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Abstract. Formulae involving double integrals over spheres arise naturally in inverse 
scattering problems since the scattered data are measured in the space R x Sz x Sz.  In this 
paper we derive a relation between differential forms on the space S"' x S"-' ,  and those on 
the space Z x S n-2 x S where Z is a real interval. Specifically, 

d( dq = sin"' 6 d6  d$ dv 

(t, 7) E S '-' x S '-' and (6, $, U) E Z x S"-2 x S"-'. This allows us to derive the results of 
John relating the iterated spherical mean of a function to its spherical mean in a simple way; 
to obtain new inversion formulae for the Fourier and Radon transforms; to extend formulae 
for linearised inverse quantum scattering and diffraction tomography to the multifrequency 
case; and also to establish a relation between multifrequency diffraction tomography and 
seismic migration algorithms. 

1. Introduction 

Double integrals over spheres were investigated by John (1955) who derived a relation 
between the spherical mean of a function and the iterated spherical mean. Devaney 
(1 982a, b) derived certain inversion formulae in two- and three-dimensional spaces which 
are in the form of double integrals over spheres. This was then generalised by Beylkin 
(1983a, b), who used John's results to obtain an inversion formula for the Fourier 
transform in terms of an integral over S"' x S"-'. Inversion formulae of this type are used 
in linearised inverse scattering problems and, in particular, provide a mathematical basis 
for diffraction tomography (Devaney and Beylkin 1984, Beylkin and Devaney 1985). 

Double integrals over spheres arise naturally in typical inverse scattering problems 
where one point on the unit sphere represents the unit normal of an incident plane wave 
and a second point on the sphere represents the scattering direction at which a 
measurement is made. Ideally the experiment is repeated for all possible directions of 
incidence and scattering, and inversion formulae naturally involve integration over these 
spheres of directions. When frequency varies in such an experiment it is natural to integrate 
over this variable as well (or the dual time variable) giving formulae involving integration 
over R x S 2  x S 2 .  

In the lemma of 8 2 we derive a differential relation between the volume elements on 
Sn-' x S"' and a space which can be described as [0, z] x S "-' x F2. Using this relation 
and a few simple variants we derive a number of inversion formulae and describe their 
application. First, we give a simple derivation of the results of John (1955). We then 
proceed to obtain in § 3 certain inversion formulae for the Fourier transform and the 
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Radon transform. In 9 4 using results of 5 3 we derive some formulae in inverse scattering 
theory extending results of Devaney (1982a). We then discuss diffraction tomography 
where the inversion formula of 6 3 yields a generalisation to what can be called 
multifrequency diffraction tomography. The same inversion formula is also used in the 
derivation of migration algorithms used in inverting seismic prospecting data (Beylkin and 
Burridge 1987a, b), thus establishing a relationship between multifrequency diffraction 
tomography and seismic migration. 

2. Relation between differential forms on spheres 

Let (, q, v be three coplanar unit vectors in R n  and suppose that 

A ( + p q =  r v  (2.1) 
where A > p  > 0 are fixed positive constants and r =  In( +pq l  is a scalar function of A, p, ( 
and q:  

r 2 = ~ 2 + 2 ~ ~ c o s ~ + p 2 2 .  (2.2) 

c o s a = ( . v  c o s p = q  * v c o s B = ( . q  (2.3) 

Let 

so that 

a + p = 9 .  

Then it is clear that 

a = 4 6 )  P = P(9). 

Also, from (2.2) we have 

r d r =  -Ap  sin 9 de. 

We shall prove the following. 

Lemma. Consider differential forms d(, dq, dv on unit (E- 1)-dimensional spheres over 
which the corresponding vectors vary. Then 

d t  dy = sinnp2 0 d 0  d e  dv (2.7) 
where 1/1 varies over an ( n  - 2)-dimensional sphere and 9 E [0, n] .  The unit vector 1/1 lies in 
the plane of (, q, v and is perpendicular to v : 

<=cosav--sina1/1 

q=cos  ,!l v + sin P e. 
Once we have (2.7) other related formulae follow easily. Thus from (2.7) and (2.6) 

follows 

1 
d( dq  = -- 9 r d r  d1/1 dv (2.9) 

AP 

where sin 9 is expressible in terms of r (see (2.2)) and r E [A-p ,  A +,U]. It is natural to 
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normalise r by % + p. Thus we may define p by 

r=(% +P)P dr=(I+p)ddp 

to obtain the equivalent relation 

3 

(2.10) 

(2.11) 

where y =  (% -p ) / (% +,U). 

