
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS 5, 156–201 (1998)
ARTICLE NO. HA970227

LU Factorization of Non-standard Forms and
Direct Multiresolution Solvers

D. Gines1

Department of Electrical Engineering, University of Colorado at Boulder,
Boulder, Colorado 80309-0425

G. Beylkin2

Department of Applied Mathematics, University of Colorado at Boulder,
Boulder, Colorado 80309-0526

and

J. Dunn1

Department of Electrical Engineering, University of Colorado at Boulder,
Boulder, Colorado 80309-0425

Communicated by Charles K. Chui

Received May 23, 1996; revised May 12, 1997

In this paper we introduce the multiresolution LU factorization of non-stan-
dard forms (NS-forms) and develop fast direct multiresolution methods for
solving systems of linear algebraic equations arising in elliptic problems.

The NS-form has been shown to provide a sparse representation for a wide
class of operators, including those arising in strictly elliptic problems. For
example, Green’s functions of such operators (which are ordinarily represented
by dense matrices, e.g., of size N by N) may be represented by 0log erN
coefficients, where e is the desired accuracy.

The NS-form is not an ordinary matrix representation and the usual operations
such as multiplication of a vector by the NS-form are different from the standard
matrix–vector multiplication. We show that (up to a fixed but arbitrary accu-
racy) the sparsity of the LU factorization is maintained on any finite number
of scales for self-adjoint strictly elliptic operators and their inverses. Moreover,
the condition number of matrices for which we compute the usual LU factoriza-
tion at different scales is O(1) . The direct multiresolution solver presents,
therefore, an alternative to a multigrid approach and may be interpreted as a
multigrid method with a single V-cycle.

1 This research was partially supported by DARPA Grant FEE615-95-C-1756.
2 This research was partially supported by DARPA Grant F49620-93-1-0474 and ONR Grant N00014-

91-J4037.

156

1063-5203/98 $25.00
Copyright q 1998 by Academic Press
All rights of reproduction in any form reserved.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

157LU FACTORIZATION OF NS-FORMS

For self-adjoint strictly elliptic operators the multiresolution LU factorization
requires only O((0log e)2

rN) operations. Combined with O(N) procedures
of multiresolution forward and back substitutions, it yields a fast direct multires-
olution solver. We also describe direct methods for solving matrix equations
and demonstrate how to construct the inverse in O(N) operations (up to a fixed
but arbitrary accuracy). We present several numerical examples which illustrate
the algorithms developed in the paper. Finally, we outline several directions for
generalization of our algorithms. In particular, we note that the multidimensional
versions of the multiresolution LU factorization maintain sparsity, unlike the
usual LU factorization. q 1998 Academic Press

Contents.

1. Introduction.
2. Preliminary considerations.
3. Multiresolution linear algebra.
4. Multiresolution LU factorization.
5. Compression of operators and fast algorithms.
6. Solutions of linear algebraic equations.
7. Solutions of matrix equations.
8. LU decomposition of standard forms.
9. Numerical examples.

10. Generalizations and conclusions.
Appendix: Pivoting

1. INTRODUCTION

In [1] , a new algebraic multiresolution structure, the non-standard form (NS-form),
has been introduced to represent operators in wavelet bases. As is shown in [1], for
a large class of operators (which are ordinarily represented by dense matrices) , the
NS-form is sparse for a finite, arbitrary precision. This observation allows one to
accelerate iterative methods for solving systems of linear algebraic equations which
involve such operators since the cost of application of the matrix to a vector is reduced
from O(N 2) to O(N) operations.

Since operators from a wide class admit a sparse representation in wavelet bases,
it is possible to consider numerical calculus of operators [1–3], i.e., consider functions
of operators computed via fast algorithms. The product of two operators in the NS-
form requires Nr(0log e)2 , where e is the desired accuracy [4]. A fast multiplication
algorithm may then be used in an iterative algorithm for constructing the generalized
inverse [5–7]. For a wide class of operators it takes only O(Nr(0log e)r(log k))
operations, where k is the condition number of the matrix, to compute the inverse
operator with accuracy e. Various numerical examples and applications may be found
in [2, 3] (although the standard form was used in the multiplication algorithm in
these papers) .

