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The theory of diffraction tomography for two-dimensional objects within the Born approximation 
is presented for cases where the scattered field is measured over arbitrarily shaped boundaries 
surrounding the object. Reconstruction algorithms are presented for both plane wave (parallel 
beam) and cylindrical wave (fan beam) insonification. Special attention is devoted to cases where 
the measurement and source boundaries are either lines or circles. The theory and algorithms 
presented are shown to be readily extended to the case of three-dimensional objects. 
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1. INTRODUCTION 

The theory of diffraction tomography within the Born and Rytov approximations is usually 
developed for the parallel beam, classical tomographic geometry illustrated in figure 1 [l-51. For 
this geometry the object is insonified by a plane wave and the scattered field is measured over a 
plane surface which is parallel with the incident wavefront. The receiver surface rotates about a 
central point in the object as different directions of insonification are employed and the goal is to 
reconstruct the object’s properties (eg., acoustic velocity profile) from the set of scattered field 
measurements so obtained. 

In this paper we consider more general experimental geometries such as are illustrated in figures 
2 and 3. In figure 2 the object is still insonified by plane waves but the scatt.ered field measurements 
are performed over arbitrarily shaped surfaces surrounding the object- one surface for each direction 
of plane wave insonification. In figure 3 the object is surrounded by an arbitrarily shaped surface Z0 
on which are placed point sources. The scattered field measurements are then performed over 
arbitrarily shaped surfaces surrounding the object- one surface for each location of the point source. 
In the case of figure 2 the object’s properties are to be reconstructed from the totality of scattered 
field measurements performed in a sequence of experiments employing a full or partial set of 
insonifying plane waves. In the case of figure 3 the reconstruction is to be performed from the 
scattered field data generated as the point source covers a whole or part of the surface La. In either 
case the measurement surface Z can remain fixed throughout the sequence of experiments or, 
alternatively, can vary from experiment to experiment. 

A brief review of the foundations of diffraction tomography within the Born approximation is 
presented in Section 2. For the sake of simplicity only two-dimensional objects will be considered 
here and throughout the remainder of the paper. The final section describes how the results 
obtained in the paper can be generalized to the three-dimensional case. The plane wave 
scattering amplitude of an acoustic object is defined and shown to be proportional to the spatial 
Fourier transform of the “object profile” evaluated on circles in Fourier space which are the two- 
dimensional analogues of the well known Ewald spheres of X-ray crystallography I6,71. For the 
classical tomographic configuration shown in figure 1 the scattering amplitude is also shown to be 
proportional to the spatial Fourier transform of the scattered field over the measurement line. 
Finally, an inversion formula is presented that allows the object profile to be reconstructed from the 
scattering amplitude specified over a range of insonifying wave directions. For the classical 
tomographic configuration the scattering amplitude can be expressed in terms of the scattered field 

’ A preliminary account of some of the material considered in this paper was presented at the 
13th International Acoustical Imaging Symposium, October 26-28, 1983. 
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lnsonlfymg Plane Wave 

Fig. 1 Classical tomographic configuration. 
Measurement plane rotates about a 
central point “P” remaining always 
parallel with the insonifying plane 
wavefront. 

over the measurement line and the inversion formula reduces to the filtered backpropagation 
algorithm of parallel beam ultrasound tomography L4.51. 

The case of plane wave insonification with an arbitrary measurement boundary is considered in 
Section 3. A mathematical identity relating the value of the field and its normal derivative on the 
measurement boundary Z to the scattering amplitude of the object is derived. For cases where the 
measurement boundary is either a straight line or circle, the identity simplifies and does not involve 
the normal derivative of the field on the boundary. A similar simplification is shown to hold 
approximately for boundaries whose curvature is small relative to a wavelength. By employing the 
appropriate identity in conjunction with the inversion formula presented in Section 2, a two-step 
algorithm is obtained for reconstructing the object profile from the scattered field data. 