Proof of lemma. Let @ be a unit vector perpendicular to v and lying in the plane of <, q. 
Choose coordinates so that v lies along the x, axis, and <, v ,  v, @ lie in the ( x ~ - ~ ,  x,J plane. 
Then from (2.8) it is clear that 

f o r k =  1 , .  . , , n - 2  
d<k= COS U dVk - Sin U d@k 
dqk = Cos p dUk + sin p d@k 

(2.12) 

and so 

d& dqk = Sin 8 dVk d@k f o r k =  1 , .  . . , n-2 .  

Here we have used (2.4), (2.12) and the addition formula for sine. 

(2.13) 

In the (x~-~, x,) plane let us denote by d e ,  dv', dq', d@' the infinitesimal angular 
displacements of those vectors. Then 

d e  = dv' - d a  

dq' = dv' + d p  

and so 

d c  dv'= dv'(da + dp)  = dv' de .  

Thus, on combining (2.13) and (2.15) we have 

d t  d v =  dv d@ 8 d9 

where 

d<= d<1 . dm-2 d e  

d q = d q l  . . . dvn-2 dv' 

dv = d v l .  . . dvn-Z dv' 

d@/= d@, . . . d@n-2. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

3. Applications 

Iterated spherical means 

Following John (1955, p 78)  let us consider the iterated spherical mean of a function f :  
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where a, = 2nn"/r(;n) is the surface area of the ( n  - 1) sphere. By (2.9) this is 
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Hence, integrating I,/I over S n-2, we have 

M ( x ,  A , P ) = y  *"-I f+' Ln-] f ( x  + rv) dv 8 r dr. (3.3) 
A P a n  ~ - p  

Now the area of the triangle with sides A, ,U, r and angle 8 opposite r is 

aH(r) $,U sin e = +[(,I + p + r) (A + ,U - A) ( ,U + r - A) ( r  + A -,U)] (3 A) 

and so 

where 

1 

is the ordinary spherical mean. Equation (3.5) is formula (4 .9~ )  of John (1955). 

Integral ouer all of space 

For future applications it is useful to express an integral over R" in terms of an integral 
over R x S"' x S"-'. Thus consider 

Then 

where 

Now using (2.11) we have 

(3.7) 

(3.8) 

(3.10) 
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where e and q are defined as in the lemma. Using (3.10) in (3.8) and setting r = p ( A  +,U) we 
have 

where 

Next set 

to get 

r=lAe+Ptll* 

Ip l= rk  d lp l  = r  dk 

where the integral over k has been extended to the whole real axis and 

Sinn-3 8 = [ 1 - (e . ,#](n-3)/2, 

Inverse Fourier transform on the space R x S"' x S 
We can now formulate the following. 

Theorem 1 .  Let g be a function on R" and 2 its Fourier transform. Then 

where W is an arbitrary function such that 

Jo' W(P9 Y )  d p =  1 

and where a,, = 2n"/'/T(%n) is the surface area of the unit sphere in R". 

(3.1 1) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Theorem 1 can be generalised further and leads to 

Theorem 2. Let g be a function on R" and 2 its Fourier transform. Let A =A(y )  and p =  
p ( y )  be two positive functions on R". Then 
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where 

and 

Here, for each y ,  W(p,  y )  is an arbitrary function of p such that 

(3.19) 

(3.20) 

(3.21) 

Theorem 1 follows from theorem 2 by setting L(y)  =p(y)  = 1. 

Proof of theorem 2. The inversion formula for the Fourier transform is an integral over R n :  

(3.22) 

Now use (3.14) with 

and set C= 1. Notice that since y is only a parameter in (3.23) we may take f ,  W, A, p and 
y to depend upon y in (3.7)-(3.14). Such dependence is explicitly indicated in 
(3.1 6)-( 3.2 1). 