In this paper we introduce a direct method for solving systems of linear algebraic
equations and constructing the inverse using the NS-form for a class of matrices
outlined below. Although direct methods have been used extensively on sparse linear
systems, especially for differential operators, such algorithms suffer a loss of efficiency

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

158 GINES, BEYLKIN, AND DUNN

if the factorized matrix does not admit the same sparse structure as the original matrix.
Techniques such as graph theory have been developed to minimize the generation of
so-called fill-ins [8] . Here we demonstrate that the specialized structure of NS-forms
may be preserved during factorization, leading to efficient factorization algorithms
using sparse data structures.

We begin by describing a factorization procedure for the NS-form. The factorization
of the NS-form is superficially similar to the standard LU factorization but, in fact,
is distinct in several significant ways. First, it is an approximate factorization where
the accuracy, e, is finite but arbitrary. Second, the factorization of NS-forms requires
O(Nr(0log e)2) operations for operators arising from strictly elliptic problems. Com-
bined with O(Nr(0log e)) procedures of ‘‘multiscale’’ forward and back substitu-
tions, it yields a direct multiresolution solver. Third, the actual LU factorization is
performed on well-conditioned matrices even if the original matrix (arising from a
strictly elliptic problem) has a large condition number. Using the multiresolution
solver, we also construct the inverse in O(N(0log e)2)) operations. We note that in
problems where the choice of the size of the matrix and of accuracy are connected,
typically e } N0a , a ú 0.

Our direct multiresolution solver presents an alternative to an iterative multigrid
approach. In fact, the algorithms of this paper may be viewed as a ‘‘direct multigrid,’’
without V and W cycles (or, more precisely within this terminology, with a single V
cycle) . The absence of cycles of the usual full multigrid methods (for references see
[9]) is easy to explain since we generate (within computational accuracy) a linear
system for the exact projection of the solution on coarse scales. Once such a system
is solved, there is no need to revisit that scale again. Thus, the algorithms of this
paper provide a connection between multigrid methods and classical techniques of
Gaussian elimination and LU decomposition. In this role, our approach provides a
systematic algebraic structure to multiresolution computations (what we call multireso-
lution linear algebra) , and we go to some length to provide details of such algebraic
operations.

We recall that the non-standard form is not an ordinary matrix. The NS-form has
a multiresolution structure, and the usual operations such as multiplication of a vector
by the NS-form or multiplication of NS-forms are different from the standard matrix–
vector and matrix–matrix multiplications. The remarkable feature of the non-standard
form is the decoupling it achieves among the scales.

The outline of the paper is as follows: in Sections 2 and 3 we introduce multiresolu-
tion analysis and the notion of the non-standard form which serve as a foundation for
the algorithms presented in the paper. We do so without specific reference to the
properties of wavelets (e.g., number of vanishing moments, size of the support, etc) .
This allows us to describe the algebraic structure of the algorithms without considering
specific bases. On the other hand, the sparsity of the non-standard form for a given
accuracy, and thus the operation count of the algorithms, does depend on the choice
of the basis. We discuss the issues of sparsity separately in Section 5.

In Section 4 we describe multiresolution LU factorization. In particular, we describe
in Section 4.2 the procedure for computing lower and upper NS-forms where the NS-
form of an operator has been precomputed. In Section 4.3 we describe how to construct
the lower and upper NS-forms directly from the original operator, without precomput-

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

159LU FACTORIZATION OF NS-FORMS

ing the NS-form; such a procedure is computationally more efficient. Finally, in
Section 4.4, we present an alternative version of the factorization procedure which
may be useful during partial pivoting (although pivoting is needed for matrices outside
the class for which we prove that the multiresolution LU factorization is sparse. We
discuss partial pivoting in the Appendix) .

In Section 6 we show how the factorization procedure may be incorporated into a
fast direct solver for linear systems of equations. Toward that end, we describe the
algorithms of multiresolution forward and backward substitution. We then describe
in Section 7 how the direct methods may be applied to solving matrix equations. The
forward and backward substitution algorithms for matrices may be used to construct
the inverse operator, which we describe separately in Section 7.5.

In Section 8 we describe the relationship between the non-standard and standard
forms, and demonstrate that factorization using S-forms leads to sparse matrices if
NS-forms are sparse.

