.Note that the solution sx of the reduced equation is exactly Pj+1x, the projec-tion of the solution of the original equation in Vj+1. The solution of the reducedequation is the same on the subspace Vj+1 as the solution of the original equa-tion (3). Once we have obtained the reduced equation, it may be reduced againto produce an equation on Vj+2. Likewise, we may reduce n times to producean equation on Vj+n the solution of which is the projection of the solution of(3) on Vj+n. We note that in the �nite-dimensional case, the reduced equation(5) has 1=2d as many unknowns as the original equation (3). Reduction, there-fore, preserves the coarse-scale behavior of solutions while reducing the number ofunknowns.The critical questions are: (i) can we control the sparsity (for any �nite butarbitrary precision) of the matrix CSjA�1Sj BSj? and, (ii) can we repeat the reduc-tion step for RSj? In MG literature the Schur complement appears in a number ofpapers but these questions were not answered. In [7] and [16] these questions wereanswered a�rmatively for a �nite number of reduction steps. The key propertythat makes this a�rmative answer possible is the vanishing moments property ofthe basis functions.The sparsity (for any �nite but arbitrary precision) of the multiresolution LUfactorization does not depend on dimension. This is in a sharp contrast with theusual practice, where LU factorization is not recommended as an e�cient approachin problems of dimension two or higher. For example, if we consider the Poissonequation, then LU decomposition is not considered as a practical option since the�ll-ins will yield dense LU factors.A close examination of the algorithm in [16] reveals a striking resemblanceof the multiresolution LU decomposition coupled with the multiresolution forwardand backward substitution to a MG technique. The important di�erence, however,is that there are no W-cycles.As described above, reduction is an algebraic procedure carried out on ma-trices over a �nite number of scales. It relies on the explicit hierarchy of scalesprovided by the MRA to algebraically eliminate the �ne-scale variables, leavingonly the coarse-scale variables and can be cast as a multiresolution reduction pro-cedure for the corresponding ODEs and PDEs [11]. The classical homogenizationof partial di�erential equations is the process of �nding \e�ective" coe�cients. Inclassical homogenization, the �ne scale is associated with a small parameter, andthe limit is considered as this small parameter goes to zero. In dimension one aconnection has been established [15],[14] between multiresolution reduction andclassical homogenization (see e.g. [4]). It is important to point out that reductionapproximately preserves small eigenvalues of elliptic operators, and the accuracyof this approximation depends on the order of the wavelets [7].Documenta Mathematica � Extra Volume ICM 1998 � III � 481{490



On Multiresolution Methods in Numerical Analysis 4853 Sparsity of Exponential OperatorsIf L is a self-adjoint, strictly elliptic operator then the operator eLt is sparse inwavelet bases (for a �nite but arbitrary precision) for all t � 0. This observationhas a signi�cant e�ect on the methods for solving PDEs.Let us consider a class of advection-di�usion equations of the formut = Lu+N (u); x 2 
 � Rd; (7)where u = u(x; t), x 2 Rd, d = 1; 2; 3 and t 2 [0; T ] with the initial conditions,u(x; 0) = u0(x); x 2 
; (8)and the linear boundary conditionsBu(x; t) = 0; x 2 @
; t 2 [0; T ]: (9)In (7) L represents the linear and N (�) the nonlinear terms of the equation, re-spectively.Using the semigroup approach we rewrite the partial di�erential equation (7)as a nonlinear integral equation in time,u(x; t) = e(t�t0)Lu0(x) + Z tt0 e(t��)LN (u(x; �)) d�; (10)and describe a new class of time-evolution schemes based on its discretization.A distinctive feature of these new schemes is exact evaluation of the contribu-tion of the linear part. Namely, if the nonlinear part is zero, then the schemereduces to the evaluation of the exponential function of the operator (or matrix)L representing the linear part.We note that the incompressible Navier-Stokes equations can be written inthe form (7). Let us start with the usual form of the Navier-Stokes equations forx 2 