Section 4 addresses the configuration illustrated in figure 3. An identity relating the plane wave 
scattering amplitude to the cylindrical wave scattering amplitude of the object is derived for the 
three cases where the source surface La is one or more straight lines, a circle. or a general shape 
whose curvature is small relative to a wavelength- the identity for this last case being approximate. 
These identities allow the inversion formula presented in Section 2 to be employed since they 
convert scattered field data generated by cylindrical insonifying waves (fan beams) to scattered field 
data generated by insonifying plane waves. By employing these identities in conjunction with the 
inversion formula a “fan beam” reconstruction algorithm is obtained that allows the object profile to 
be directly reconstructed from cylindrical wave scattered field data measured over arbitrary 
boundaries surrounding the object. The final section of the paper briefly addresses the case of 
three-dimensional objects and discusses applications for the algorithms presented in the paper. 
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Fig. 2 Parallel beam insonification with arbitrary shaped measurement surface Z 

Fig. 3 Fan beam insonification with arbitrary shaped measurement surface E and arbitrary source 
surface IO. 
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2. DIFFRACTION TOMOGRAPHY WITHIN THE BORN APPROXIMATION 

We consider the situation illustrated in figure 2 of an acoustic object surrounded by an arbitrary 
measurement surface X. We shall limit our attention to those applications where the wave 
propagation is governed by the inhomogeneous Helmholtz equation 

6” + k’)+(r) = k20(r)$(‘) (1) 

Here, k = w/C, is the wavenumber of the field in the medium surrounding the object at frequency 
w and O(I) is the “object profile.” For acoustic scattering, Eq. (1) applies if the density of the 
object is constant and equal to that of the embedding medium and if the shear modulus of the 
object and embedding medium are negligible 121. The theory and results developed below can, 
however, be generalized to the non-constant density case following the treatment presented in 181. 

As discussed earlier, we shall restrict our attention here and throughout the remainder of the 
paper to two-dimensional objects; i.e., objects whose properties are constant in one direction (say 
the z axis) but vary in perpendicular directions (say over the x-y plane). We will also assume that 
the object is insonified by a wave that is also constant along the z direction. In this and the 
following section, the insonifying wave is a plane wave whose unit propagation vector & lies in the 
x-y plane. Cylindrical waves having axes aligned parallel to the z axis are considered in Section 4. 
For both of these cases the field +(L) will depend only on the x-y coordinates so that the wave 
equation (1) is a two-dimensional equation. 

The object profile 00 is the quantity which is to be determined in diffraction tomography. 
This quantity is related to the velocity profile C(L) of the object through the equation [4I 

C* 
O(r) = 1 - --!L 

c*(1) ’ 

where C, is the velocity of the embedding medium. In general, the velocity C(c) will be complex 
so that a reconstruction of O(r) yields both the phase velocity and attenuation profiles of the object. 

The goal of diffraction tomography is to reconstruct O(i) from scattered field measurements. 
The most compact and convenient form of such data is given by the so-called plane wave scattering 
amplitude of the object. For the case of two-dimensional objects, the plane wave scattering 
amplitude is defined via the equation 

f(s,sJ = k2J d*r O(~)$(I;~o)e-‘kxL, (3) 

where & and 2 are two-dimensional unit vectors that can range over the entire unit circle. In the 
above definition $(~,s~) is the total field (incident plus scattered) generated by an insonifying plane 
wave whose unit propagation vector is 4. Throughout this and the following section we shall refer 
to f(s st,) as simply the “scattering amplitude.” -)- 

For certain measurement geometries, the scattering amplitude f(g,sJ is readily determined from 
scattered field measurements. For example, for the classical tomographic configuration illustrated 
in figure 1, the value of the forward scattered field over the measurement line determines f(x,&o) 
for those values of 2 lying on the half unit circle 3. ~0 3 0. More specifically, one finds that for 
2 . & 3 0 [91 

f(z,sJ = 2iy e? 3 de’ +‘“‘(e’; ~-,,)e-‘“~’ , 
-m 

where 5’ denotes position along the measurement line and $‘“‘(I’;&,) is the scattered field at the 
point 5’ and K and y  are, respectively, the projections of k 3 onto the measurement line and onto 
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the direction of s i e a, ., 