In Section 9 we present various numerical examples which illustrate the algorithms
developed in the paper. The purpose of these tests is to show the behavior of such
algorithms as the size of matrices becomes large.

Finally, in Section 10 we make a number of observations concerning generalization
of our approach. In particular, we note that the multidimensional versions of the
multiresolution LU factorization maintain sparsity, unlike the usual LU decomposition.
Thus, fast (adaptive) direct methods may be developed for elliptic problems in multiple
dimensions, but we leave this subject matter for another paper.

2. PRELIMINARY CONSIDERATIONS

We start by reviewing notions of multiresolution analysis (see [10, 11]) and the
non-standard form [1] and describe algorithms for applying the NS-form to vectors.
We introduce the NS-form using projection operators without invoking wavelet bases
explicitly. This approach allows us to explain the algebraic structure of algorithms
separately from considerations of sparsity. The sparsity of structures that we develop
in this paper is critical in obtaining fast algorithms. We defer the discussion of sparsity
and its dependence on the choice of the wavelet basis to Section 5.

2.1. Multiresolution Analysis for Operators

Let us consider a multiresolution analysis of L 2(R d) ,

Vn , rrr , V2 , V1 , V0 , V01 , V02 , rrr, (2.1)

and define subspaces Wj as orthogonal complements of Vj in Vj01 , Vj01 Å Vj ! Wj ,
so that L 2(R d) Å Vn!j°nWj . If the number of scales is finite, then we set j Å 0 to
be the finest scale and consider

Vn , rrr , V2 , V1 , V0 , V0 , L 2(R d) (2.2)

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

160 GINES, BEYLKIN, AND DUNN

instead of (2.1) . In numerical realizations the subspace V0 is always of a finite
dimension.

Let T be an operator

T : L 2(R d) r L 2(R d) . (2.3)

By defining projection operators on the subspace Vj , j √ Z ,

Pj : L 2(R d) r Vj , (2.4)

and expanding T in a ‘‘telescopic’’ series, we obtain

T Å ∑
n

jÅ0`

(QjTQj / QjTPj / PjTQj) / PnTPn , (2.5)

where Qj Å Pj01 0 Pj is the projection operator on the subspace Wj ,

Qj : L 2(R d) r Wj . (2.6)

If the scale j Å 0 is the finest scale, then

T0 Å ∑
n

jÅ1

(QjTQj / QjTPj / PjTQj) / PnTPn , (2.7)

where T Ç T0 Å P0TP0 is a discretization of T on the finest scale. Expansions (2.5)
and (2.7) decompose T into a sum of contributions from different scales.

2.1.1. The Non-standard Form

The NS-form introduced in [1] is a representation of an operator T as a chain of
triplets T Å {{Aj , Bj , Cj}0`°j°n , Tn}, where operators Aj , Bj , Cj (as well as Tj) are
defined as

Aj Å QjTQj , (2.8a)

Bj Å QjTPj , (2.8b)

Cj Å PjTQj , (2.8c)

Tj Å PjTPj , (2.8d)

and admit the recursive definition

Tj Å Aj/1 / Bj/1 / Cj/1 / Tj/1 . (2.9)

The operators Aj , Bj , Cj make up the blocks of the NS-form and operate on the
subspaces Vj and Wj ,

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

161LU FACTORIZATION OF NS-FORMS

FIG. 1. Organization of the non-standard form of a matrix. The submatrices Aj , Bj , and Cj , j Å 1, 2,
3, and T3 are the only non-zero submatrices.

Aj : Wj r Wj , (2.10a)

Bj : Vj r Wj , (2.10b)

Cj : Wj r Vj , (2.10c)

whereas operators Tj operate on subspaces Vj ,

Tj : Vj r Vj . (2.11)

The wavelet transform recursively represents operators Tj as

S Aj/1 Bj/1

Cj/1 Tj/1
D , (2.12)

which is a mapping

S Aj/1 Bj/1

Cj/1 Tj/1
D : Wj/1 ! Vj/1 r Wj/1 ! Vj/1 , (2.13)

where Vj Å Wj/1 ! Vj/1 . If the number of scales is finite, then we obtain T0 Å
{{Aj , Bj , Cj}1°j°n , Tn}, and the blocks of the NS-form are organized as blocks of a
matrix shown in Fig. 1.