Remark 1. Formulae (3.16) and (3.18) can be modified to have integration with respect to 
k over the positive part of the k axis; for example, instead of (3.18) we obtain 

Remark 2. To clarify the role of the function W, let us restrict integration over k to an 
interval [kmin, k,,,] and compute 

(3.25) 
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Using (2.1 l), (3.15), (3.19) and integrating over I,?, we have from (3.25) 

Changing the order of integration in (3.26) we arrive at 

1 l.1 

(3.26) 

(3.27) 

where 

g,(.Y> = - dP $(P) exP(iP ' Y>. (3.28) 

Formula (3.27) can be interpreted as a superposition of band-limited reconstructions g,. 
Thus, the choice of W determines the spatial frequency content of the final result gB. If 
kmin = 0 and k,,, = 00 it is easy to see that gB(Y) = g ( y ) .  

(2;rr)" ' J  PG +P))kmin <IPI<PG +P)kmax 

Relation to the Radon transform. Let us point out the relation of (3.16) and (3.18) to the 
Radon transform. We define the Radon transform on the space R x S"-' x S"-' as follows 

4t ,  r, r>=(Rg) ( t ,  r, r ) = j  g(x )d[ t - (A t+pv)  ' XI b. 
Rn 

(3.29) 

When defined in this way U contains redundant information. Relations (3.16) and (3.18) 
allow us to invert this transform directly. We have 

Let us define the backprojection operator R * as 

where b is described in (3.19). Also let us define the one-dimensional convolutional 
operator K as given by 

(Kh)( t )=j"  K(t-t ')h(t ')dt '  
- W  

where 

(3.32) 

(3.33) 

The operator K in spaces of odd dimension is just the operator of differentiation of order 
n-  1. In spaces of even dimension in addition to differentiation it contains the Hilbert 
transform. 
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Given the definitions of the operators R* and K we substitute (3.30) into (3.18) to 
obtain 

g(v> = (R *KU)(Y) (3.34) 

the inversion formula for the Radon transform defined in (3.29). 

4. Inverse scattering in the Born approximation 

The inverse Fourier transform on the space R x S"-' x S"' as described in theorem 1 has 
a straightforward application to the inverse scattering problem in the Born approximation. 
In fact, this was one of the problems that motivated the study of such integrals in the first 
place. Indeed, the scattering data are measured in the space R x S 2  x S2, where R is the 
frequency domain (or time domain, depending on a particular application) and unit spheres 
represent incident and scattered directions. 

Consider the three-dimensional Lippmann-Schwinger integral equation describing 
quantum-mechanical scattering of a plane wave by a potential V, 

where the potential V is such that for large 1 x 1 the solution of (4.1) has the asymptotic 
behaviour 

where q =x/l x I and A (k ,  5, q)  is the scattering amplitude. Given Y(k, (, x) satisfying (4. l), 
A (k ,  t, q)  can be written as 

Usually one can measure only iA(k,  (, q )  1 2 ,  the differential cross section, but occasionally 
A itself can be measured in actual experiments. The inverse problem consists in finding the 
potential, given the scattering amplitude. It is also of interest to see what can be recovered 
if only the differential cross section is measured. 

To linearise this inverse problem we use the Born approximation which amounts to 
replacing the wavefunction Y ( k ,  t, x) by the incident wavefunction exp(ik(. x). We then 
obtain from (4.3) a linear relation between the potential and the scattering amplitude, 

1 
A ( k ,  5 ,q)  = -- dx exp( - ikq x) V(x) exp(ik( . x) = - - P(kq - kO. (4.4) 471 J' 471 

Similarly, within the Born approximation, 

where 0 is the Fourier transform of the so-called interatomic distance function, 
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The validity of the Born approximation in the context of the quantum-mechanical 
scattering can be justified under the assumption of smallness of the potential or for high 
energies (frequencies) for a given potential. 

Our inversion formula provides a direct reconstruction of the potential and the inter- 
atomic distance function for the linearised inverse problem. Indeed, applying theorem 1 
specialised to dimension n = 3 (see also 5 3, remark 1) with g r  V and using (4.4) we have 

and again with g Q and using (4.5) we have 

where W is an arbitrary function such that 

(4.9) 

These formulae are important generalisations of inversion formulae described by 
Devaney (1982a), and their importance stems from the fact that reconstruction is 
performed using all the available frequencies while the results in Devaney (1 982a) are 
single-frequency reconstructions. The formulae derived here are also related to the trace- 
type formulae, but these results will be described elsewhere. 