 � R3, ut = ��u� (u1@1 + u2@2 + u3@3)u�rp; (11)@1u1 + @2u2 + @3u3 = 0; (12)u(x; 0) = u0; (13)where p denotes the pressure and u = 0@ u1u2u3 1A, x = 0@ x1x2x3 1A and @k = @@xk . Inaddition, we impose the boundary conditionu(x; t) = 0 x 2 @
; t 2 [0; T ]; (14)Let us introduce the Riesz transforms which are de�ned in the Fourier domain asd(Rjf)(�) = �jj�j bf(�); j = 1; 2; 3; (15)Documenta Mathematica � Extra Volume ICM 1998 � III � 481{490



486 Gregory Beylkinwhere bf denotes the Fourier transform of the function f . It is not di�cult to showthat the projection operator on the divergence free functions (the Leray projection)may be written with the help of the Riesz transforms,P = 0@ I 0 00 I 00 0 I 1A�0@ R21 R1R2 R1R3R2R1 R22 R2R3R3R1 R3R2 R23 1A : (16)Applying the divergence operator to (11), we obtain ��p = P3k;l=1 @k@lukuland an expression for pressure in terms of the Riesz transforms, p =�P3k;l=1 RkRl(ukul): Substituting the expression for the pressure into (11) andtaking into consideration that the Riesz transforms commute with derivatives and,moreover, Rk@l = Rl@k, we obtainut = ��u�P( 3Xm=1um@mu); (17)instead of (11) and (12). Equations (17) are now in the form (7), where L = ��and N (u) = �P(P3m=1 um@mu). The transformation from (11) and (12) to (17)is well known and appears in a variety of forms in the literature. Here we followeda derivation presented by Yves Meyer at Summer School at Luminy in 1997.The apparent problem with (17) for use in numerical computations is thatthe Riesz transforms are integral operators (which makes (17) into an integro-di�erential equation). Let us point out that the presence of the Riesz transformsdoes not create serious di�culties if we represent operators Rj ; j = 1; 2; 3 in awavelet basis with a su�cient number of vanishing moments (for a given accu-racy). The reason is that these operators are nearly local on wavelets, and thus,have a sparse representation. This approximate locality follows directly from thevanishing moments property. Vanishing moments imply that the Fourier trans-form of the wavelet and its several �rst derivatives vanish at zero, and therefore,the discontinuity of the symbol of the Riesz transform at zero has almost no e�ect.The precise statements about such operators can be found in [6] and [5].Finally, in rewriting (17) as ut = Lu + N (u); we incorporate the boundaryconditions into the operator L. For example, u = L�1v means that u solvesLu = v with the boundary conditions Bu = 0. Similarly, u(x; t) = eLtu0(x)means that u solves ut = Lu, u(x; 0) = u0(x) and Bu(x; t) = 0.Computing and applying the exponential or other functions of operators in theusual manner typically requires evaluating dense matrices and is highly ine�cientunless there is a fast transform that diagonalizes the operator. For example, if Lis a circulant matrix, then computing functions of operators can be accomplishedusing the FFT. It is clear that in this case the need of the FFT for diagonalizationprevents one from extending this approach to the case of variable coe�cients.In the wavelet system of coordinates computing the exponential of self-adjoint,strictly elliptic operators always results in sparse matrices, and therefore, using theexponential of operators for numerical purposes is an e�cient option [8].Further development of the approach of [8] can be found in [9], where issuesof stability of time-discretization schemes with exact treatment of the linear partDocumenta Mathematica � Extra Volume ICM 1998 � III � 481{490