We note that for d ¢ 2 the blocks of the NS-form have additional structure. From
now on we will assume that d Å 1, although many considerations are essentially
the same for d ¢ 2. We will defer additional remarks about dimensions d ¢ 2 to
Section 10.

Remark 2.1. Since projection operators involve subsampling, equalities like that
in (2.9) may appear inconsistent if we compare sizes of blocks in Fig. 1. For example,
the size of blocks A3 , B3 , C3 , and T3 is not the same as that of T2 . The transition
from operator notation as in (2.9) to a matrix notation involves combining the blocks
A3 , B3 , C3 , and T3 as in (2.12), and performing one step of the two-dimensional

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

162 GINES, BEYLKIN, AND DUNN

FIG. 2. Organization of the multiresolution product of T̂0 and T̃0 , which is based on extended NS-
forms.

discrete wavelet transform (an orthogonal transformation). To obtain the blocks Aj ,
Bj , Cj , and Tj , for example, we compute the wavelet decomposition of Tj01 ,

S Aj Bj

Cj Tj
D Å WTj01W*, (2.14)

where W is an orthogonal matrix representing one level of the discrete wavelet trans-
form. Similarly, the block Tj01 may be reconstructed from Aj , Bj , Cj , and Tj by
computing

Tj01 Å W*S Aj Bj

Cj Tj
DW. (2.15)

With a slight abuse of notation, we will use the same letters to denote operators and
matrices, and we will rely on the specific context for separating the two.

Remark 2.2 (Alternate Matrix Representations) . Since in this paper we work with
several matrix structures, we provide a brief summary:

An extended non-standard form is the NS-form which includes the blocks Tj

at all scales and is denoted T0 Å {Aj , Bj , Cj , Tj}1°j°n , as shown in Fig. 2. This
representation is used for multiplying matrices or computing the matrix inverse, and
its full description is found in Section 3.3.

An intermediate non-standard form is used to hold intermediate values and is
denoted T0 Å { Ăj , B̆j , C̆j , T̆j}1°j°n (see Fig. 2) . The symbol (Z) (pronounced
‘‘brehv’’) is used throughout the paper to indicate that values are intermediate and
that additional projections are required. For a full description, see Section 3.3.

The matrix representation on V 0 is simply the ordinary matrix at the finest
scale, T0 : V0 r V0 .

The standard form is the representation of a discretized operator in the tensor-
product wavelet basis. See Section 8 for details.

2.2. Multiresolution Analysis for Functions

Using MRA with finite number of scales (2.2) , we decompose a vector f0 √ V0

onto subspaces V j and W j using projection operators Pj and Qj ,

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

163LU FACTORIZATION OF NS-FORMS

f0 Å ∑
n

jÅ1

Qj f / Pn f , (2.16)

and obtain the wavelet expansion f0 Å {{dj}1°j°n , sn}, where

dj Å Qj f √ W j , (2.17a)

sj Å Pj f √ V j . (2.17b)

The terms in (2.17) admit the recursive definition

sj01 Å dj / sj . (2.18)

Remark 2.3. We note again that the transition from operator notation as in (2.18)
to a vector notation involves combining the vectors dj and sj , and performing one step
of the one-dimensional discrete wavelet transform. The vectors dj and sj may be
obtained by computing the decomposition of sj01 ,

{dj , sj}
T Å Wsj01 , (2.19)

where W is an orthogonal matrix representing one level of the discrete wavelet trans-
form. Similarly, sj01 may be reconstructed from dj and sj by computing

sj01 Å W*{dj , sj}
T . (2.20)

Remark 2.4. If { f1 , f2 , . . . , fN} represent N coefficients of a function f √ V j ,
then the coefficients {dj , sj} may be computed using (2.19) at a cost of O(N) via a
pyramid scheme as described in, e.g., [1] .

Remark 2.5 (Alternate Vector Representations) . There are several representations
of vectors which we use throughout the paper:

An extended representation includes vectors sj at all scales, f0 Å {dj , sj}1°j°n .
This representation is first described in Section 3.2.

The intermediate representation contains intermediate results and is denoted
f0 Å {dZ j , s̆j}1°j°n . See Section 3.2 for details.