K = kgi (5a) 

r=ks,&,=G, (5b) 

where L denotes the unit vector in the positive 5 direction. (Recall that for the classical 
tomographic configuration the measurement line is perpendicular to ~0 so that 2.~ = 0.1 Porter 1101 
has generalized (4) to the case of arbitrarily shaped measurement boundaries. As shown by Porter, 
the generalization to such cases requires, in general, that both the scattered field and its normal 
derivative be measured over the surface. We shall present, in the following section, a 
generalization of Eq. (4) to arbitrarily shaped measurement boundaries that differs somewhat from 
the extension proposed by Porter [lOI. 

The scattering ampiitude plays a fundamental role in inverse scattering and diffraction 
tomography. Within the Born approximation, f(S,sJ reduces to the two-fold spatial Fourier 
transform of O(I) evaluated over certain circular boundaries in Fourier space (Ewald spheres in the 
three-dimensional case). This result follows immediately upon substituting the insonifying field 
exp(iks.Ll for $Cr& in Eq. (3) (i.e., making the Born approximation). We obtain 141 

where 

(7) 

denotes the two-fold spatial Fourier transform of the object profile. 

Eq. (61 states that the scattering amplitude f(s,al determines the two-fold Fourier transform of 
the object profile over the locus of & values defined by the equation 

For fixed k and %, Eq. (81 defines a locus of I$ values lying on a circle centered at & = - k& and 
having a radius equal to k. As discussed in references 4 and 5, the above result is, essentially, the 
generalization of the projection-slice theorem of x-ray tomography to diffraction tomography and 
forms the basis for all reconstruction algorithms presently employed in diffraction tomography. For 
example, for the conventional tomographic configuration f&&l is determined for unit vectors 5 
satisfying c& 3 0 from forward scatter measurement via Eq. (41. By varying so (i.e., changing the 
direction of insonification) a set of semicircular arcs in Fourier space are obtained over which the 
data specifies the transform 6(g). O(r) can then be estimated from this information using, for 
example, interpolation followed by Fourier inversion 11, 1 l-131. 

An inversion formula has been derived recently which allows O(r) to be reconstructed directly 
from the scattering amplitude without the need of interpolation or Fourier inversion. In the case of 
two-dimensional objects the formula is given by 14, 5, 141 

where x0 and x are, respectively, the angles formed by & and s with a fixed reference direction. 
The subscript “LP” on O(rJ means that a “low pass filtered” approximation to the object profile is 
obtained; i.e., 

O&) = -!-- &,zkd2KbQ)eigr 
(2nS 
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The inversion formula (9) forms the basis for the filtered backpropagation algorithm for parallel 
beam insonification. This algorithm corresponds, essentially, to a decomposition of the formula (9) 
into two steps: (i) forming a partial reconstruction at fixed view angle (angle of insonification x0); 
(ii) summing over view angles. We define the partial reconstruction as 

It then follows from Eq. (9) that OLD is given by 

The construction of 6(1, x0) according to Eq. (1 la) can be interpreted as a filtered backpropagation 
process while Eq. (lib) represents a sum over view angles 14, 51. 

3. PARALLEL BEAM INSONIFICATION 

Our primary goal in this section is to provide a formula for determining the scattering amplitude 
from field measurements performed over the arbitrary measurement boundary Z. The function 
f(x,s) so obtained can then be employed in Eq. (9) (or, equivalently in Eqs. (11)) to obtain a 
reconstruction of the object profile. 

