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Ahstract. We considcr the inverse scattering problem for the w‘ivc cquation a i th  variahle 
speed where the region of interest is probed with waves emanating from point sources. We 
obtain ii three-dimensional trace-type formula, which gives the unknown speed in terms o f  
data and the interior wavefield. 

1 .  Introduction 

In this paper we consider the inverse scattering problem for the wave equation with 
variable speed and incident fields generated by point sources. The paper follows the 
lines of Rose and Cheney [l],  in which the incident fields were plane waves; see also 

Two special features of our work are the following. First, we obtain a theory which 
applies when the wavefield is known on a surface surrounding the scatterer, this 
surface possibly being near the scatterer. Second, the theory simplifies because the 
waves we consider have convenient support properties. 

This paper is organised as follows. In $ 2  we derive an inverse scattering equation 
that relates the data to the wavefield. In $ 3  we derive a relation (in the zero-frequency 
limit) relating the unknown speed to the wavefield. We then discuss support proper- 
ties and use them to derive a three-dimensional trace-type formula, which expresses 
the unknown speed in terms of data and the interior wavefield. 

[ 2-41, 

2. The inverse scattering equation 

We consider the reduced wave equation with a point source: 

[ V ’ + k W ( x ) ] G ( k , x , y )  = 6 ( x - y ) .  (2.1) 
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Here x and y are points in R’, k is a real scalar, and d is the three-dimensional delta 
function. The index of refraction n(x) we assume to be a positive, bounded, real- 
valued function which is identically one outside some bounded region 52. 

We are interested in particular solutions of (2.1) which we specify with the help of 
the functions 

G:(k, x) = - (4xIxI)-’ exp( k iklxl) 

which satisfy 

(V2+k?)GI; - (k ,x -y)=i ) (x -y) .  (2.2 I ) 

We now specify solutions G+ and G- of (2.1) as solutions of the integral equations 

C’(k,  x, y )  = G,(k, x - y )  + G,T(k, x - z)k”(z)G’(k, 2 .  y )  dz (2.3 i.) 

where V =  1 - n?. 
There are two techniques for showing that (2.3 +) and (2.3 - )  each have unique 

solutions. One technique [5]  shows that for almost every k ,  (2.3) has a :mique solution 
with GIV/” in L’. Another technique [6], which uses the limiting absorption principle. 
shows that for every k ,  (2.3) has a unique solution in a certain weighted Sobolev 
space. Both these techniques apply in the present case when V is bounded and has 
compact support. 

Two relations following from (2 .3)  will be needed in $ 4: first, that G- is the 
complex conjugate of G’, and second 

G+( - k ,  x, y )  = G - ( k ,  x ,  y ) .  (2.4) 

The k dependence of G is not needed for the remainder of $2;  hence we will 
suppress k until 03. We note the symmetry of the Green function G(x, y )  = G(y, x )  

The inverse scattering problem that we consider is to determine V ( x )  from 
scattering data. The particular data we use are measurements of G+(x ,  y )  for x, y o n  
aL2 and for all k .  This corresponds to putting point sources and receivers on dR.  If aSZ 
is close to the support of V ,  the data contain ‘near-field’ information. 

The following theorem gives an ‘inverse scattering equation’ for this problem. I t  is 
the point-source analogue of an equation in [3] .  

(see, e.g. ,  [ 5 ] ) .  

Theorem 1. Suppose n2(x)  is positive, real-valued, and has two continuous deriva- 
tives. Assume n’(x) = 1 outside 52 and that dR is smooth. Then 

where v denotes the outward unit normal to an. 
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Proof. The proof, based on the use of Green's formula. is similar to the correspond- 
ing proof in [3] and is omitted here. 

Corollary I 

Proof. We set n(x) equal to one in theorem 1. 

Corollary 2. Suppose the hypotheses of theorem 1 hold and G' = G,' + Gs:. Then 

a + G,(z, X) - G+(z, y )  - G+(z ,  y )  
a v  

Proof. We merely subtract (2.6) from (2 .5) .  

Corollaries 1 and 2 hold also in the case when instead of taking our 'reference' index 
of refraction to be identically one, we take it to be some nll(x). We denote the 
corresponding solutions of (2.1) by G ;: 

(V+ k%i(x))G"(x, y )  = d(X - y ) .  (2.8) 
If no(x)  also satisfies the hypotheses of theorem 1, then (2.6) and (2.7) hold when 
the G i  are replaced by the G:. This formulation may be especially useful when n is a 
small perturbation of n,,; however, this is not pursued in the present paper. 