3. MULTIRESOLUTION LINEAR ALGEBRA

The approach we develop in this paper for solving systems of linear algebraic
equations allows us to introduce the notion of multiresolution linear algebra. By
this term we mean linear algebra applied to NS-forms, rather than standard matrix
representations. It turns out that in order to develop multiresolution linear algebraic
algorithms, all we need to do is interlace the operations of standard linear algebra
with projections. The linear algebraic operations (e.g. matrix–vector, matrix–matrix
multiplication) are confined to a given scale, whereas projections convey information
between scales. Before describing this approach in greater detail within specific algo-
rithms, let us describe matrix operations and projection procedures common to all
algorithms of this paper.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

164 GINES, BEYLKIN, AND DUNN

3.1. Matrix Operations and Projections

The matrix operations at each scale involve blocks of the original NS-form and
blocks obtained via projections. As an example, in the matrix–matrix multiplication
of two NS-forms, T̂0 and T̃0 , we compute Aj Å Ăj / AV j , where Ăj Å Âj Ãj / B̂jC̃j is
computed from the original NS-forms, whereas AV j is a projection onto scale j , from
scale j 0 1. Relations of this type show how projections and matrix operations are
combined at each scale. Such relations define the necessary algebraic operations for
a given algorithm, and we will refer to them as the governing equations for that
algorithm.

On each scale, the multiresolution algorithms produce intermediate matrices or
vectors, some of which are projected to other scales. To describe the projection
procedure, let us consider some intermediate vectors { s̆j}1°j°n . We need to project
all vectors s̆j on subspaces Wk , k Å j , . . . , n . Instead of projecting each part of the
vector separately, we combine contributions on a given scale before applying the
projection operator. To illustrate, let us assume that projections have been completed
up to scale k 0 1 and describe the procedure for scale k . We proceed in a recursive
manner,

sa k01 / s
V k01 Å dU k / s

V k , (3.1)

where s
V k01 is a projection from the previous scale, and

dU k Å Qk(sa k01 / s
V k01) , (3.2a)

s
V k Å Pk(sa k01 / s

V k01) , (3.2b)

are computed via the wavelet transform described in Remark 2.3. Similarly, for opera-
tors, we compute projections of the intermediate variables { T̆j}1°j°n for k Å j, . . . ,n .
We have

TZ k01 / TU k01 Å AU k / BU k / CU k / TU k , (3.3)

where TV k01 is a projection from the previous scale, and

AU k Å Qk(TZ k01 / TU k01)Qk , (3.4a)

BU k Å Qk(TZ k01 / TU k01)Pk , (3.4b)

CU k Å Pk(TZ k01 / TU k01)Qk , (3.4c)

TU k Å Pk(TZ k01 / TU k01)Pk , (3.4d)

are computed via the wavelet transform described in Remark 2.1. Relations such as
(3.1) and (3.3) will be refered to as the projection equations for a particular algorithm.

3.2. Application of NS-Forms to Vectors

Let us first describe multiresolution matrix–vector multiplication. Let us denote by
T0 Å {{Aj , Bj , Cj}1°j°n , Tn} the NS-form of an operator T0 , and let f0 Å {dH j , s̃j}1°j°n

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

165LU FACTORIZATION OF NS-FORMS

be an extended wavelet representation for f0 . In what follows we define the multiresolu-
tion product of T0 and f0 as

g0 Å T0rf0 , (3.5)

where g0 is the same vector obtained using matrix–vector multiplication with the
usual representations of T0 and f0 .

In order to derive the necessary matrix operations for (3.5) , we write a telescopic
series,

T0 f0 0 Tn fn Å ∑
n

jÅ1

(Pj01T0Pj01)(Pj01 f0) 0 (PjT0Pj)(Pj f0) . (3.6)

Since Pj01 Å Pj / Qj we obtain

T0 f0 0 Tn fn Å ∑
n

jÅ1

(QjT0Qj)(Qj f0) / (QjT0Pj)(Pj f0) / (PjT0Qj)(Qj f0) , (3.7)

or, using (2.8) and (2.17),

T0 f0 Å ∑
n

jÅ1

(AjdH j / BjsI j / CjdH j) / TnsI n . (3.8)

For the terms in (3.8) we have

AjdH j / BjsI j √ Wj , (3.9a)

CjdH j √ Vj , (3.9b)

for j Å 1, 2, . . . , n , and

TnsI n √ Vn . (3.10)

Let us denote

dZ j Å AjdH j / BjsI j , (3.11a)

sa j Å CjdH j , (3.11b)

for j Å 1, 2, . . . , n , and on the last scale,

sa n Å CndH n / TnsI n . (3.12)

The computations in (3.11) and (3.12) are performed using the usual matrix operations
at each scale and may be organized as shown in Fig. 1.