Porter [lOI has addressed this problem and proposed a scheme which is a two-step procedure 
requiring first that a holographic image be formed from the measured field followed by a spatial 
Fourier transformation of this image field. We shall employ a more direct method that avoids 
entirely these two steps. We make use of the following integral identity which is derived in 
Appendix A. 

k2 s d2r’ O(L’) $ (r’)e-ikzr’ 

= J ” _‘.- 
2 

dl [lkn s Qcs’(~‘) + & $‘S’(~‘)le-ik~~’ 

In this equation 2 is a unit vector that can span the unit circle, dl’ is the differential length element 
on 2, $’ the unit outward normal vector to Z at the point 1’ and a denotes the derivative along 

an’ 
the fi’ direction. The field I/JCL’) is the total field (incident plus scattered) generated by any incident 
wave to the object O(r) and I)‘“’ IS the scattered wave component of I); i.e., the total field minus 
the incident field. 

Since (ICC’) is the total field generated by any incident wave to the object we are free to choose 
the incident wave to be the plane wave exp(ik&r’). For this choice $(z’) = +(r’,sJ and the left- 
hand side of Eq. (12) reduces to the scattering amplitude. We then have the result 

Eq. (13) allows the scattering amplitude to be evaluated directly in terms of the scattered field and 
its normal derivative over an arbitrary boundary I surrounding the object. This equation when 
coupled to Eq. (9) then provides a two step inversion formula for reconstructing O(x) from (J(~’ and 
its normal derivative evaluated over 2. Unfortunately, in most applications, it is not possible to 
measure both I)(~) and &+(‘) on Z. Moreover, in theory it is not necessary since it can be 
shown that either one alone uniquely determines the other 1151. 
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In practice it is possible to obtain an exact relationship between the scattering amplitude f&J 
and either I)“’ or & I/J’“’ only for boundaries which coincide with one of the coordinate axes of a 

curvilinear coordinate system in which the Helmholtz equation separates 1151. important examples 
of such boundaries, called “separable boundaries”, are circles and infinite straight lines. For 
example, for a straight line boundary perpendicular to xc,, Eq. (131 reduces to Eq. (4). This follows 
from the fact that over any line, independent of its orientation, the integral involving ti”’ in 
Eq. (131 exactly cancels the integral involving & $ “’ if ti’,s < 0, and the two are equal if p’.s 3 0 _ _ 

1161. Thus, we have the general result that for all s such that fi’.s 3 0 

f(s,q,l = 2iks.s j d/‘$“‘(/‘;~Je~‘“” , 
-m 

where we have denoted by #“‘U’;&,) the scattered field $“‘(i;Q evaluated on the measurement 
line. Eq. (4) is then a special case of (14) for the classical tomographic configuration where fi’ = s,,. 
the direction of propagation of the insonifying plane wave. 

For the case of a circular boundary one finds that Eq. (13) reduces to 1161 

where R is the radius of the measurement circle P assumed to be centered at the origin and (r and 
x are, respectively, the angles made by c and s with an arbitrary reference direction. $‘S’frrs~,l 
denotes the scattered field at the angle c and the function Fa(x) is given by 

F,(x) = 1 2 i” 
(257)~ n=~m Hnoe’“* 

(16) 

where H, is the n’th order Hankel function of the first kind. It should be noted that the center and 
radius of Z can be changed as a function of the insonifying wave vector zC). 

An approximate expression for f&l for arbitrarily shaped boundaries which rnvolves only the 
scattered field can be employed if the boundary curvature is such that it can be approximated by a 
straight line in the vicinity of each point. This requires that the local radius of curvature be much 
larger than a wavelength. If  this condition is met then the arguments leading to Eq. (141 for the 
case when P is a straight line can be applied and Eq. (131 then reduces, approximately, to 

where n^‘,s must now remain under the integral sign since $ is not constant for a curved boundary -- 