Both (2.5) and (2.7) can be considered inverse scattering equations in the 
following sense. Suppose we fix y on dR.  Then the terms of (2.5) and (2.7) involving 
C + ( z ,  y )  can be considered to be data. They correspond to a point source at y and 
receiver at z on ds2. Equations (2.5) and (2.7) thus relate the wavefields G' and C -  at 
a point x in s2 to the data measured on dR.  

3. The trace-type formula 

This section follows [3]. We first derive a relation between V and the zero-frequency 
wavefield. This relation is then used together with (2.7) and time-domain information 
to obtain formula (3.7) for Vin terms of the scattering data and the interior wavefield. 

We begin with the relation between V and the zero-frequency wavefield. This 
relation, in a slightly different form, appears in [7]. I t  shows how to find V from 
knowledge of G-(k,  x, y )  for some fixed y ,  all x, and k near zero. 

Lemma: Suppose V ( x )  = 1 - nz(x)  is in L' and L ' .  Then 

V ( X )  = - 4x1~ -ylV'[k-'CG(k, X, y)]L=(, .  
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Proof: We substitute G' = G,: + G: into (2. l ) ,  simplify, and evaluate at k = 0. 

Next, we need some time-domain information. Accordingly, we consider the distribu- 
tional Fourier transforms of G' and G-: 

f ( t ,  x, y )  = (27r-I G'(k,  x, y) exp( - ikt) dk. ( 3 4  

The precise sense in which (3.2) exists is discussed in [8]. The functions g' satisfy the 
wave equation 

(V'- n'(x)a,,)g'(t, x, y )  = 6(x -y)d(r). (3.3) 

g + ( - t , x . y ) = g - ( t , x , y ) .  (3.4) 

We note that (2.4) implies 

The time domain is needed to understand certain facts about the supports of g' 
and g- which derive from the finiteness of n-'(x), the speed of propagation in (3.3). 
For each x, there is some time at which the signal g,, from y first reaches x .  We denote 
this time by s(x, y ) .  Thus we have 

g X 4  x, Y >  = 0 for t < s ( x ,  y ) .  (3.5) 

ga t ,  x ,  y> = 0 fo r t>  - s ( x ,  y ) .  (3.6) 

From (3.4), we have also 

We note that since s (x ,  y )  3 U, the supports of g+ and g- intersect at t = 0, x = y only. 
We are now in a position to state and prove the following trace-type formula. 

Theorem 2: Suppose $(x) is positive, real-valued, and has two continuous deriva- 
tives. Assume n'(x) = 1 outside Q, and that 8 9  is smooth. Then V ( x )  = 1 - tz2(x) is 
given by 

J - %  

where o is any smooth function satisfying --s(x, y )<o(x ,  y ) < s ( x ,  y ) ,  and where 

Formula (3.7) we call the trace-type formula, because it has a structure similar to 
that of the Deift-Trubowitz one-dimensional formula [9]. In  particular, formula (3.7) 
expresses V in terms of the interior wavefield and the data (which in this case are 
measurements of the wavefield on the boundary an). Formula (3.7) is different from 
the trace formula [9], however, in that i t  is linear rather than quadratic in the 
wavefield and in that i t  contains derivatives. 
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Proof of theorem 2. Following [l] we apply support information to the computation of 
V from G (3.1). We denote by h+ the (distributional) Fourier transform of G:/k': 

k-?G;(k,  x, y )  = h'(t, x, y )  exp(ikr) dt i: 
Since h' is the second antiderivative of g + ,  it satisfies the same causality property 
(3.5). Thus the lower limit of integration in (3.8), may be taken to be 0 where 
- - s < ~ < s .  Equation (3.1) can therefore be written 

Next we compute h+  with the help of (2.7). We divide both sides of (2.7) by k' and 
then apply the Fourier transform to obtain 

h+(t, x, y )  - h-(t, x, y )  = - (2x)-' k-' exp( - ikt)D(k, x, y )  dk. Lm (3.10) 

We then integrate (3.10) in t from a(x, y )  to infinity and substitute the result into the 
right-hand side of (3.9). This gives the following expression for V :  

V ( x )  = 2Ix - y (V' 1 1 k-' exp( - ikr)D(k, x, y )  dk dt. (3.11) 

Finally, we carry out the integration with respect to t i n  (3.11). To accomplish this we 
change variables to t ' = t - u ( x ,  y )  and use the formula (e.g., [lo]) for the Fourier 
transform of the Heaviside function H ( t ) :  

l J ( l 1 )  - =  

H(t) exp( - ikt) dt = Pv(ik) - '  + n h ( k )  = [i(k + io)] - ' . (3.12) 

Remarks I .  Since D is zero at k = O ,  the delta term of (3.12) does not contribute to 
(3.7). 

Remark2. An interesting feature of (3.7) is the arbitrariness of a. A similar arbitrari- 
ness arises in [ 111 and is found to be very useful. 
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