In order to convert {dZ j , s̆j}1°j°n to a wavelet representation {{dj}1°j°n , sn}, we
expand vectors s̆j by setting s

V 1 Å dU 1 Å 0, and, for j Å 1, 2, . . . , n , computing the
projections

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

166 GINES, BEYLKIN, AND DUNN

sa j01 / s
V j01 Å dU j / s

V j , (3.13)

via (3.2) , and by forming the sum

dj Å dZ j / dU j . (3.14)

At the last scale we compute

sn Å sa n / s
V n . (3.15)

Equations (3.14) and (3.15) are the governing equations for multiresolution matrix
vector multiplication, while (3.13) is the corresponding projection equation. The fol-
lowing algorithm summarizes the process:

ALGORITHM 3.1 (Application of NS-Forms to Vectors) . Given the NS- form T0

Å {{Aj, Bj , Cj}1°j°n , Tn} , and the extended wavelet representation f0 Å {dH j , s̃j}1°j°n ,
we compute the multiresolution product T0rf0 Å b0 where b0 Å {{dj}1°j°n , sn} using
the following steps:

1. Initialization: set dU 1 Å sV 1 Å 0.
2. For j Å 1 , 2 , . . . , n, compute

(a) dZ j and s̆j via (3.11),
(b) dU j and s

V j (j x 1) via (3.13),
(c) dj via (3.14).

3. At the last scale compute sn via (3.15).

Computational cost. For operators with sparse NS-forms (see [1] and Section 5)
Algorithm 3.1 requires O((0log e)N) operations, where e is the desired accuracy,
and N 1 N is the dimension of T0 in the ordinary matrix representation. The cost of
Step 2a is proportional to number of non-zero elements, Ns , in the blocks of the NS-
form, which is Ns Å C(0log e)N , where C is a constant. Step 2b is computed in
O((0log e)N) operations using the pyramid scheme. Step 2c clearly requires O((0log
e)N) operations. The number of vanishing moments of the wavelet transform (and,
thus, its cost) is usually chosen to be proportional to the number of accurate digits
0log e, see [1] .

3.3. Multiplication of NS-Forms

In this section we describe an algorithm for the multiplication of NS-forms [4], in
order to derive the governing equations for multiresolution LU factorization. Let us
denote by T̂0 Å { Âj , B̂j , Ĉj , T̂j} and T̃0 Å { Ãj , B̃j , C̃j , T̃j} the extended NS-forms of
operators T̂0 and T̃0 . In what follows we define the multiresolution product of T̂0 and
T̃0 as

TO 0rTH 0 Å T0 , (3.16)

where T0 is the same NS-form obtained from the usual product of T̂0 and T̃0 in V0 .

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

167LU FACTORIZATION OF NS-FORMS

In the following algorithm we use operators T̂j and T̃j . We note that the algorithm
requires only a band around the diagonal of their matrices, even though these operators
are generally not sparse. We will consider sparsity of the blocks of NS-forms separately
and here present a formal derivation of the algorithm for multiplication of NS-forms
following [4].