4. CYLINDRICAL BEAM INSONIFICATION 

In this section we consider the case where the object is insondied by a cylindrical wave 
generated by a line source located on a closed boundary Z0 surrounding the object. For parallel 
beam insonification the object profile is reconstructed from scattered field measurements performed 
over an arbitrary boundary 2 surrounding the object. A reconstruction of the object profile is 
obtained from the set of scattered field measurements that result from using different directions of 
insonification of the incident wave (different unit wave vectors s,l. For the cylindrical beam case 
we will also assume that the scattered field is measured over an arbitrary boundary which 
completely surrounds the object. The object profile reconstruction is then obtained from the set of 
scattered field measurements that result when the location of the line source varies over I,,. 
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We shall present two alternative schemes for generating a reconstruction of the object profile 
from cylindrical beam scattering data. The first is a two-step method in which the scattering 
amplitude is first computed from cylindrical beam scattering data. The object profile is then 
reconstructed in a second step using the plane wave filtered backpropagal.ion algorithm 141. The 
second method combines the two steps into a single mathematical operation. What results is then a 
filtered backpropagation algorithm where the “sum over view angles” operation is replaced by a 
“sum over source points” operation. This second method is the diffraction tomographic equivalent 
of the fan beam filtered backprojection algorithm of x-ray tomography [171. 

We begin by defining, in analogy with Eq. (31, the cylindrical wave scattering amplitude -y(&) 
of the object: 

y  (g, R,) 3 kZ s d*r O(r) JI ($ I&)e-‘k”‘L (18) 

In Eq. (18) I/J(~, &,I is the total field (incident plus scattered) generated by an insonifying 
cylindrical wave centered at the point I& located on P,. The cylindrical wave scattering amplitude 
plays the same role with respect to insonifying cylindrical waves as does the plane wave scattering 
amplitude f&,0, for insonifying plane waves. 

The cylindrical wave scattering amplitude can be computed from the value of the scattered field 
$‘“‘(~;F&,) and its normal derivative d$‘“‘(~f;I&) evaluated over the boundary Z. In particular, 

an’ 
by making use of Eq. (12) we conclude that 

y(~;R,j = s dl’ 
I 
ik&‘.s$‘“‘(~‘;F&) + $J1’“‘(I);l&) eeikFr’ , I (19) 

z 

which is the cylindrical wave counterpart to Eq. (13). Because Eq. (19) is mathematically identical 
to Eq. (13). the arguments leading to Eqs. (14), (15) and (17) remain valid for Eq. (19). In 
particular, we have for straight line measurement boundaries the result 

y(&J = 2ikS.s -j- d/‘6’s’(I’;R,)e-lk”‘i (20a) 
-m 

and for circular boundaries 

y(&J = 4i *J duJ,‘S’(u;I&)Fa(x-o) , 
0 

(20b) 

and, finally, for boundaries with weak curvature: 

Y (s&o) = 2ik s dl’ $.s IclCs’ (L’; I&)e-ikxr’. (2Oc) r 

The cylindrical wave scattering amplitude y(z,l&) is seen to be linearly related to the scattered 
wave $‘“)(~‘;I&) generated by an insonifying cylindrical wave. Moreover, the scattered field 
$‘“‘t~‘;~,) produced by an insonifying plane wave can be shown to be linearly related to the 
scattered field $I’“‘(~;&) produced by line sources located on 20. As a consequence of this, the 
scattering amplitude f(g, a) is linearly related to y  (so l&j. In particular, it is shown in Appendix B 
that the plane wave and cylindrical wave scattering amplitudes are related by 

f(s,a) = sz, dl, ik t&.~y(~;R,) - & y(~;&,) 
0 

(21) 
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where dl, is the differential length on Za, PO the unit outward normal to PO and a denotes the 
an, 

derivative along the Go direction. 

Eq. (21) is in the form of a linear mapping between the cylindrical wave scattering amplitude 
and its derivative with respect to n, and the plane wave scattering amplitude f(&. Since the 

derivative -& ~(5; l&J cannot be computed from measurements of $“‘(I; I&) for fixed I&, it is 

important to rimove this quantity from Eq. (21). This can be done exactly for cases where Z,, is a 
separable boundary. For example, when Za is a straight line one finds that 

(22, 

with Eq. (221 holding for all &, such that &,s, 6 0 and where 1, now denotes the location of I& on 
the straight line boundary. The relationship between Eqs. (22) and (21) is seen to be entirely 
analogous to that existing between Eqs. (14) and (131 of Section 2. Indeed, Eq. (22) is derived 
from (21) using arguments identical to those employed in deriving Eq. (141 from (13). 