The arbitrary function W can be used to emphasise different parts of the spectrum of 
spatial frequencies in the reconstruction provided the scattering amplitude is measured 
over an interval of energies (see 8 3, remark 2) and, also, can be used in practice to cut off 
energies with poor signal-to-noise ratios. The simplest choice, however, is to set W= 1. 

A scattering experiment usually produces data for a single incident direction and a 
sequence of such experiments usually accounts for all the data collected. The order of 
integration in (4.7) and (4.8) can be changed to accommodate this. Thus the most natural 
way of accomplishing it would be to make the last (outer) integration that over the incident 
direction, so that for each of the experiments there is a partial reconstruction and the last 
step is to average such partial reconstructions. 

Multifrequency diffraction tomography and migration algorithms 

More delicate use of the results decribed in theorems 1 and 2 can be made in the linearised 
inverse scattering problem in acoustics and elasticity. In fact, the generalisation given by 
theorem 2 specifically addresses the elastic case where A # p  because P and S waves travel 
at different speeds (see Beylkin and Burridge 1987a, b). Also complications arise for two 
other reasons. First, it is preferable to solve the inverse problem in acoustics and elasticity 
for point sources rather than plane waves since that is how most of the experiments are 
carried out. Second, it is preferable to solve the inverse problem as a problem of finding a 
perturbation from a known spatially varying medium. This is because in acoustics and 
elasticity the single scattering approximation is valid only for small perturbations. 
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Both of these complications (as compared with the quantum-mechanical inverse 
scattering problem) have been resolved. The problem with point sources was reduced more 
or less routinely to the problem with incident plane waves. The solution in a variable 
background medium can be obtained in a systematic way if we restrict ourselves to 
reconstructing discontinuities of the perturbations. In this case the theory of pseudo- 
differential operators allows us to reduce the equations to a point where theorem 1 or 2 
can be used (see Beylkin 1985). The derivation of migration algorithms using theorems 1 
and 2 for the reconstruction of several parameters in acoustics and elasticity will appear 
separately (Beylkin and Burridge 1987a, b). 

In the context of ultrasound diffraction tomography, as described in Devaney and 
Beylkin (1984) and Beylkin and Devaney (1985), the plane-wave scattering amplitude is 
expressed as an integral over point sources and receivers which are located on arbitrary 
surfaces surrounding the region of interest. Within the linearised theory the plane-wave 
scattering amplitude is related to the unknown perturbation via an expression similar to 
(4.4). Therefore, it is just a matter of using the inversion formulae of theorems 1 and 2 
instead of inversion formulae for fixed frequency to obtain reconstruction formulae of what 
can be called multifrequency diffraction tomography. It is then clear that multifrequency 
diffraction tomography and migration in exploration seismology are essentially the same 
algorithms if understood through theorems 1 and 2 .  

References 

Beylkin G 1983a The fundamental identity for iterated spherical means and the inversion formula for 

- 1983b Iterated spherical means in linearised inverse problems Con$ on Znuerse Scaftering: Theory and 

- 1985 Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalised 

Beylkin G and Burridge R 1987a Multiparameter inversion for acoustic and elastic media Expanded Abstract, 

- 1987b Linearised inverse scattering problem of acoustics and elasticity, in progress 
Beylkin G and Devaney A J 1985 Mathematical framework of diffraction tomography Research Note 

Devaney A J 1982a Inversion formula for inverse scattering within the Born approximation Opt. Lett. 1 11 1-2 
- 1982b A filtered backpropagation algorithm for diffraction tomography Ultrasonic Imaging 4 336-50 
Devaney A J and Beylkin G 1984 Diffraction tomography using arbitrary transmitter and receiver surfaces 

John F 1955 Plane Waves and SphericalMeans (New York: Interscience) 

diffraction tomography and inverse scattering J.  Math. Phys. 24 1399-400 

Applicafions ed. J B Bednar et a1 (Philadelphia: SIAM) 

Radon transform J .  Math. Phys. 26 99-108 

57th Ann.  Int. Meeting of the Society of Exploration Geophysicists, New Orleans 

(Ridgefield, CT:  Schlumberger-Doll Research) 

Ultrasonic Imaging 6 181-93 