In order to derive the necessary matrix operations, we again write a telescopic
series,

TO 0TH 0 0 TO nTH n Å ∑
jÅn

jÅ1

[(Pj01TO 0Pj01)(Pj01TH 0Pj01) 0 (PjTO 0Pj)(PjTH 0Pj)] . (3.17)

Using the relation Pj01 Å Pj / Qj and Eq. (2.8) we obtain

TO 0TH 0 0 TO nTH n

Å ∑
jÅn

jÅ1

[(AO jAH j / BO jCH j) / (AO jBH j / BO jTH j) / (CO jAH j / TO jCH j) / CO jBH j] . (3.18)

The operators in (3.18) are acting on following subspaces,

AO jAH j / BO jCH j : Wj r Wj , (3.19a)

AO jBH j / BO jTH j : Vj r Wj , (3.19b)

CO jAH j / TO jCH j : Wj r Vj , (3.19c)

CO jBH j : Vj r Vj , (3.19d)

for j Å 1, 2, . . . , n , and

TO nTH n : Vn r Vn . (3.20)

Let us denote

AZ j Å AO jAH j / BO jCH j , (3.21a)

BZ j Å AO jBH j / BO jTH j , (3.21b)

CZ j Å CO jAH j / TO jCH j , (3.21c)

TZ j Å CO jBH j , (3.21d)

for j Å 1, 2, . . . , n , and on the last scale

TZ n Å CO nBH n / TO nTH n . (3.22)

The computations in (3.21) and (3.22) require the usual matrix operations at each
scale and may be organized as shown in Fig. 2.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

168 GINES, BEYLKIN, AND DUNN

In order to construct a non-standard form {{Aj , Bj , Cj}1°j°n , Tn} from the blocks
{ Ăj , B̆j , C̆j , T̆j}1°j°n , we expand the operators T̆j by setting AV 1 Å BV 1 Å CV 1 Å TV 1 Å 0,
and, for j Å 1, 2, . . . , n , computing the projections

TZ j01 / TU j01 Å AU j / BU j / CU j / TU j , (3.23)

via (3.4) , and by forming the sums

Aj Å AZ j / AU j , (3.24a)

Bj Å BZ j / BU j , (3.24b)

Cj Å CZ j / CU j . (3.24c)

At the last scale we compute

Tn Å TZ n / TU n . (3.25)

Equations (3.24) and (3.25) are the governing equations for multiresolution matrix
multiplication, and (3.23) is the corresponding projection equation. We note that the
terms Tj may also be obtained, if desired, by combining all operators which act on
the subspace Vj r Vj . From Eqs. (3.19d), (3.20), and (3.21d) we have

Tj Å TO jTH j / TZ j / TU j . (3.26)

ALGORITHM 3.2 (Product of NS-Forms). Given the extended NS- forms T̂0 Å { Âj ,
B̂j , Ĉj , T̂j}1°j°n , and T̃0 Å { Ãj , B̃j , C̃j , T̃j}1°j°n , we compute the multiresolution
product T̂0rT̃0 Å T0 , where T0 Å {{Aj, Bj , Cj}1°j°n , Tn} is an NS- form, using the
following steps:

1. Initialization: set AV 1 Å BV 1 Å CV 1 Å TV 1 Å 0.
2. For j Å 1 , 2 , . . . , n compute

(a) Ăj , B̆j , C̆j , and T̆j via (3.21),
(b) AV j , BV j , CV j , and TV j (j x 1) via (3.23),
(c) Aj, Bj , Cj via (3.24).

3. At the last scale compute Tn via (3.25).

Computational cost. For operators whose NS-form admits a sparse structure, the
above algorithm may be shown to be of O((0log e)2N) , where N1 N is the dimension
of T0 in the usual representation. It is shown in [4] that, for a wide class of operators,
Step 2a involves multiplication of banded matrices, and only a band around the
diagonal of T̂j and T̃j is needed. The number of operations is shown to be proportional
to (0log e)2N , since the bandwidth is proportional to 0log e. Step 2b is done via
the pyramid algorithm and, since Ĉj B̃j , j Å 1, . . . , n are banded, the total number of
operations at this step is also proportional to (0log e)N . Finally, Step 2c requires
O(0log e)N) operations.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

169LU FACTORIZATION OF NS-FORMS

FIG. 3. Organization of the multiresolution LU factorization.