For the case where X0 is a circular boundary centered at the origin one finds that Eq. (21) 
becomes 1161 

(231 

where FaO(xl is defined in Eq. (161, with R replaced by R,, and where /3 and x0 are. respectively, 
the angles formed by I& and ~0 with an arbitrary reference direction. Finally, for cases where the 
curvature of the boundary Za is sufficiently small that it can be approximated by a straight line in 
the vicinity of each point; we have 

Eqs. (19)-(241 allow the plane wave scattering amplitude to be synthesized from cylindrical wave 
scattering data. The cylindrical wave scattering amplitude is first computed using (19) or (20) and 
the result is employed in Eqs. (22)-(24) to compute f(s,&). By combining these equations, the two 
steps can be combined into a single integral transform relating the cylindrical wave scattering data 
directly to the plane wave scattering amplitude. Table I lists these transforms for cases where Z and 
X0 are straight lines or circles and for cases where the curvature of both boundaries is small. 

The transformations listed in table I allow the plane wave scattering amplitude to be synthesized 
from cylindrical wave scattered field data. Once f&a) is computed the plane wave filtered 
backpropagation algorithm as embodied in Eqs. (9) or (111 can be employed to obtain a 
reconstruction of the object profile. An alternative, one step reconstruction algorithm, is readily 
derived by substituting the transformations listed in table I into Eq. (91 and reorganizing the result. 
We present in table II the resulting reconstruction algorithms corresponding to the three cases - 
lines, circles and weakly curving boundaries - covered in table I. 

The reconstruction algorithms presented in table II are “fan beam” algorithms in the sense that 
they operate directly on the measured cylindrical wave scattered field data. Like the plane wave 
filtered backpropagation algorithm presented in Section 2, they can be decomposed into two 
sequential operations: 

1. Generating a partial reconstruction using data collected in a single scattering experiment. 

2. Summing the partial reconstructions obtained in step 1 from different experiments to obtain 
the final reconstruction. 

Eqs. (19)-(241 allow the plane wave scattering amplitude to be synthesized from cylindrical wave 
scattering data. The cylindrical wave scattering amplitude is first computed using (19) or (20) and 
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Table I. Scattering amplitude in different cases 

I;,, I circles = 4i~dpjd~Jl’~‘(rr;p)Fa(X--)Fa,(P-Xa) 
--n -n 

Z,, 2 arbitrary but 

with weak curvature 
= -&2Qd/,(&,.a) Qdr’(B’.s)Jl’s’(r’;~~)e-ik’~~‘-~’5’ 

-m -m 

the result is employed in Eqs. (22)-(24) to compute f(2.s). By combining these equations, the two 
steps can be combined into a single integral transform relating the cylindrical wave scattering data 
directly to the plane wave scattering amplitude. Table I lists these transforms for cases where Z and 
Z0 are straight lines or circles and for cases where the curvature of both boundaries is small. 

The transformations listed in table I allow the plane wave scattering amplitude to be synthesized 
from cylindrical wave scattered field data. Once f(s.sJ is computed the plane wave filtered 
backpropagation algorithm as embodied in Eqs. (9) or (11) can be employed to obtain a 
reconstruction of the object profile. An alternative, one step reconstruction algorithm, is readily 
derived by substituting the transformations listed in table I into Eq. (9) and reorganizing the result. 
We present in table II the resulting reconstruction algorithms corresponding to the three cases - 
lines, circles and weakly curving boundaries - covered in table I. 