On Multiresolution Methods in Numerical Analysis 487(ELP) schemes are considered. The ELP schemes are shown to have distinctlydi�erent stability properties as compared with the usual implicit-explicit schemes.The stability properties of traditional time-discretization schemes for advection-di�usion equations are controlled by the linear term and, typically, these equationsrequire implicit treatment to avoid choosing an unreasonably small time step. Asit is shown in [9], using an explicit ELP scheme, it is possible to achieve stabilityusually associated with implicit predictor-corrector schemes.If an implicit ELP scheme is used, as it is done in [8], an approximation isused only for the nonlinear term. This changes the behavior of the corrector stepof implicit schemes. The corrector step iterations of usual implicit schemes foradvection-di�usion equations involve either both linear and nonlinear terms oronly the linear term. Due to the high condition number of the matrix representingthe linear (di�usion) term, convergence of the �xed point iteration requires avery small time step, making the �xed point iteration impractical. Implicit ELPschemes do not involve the linear term and, typically, the �xed point iteration issu�cient as in [8].We would like to note, that (10) in e�ect reduces the problem to an ODE{typesetup, and for that reason, a variety of methods can be used for its solution. Wepresent operator valued coe�cients of multistep ELP schemes and our main pointis that these coe�cients can be represented by sparse matrices and applied in ane�cient manner.Let us consider the function u(x; t) at the discrete moments of time tn =t0 + n�t, where �t is the time step so that un � u(x; tn) and Nn � N (u(x; tn)).Discretizing (10) yieldsun+1 = elL�tun+1�l +�t 
Nn+1 +M�1Xm=0 �mNn�m! ; (18)whereM+1 is the number of time levels involved in the discretization, and l �M .The expression in parenthesis in (18) may be viewed as the numerical quadraturefor the integral in (10). The coe�cients 
 and �m are functions of L�t. In whatfollows we restrict our considerations to the case l = 1. We observe that thealgorithm is explicit if 
 = 0 and it is implicit otherwise. Typically, for a givenM , the order of accuracy is M for an explicit scheme and M + 1 for an implicitscheme due to one more degree of freedom, 
.For l = 1 we provide Tables 1 and 2 for M = 1; 2; 3 with expressions for thecoe�cients of the implicit (
 6= 0) and the explicit (
 = 0) schemes in terms ofQk = Qk(L�t), where Qk(L�t) = eL�t � Ek(L�t)(L�t)k ; (19)and Ek(L�t)) = k�1Xl=0 (L�t)ll! (20)Documenta Mathematica � Extra Volume ICM 1998 � III � 481{490



488 Gregory BeylkinM 
 �0 �1 �21 Q2 Q1 �Q2 0 02 12Q2 +Q3 Q1 � 2Q3 Q3 � 12Q2 03 13Q2 +Q3 +Q4 Q1 + 12Q2 � 2Q3 � 3Q4 Q3 �Q2 + 3Q4 16Q2 �Q4Table 1: Coe�cients of implicit ELP schemes for l = 1, where Qk = Qk(L�t)).M �0 �1 �21 Q1 0 02 Q1 +Q2 �Q2 03 Q1 + 3Q2=2 + Q3 �2(Q2 +Q3) Q2=2 + Q3Table 2: Coe�cients of explicit ELP schemes for l = 1, where Qk = Qk(L�t).In Tables 1 and 2 we have presented examples of the so-called \bare" coe�cients.Modi�ed coe�cients [8] di�er in high order terms: these terms do not a�ect the or-der of accuracy but do a�ect the stability properties. Modi�ed coe�cients dependon a particular form of the nonlinear term.Let us describe a method to compute operators Q0, Q1, Q2, . . . . withoutcomputing (L�t)�1. In computing the exponential, Q0, we use the scaling andsquaring method which is based on the identityQ0(2x) = (Q0(x))2 : (21)First we compute Q0(L�t2�l) for some l chosen so that the largest singular valueof L�t2�l is less than one. This computation is performed using the Taylorexpansion. Using (21), the resulting matrix is then squared l times to obtain the�nal answer. In all of these computations it is necessary (and possible) to removesmall matrix elements to maintain sparsity, and at the same time, maintain apredetermined accuracy.A similar algorithm may be used for computing Qj(L�t), j = 1; 2; : : : for any�nite j. Let us illustrate this approach by considering j = 1; 2. It is easy to verifythat Q1(2x) = 12 (Q0(x)Q1(x) + Q1(x)) ; (22)Q2(2x) = 14 (Q1(x)Q1(x) + 2Q2(x)) : (23)Thus, a modi�ed scaling and squaring method for computing operator-valuedquadrature coe�cients for ELP schemes starts by the computation of Q0(L�t2�l),Q1(L�t2�l) and Q2(L�t2�l) for some l selected so that the largest singular valueof all three operators is less than one. For these evaluations we use the Taylorexpansion. We then proceed by using identities in (21), (22) and (23) l times tocompute the operators for the required value of the argument.As an example consider Burgers' equationut + uux = �uxx; 0 � x � 1; t � 0; (24)Documenta Mathematica � Extra Volume ICM 1998 � III � 481{490
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