Table II. Reconstruction formulae in different 
08.988 of source-receiver geometry 

Geometry ( Reconstruction 

&,I; arbitrary 

but with weak 
curvature 

O&j = JdlOJ dl’ ~‘“‘(r’;%)G,(~,r’,R,,), where 
-m -m 

GP(~~‘,FCo)=G,(r;l’,I,) 
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The reconstruction algorithms presented in table II are “fan beam” algorithms in the sense that 
they operate directly on the measured cylindrical wave scattered field data. Like the plane wave 
filtered backpropagation algorithm presented in Section 2. they can be decomposed into two 
sequential operations: 

I. Generating a partial reconstruction using data collected in a single scattering experiment 

2. Summing the partial reconstructions obtained in step 1 from different experiments to obtain 
the final reconstruction. 

In table II the inner integral represents step 1 while the sum over partial reconstructions is 
performed by the outer integral. In the plane wave case, the sum over experiments consisted of 
summing over different insonifying angles x0. Clearly, for fan beam insonification (cylindrical wave 
insonification) the sum over experiments corresponds to an integral over source points I&. 

We conclude by remarking that the fan beam reconstruction algorithm for circular boundaries 
given in table II is the generalization, to diffraction tomography, of the x-ray fan beam algorithm 
presented, for example, in 1171. The parallel beam filtered backpropagation algorithm of diffraction 
tomography is known to reduce, in the limit where the wavelength goes to zero, to the filtered 
backprojection algorithm of x-ray tomography 141. It should then be expected that the circular 
boundary fan beam algorithm in table II should, likewise, reduce in this limit to the corresponding 
X-ray algorithm. We have not yet been able to establish this reduction and consider this an 
interesting and important future research goal for fan beam diffraction tomography. 

5. CONCLUDING REMARKS 

We have, in this paper, shown how the theory and algorithms of parallel beam diffraction 
tomography within the Born approximation can be extended to cases where the scattered field is 
measured over arbitrarily shaped boundaries surrounding the object. In addition, we presented two 
reconstruction procedures for fan beam diffraction tomography. The first of these is a two-step 
inversion algorithm where plane wave scattering data is synthesized from cylindrical wave scattering 
data in the first step and the object profile is reconstructed in the second step using the parallel 
beam (plane wave) filtered backpropagation algorithm on the synthesized plane wave data. The 
second algorithm combines these two steps into a single “fan beam filtered backpropagation 
algorithm.” In this method the reconstruction of the object profile is obtained by summing 
reconstructions corresponding to a single fixed location of the source. over the source point 
locations. 

The results presented in the paper apply only to two-dimensional objects; i.e., objects whose 
properties are constant in one direction. They are readily extended, however, to the three- 
dimensional case. This extension can be performed in two ways. The first of these simply requires 
that the measurement boundary Z be replaced by a surface Z formed by sweeping the I boundary 
along the perpendicular to the plane in which Z lies. Thus, for example, for the case of a circular 
boundary i is a circular cylinder while for a line boundary 2 becomes a plane surface. The 
treatment presented in the paper then applies for three-dimensional objects enclosed by 2 if the 
two-dimensional scattered field measurements performed over Z are projected onto the boundary 
L. The resulting reconstruction will be of a projection of the three-dimensional object profile onto 
the plane formed by Z so that a full three-dimensional reconstruction will require a sequence of 
experiments employing measurement surfaces having different orientations relative to the object. 
In the case of fan beam insonification, the source boundary Z& must always remain in the same 
plane as the boundary Z. This first method is the generalization, to the case of arbitrary 
measurement boundaries, of the three-dimensional reconstruction method presented in Section 4 of 
[41. 

The theory and algorithms presented here can also be generalized to the three-dimensional case 
directly. By this we mean that all the fundamental equations can be replaced by their three- 
dimensional equivalents. For example, in three-dimensions the plane wave scattering amplitude is 
defined by 

where now r= (x.y,zI and s = (s,,sy,s,I. Eqs. (4)-(8) are similarly generalized to the three- 
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dimensional case. The three-dimensional form of the inversion formula (9) is given by 114,181. 

(26) 

where dnSO and da, are differential solid angles and the integrals are over 47r steradians. By 
employing Eq. (26) together with the appropriate three-dimensional generalization of the 
expressions for the scattering amplitude given in table I, three-dimensional reconstruction 
algorithms analogous to those given in Table II can be readily obtained. 

APPENDIX A - DERIVATION OF EQ. (12) 

We begin by setting e(c) in Eq. (1) equal to the sum of an insonifying wave I/J”‘(~) and a 
scattered wave t/~‘“‘(~). Since the insonifying wave satisfies the homogeneous Helmoltz equation; 
i.e., Eq. (1) with O(E) = 0, we find that 

(V2 + k2)$‘s’(c) = k20(&@ (A.l) 

We can obtain a relationship between the scattered field $rs’ and its normal derivative $$(si 

evaluated on the boundary X by making use of Eq. (A.l) and the fact that exp(-ikgr) satisfies the 
homogeneous Helmholtz equation, i.e., 

(v-7 + k2)e-ik?L 0 (A.2) 

Multiplying Eq.(A.l) by exp(-ikgr) and (A.2) by #‘*‘(c) and subtracting the resulting equations 
yields 

= k20(r)$(r)e-lksr. - - (A.3) 

Integrating with respect to 1 throughout the volume of space bounded by I and applying Green’s 
theorem then yields 

(A.4) 

In this equation & denotes differentiation along the outward normal to the boundary Z and d I is 

the differential element of length on this boundary. Putting 

a --Ik% 

an" -- 
-ik~se-1b'I , (AS) 

we finally obtain 

k2Jd2rO(r)$((r)e-ikxI 

(~.6) 

which is the desired result. 

APPENDIX B - DERIVATION OF EQ. (21) 

The wavefield $(r’;l) generated by a line source centered at 1’ satisfies the equation 

[Vj + k2-k’O(r’)] Jl(l;r’) = S(r-L’) , (B.l) 
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where V$ denotes the Laplacian operator in the I’ coordinates. The field $(~‘;~~,io) generated by the 
insonifying plane wave exp(ikxO.r’) satisfies 

[Vi + k’-k20f~‘)]~(~‘;~~) = 0 (B.2) 

Upon multiplying Eq.fB.1 I by $(~‘;~,,I and Eq. (B.2) by $(r;r’I and subtracting the two resulting 
equations yields 

~(~‘;~o)v~qJ(~;f) - $cr;~‘,v;$cr’;~,),, 

= lJJ(f;~o?o) &(L-L’) (B.3) 

Integrating (B.3) over the region of space bounded by Za and applying Green’s theorem then yields 

(8.4) 

where I& denotes a point on IO, dlo is the differential element of length on X0 and -$-- the 
0 

derivative along the outward normal to the boundary. 

If  in the integrand of (B.4) we decompose I)(~~;~~) into the sum of the insonifying field 
exp(ikgo$ plus the scattered field I(I(S)(&o;&I we obtain 

where 

(8.61 

The integral in Eq. (B.6) can be shown to be independent of the exact boundary IO. Moreover, if 
we take PO to infinity it must vanish since both $‘“‘(l&;$aO) and $(~;~o) satisfy the Sommerfeld 
radiation condition. It follows that 

$tl;%o, = di, 
s 1 % 

~~(r;~o)-ik~o.~aJI(~R,) elkso’ 
0 t 

(B.7) 

If  we substitute Eq. (B.7) into the definition of the plane wave scattering amplitude (3) we 
obtain 

f(~,so) = k2Jd2r O(r)e-“~~~dla 
I 

&-g(~;R,l-ikfi,.& $(r;&oI 
t 
elkPI’ tB.8) 

4 0 

Interchanging orders of integration and making use of the definition (8) of the cylindrical wave 
scattering amplitude then leads finally to the desired result; viz., 

f&,0, = Jdlo -$-- y  (3; Ito) -ik $oso y  (5; go) 
t 
elka ’ (B.9) 

0 
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