4. MULTIRESOLUTION LU FACTORIZATION

We now describe the main tool in our approach, LU factorization with respect to
the multiresolution product (r) introduced in Section 3.3. Given an NS-form T0 Å
{{Aj , Bj , Cj}1°j°n , Tn}, our goal is to compute the NS-forms T̂0 and T̃0 , such that

T0 Å TO 0rTH 0 , (4.1)

where T̂0 and T̃0 are analogous to lower and upper triangular matrices. In defining
lower and upper triangular NS-forms, we require that B̂j Å C̃j Å 0 for j Å 1, 2, . . . ,
n ; that blocks {{ Âj}1°j°n , T̂n} are lower triangular; and that blocks {{ Ãj}1°j°n , T̃n}
are upper triangular, as shown in Fig. 3. We call T̂0 Å {{ Âj , Ĉj}1°j°n , T̂n} and T̃0 Å
{{ Ãj , B̃j}1°j°n , T̃n} lower and upper NS-forms, respectively. We note that if we
convert T̂0 and T̃0 to their corresponding S-forms (see Section 8), then these represen-
tations are the usual lower and upper triangular matrices in the wavelet system of
coordinates.

The purpose of factorizing NS-forms into lower and upper NS-forms is completely
analogous to that of ordinary LU factorization; namely, the goal is to obtain a direct
solver. Unlike with ordinary LU factorization, the NS-form blocks being factorized
are well conditioned for a class of operators associated with elliptic problems. We
illustrate this point in examples of Section 9.

We first consider the multiplication of lower and upper NS-forms T̂0 and T̃0 to
obtain the governing equations, and then develop an algorithm for the reverse process
of obtaining T̂0 and T̃0 as factors of T0 .

4.1. Multiplication of Lower and Upper NS-Forms

For lower and upper NS-forms, the matrix operations described in Section 3.3
simplify, since we require that B̂j Å 0 and C̃j Å 0 for j Å 1, 2, . . . , n . We combine
formulas (3.21) and (3.24), and eliminate the intermediate blocks Ă , B̆ , C̆ , T̆ , to
obtain

Aj Å AO jAH j / AU j , (4.2a)

Bj Å AO jBH j / BU j , (4.2b)

Cj Å CO jAH j / CU j , (4.2c)

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

170 GINES, BEYLKIN, AND DUNN

for j Å 1, 2, . . . , n , and from (3.22) and (3.25),

Tn Å CO nBH n / TO nTH n / TU n . (4.3)

The operators AV j , BV j , CV j are computed by first setting AV 1 Å BV 1 Å CV 1 Å TV 1 Å 0, and
then, for j Å 1, 2, . . . , n , computing the projections as in (3.4) ,

CO j01BH j01 / TU j01 Å AU j / BU j / CU j / TU j . (4.4)

4.2. Factorization

Let us now assume that T0 is given and obtain a recurrence relation that permits
us to compute the lower and upper NS-forms T̂0 and T̃0 . According to (4.2) and
(4.3) , the blocks of the NS-forms T̂0 and T̃0 satisfy the relations

AO jAH j Å Aj 0 AU j , (4.5a)

AO jBH j Å Bj 0 BU j , (4.5b)

CO jAH j Å Cj 0 CU j , (4.5c)

on all scales j Å 1, 2, . . . , n , and on the last scale,

TO nTH n Å Tn 0 TU n 0 CO nBH n . (4.6)

Equations (4.5) and (4.6) are the governing equations for multiresolution LU
factorization, and (4.4) is the corresponding projection equation. Comparing (4.5)
and (4.6) to (4.2) and (4.3) we note that for the purposes of finding Âj , Ãj , Ĉj , and
B̃j , the order of operations is reversed; namely, first projections are subtracted, and
then matrix operations are performed. To make the procedure clear, let us assume
that factorization has been completed up to scale k 0 1, and describe the procedure
for scale k . Thus, let us assume Eqs. (4.5) are satisfied for 1 ° j ° k 0 1.

The first step is to compute projections of the matrix Ĉk01 B̃k01 / TV k01 from scale
k0 1 to obtain AV k , BV k , CV k , TV k , as in (4.4) . Next, we compute the usual LU factorization,

Ak 0 AU k Å LkUk , (4.7)

and set Âk Å Lk and Ãk Å Uk . Given Âk and Ãk , we obtain B̃k and Ĉk by solving

AO kBH k Å Bk 0 BU k , (4.8a)

CO kAH k Å Ck 0 CU k , (4.8b)

using the usual forward and backward substitution. We have now satisfied (4.5) for
j Å k . On the final scale, j Å n , we use usual LU factorization to compute

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

171LU FACTORIZATION OF NS-FORMS

Tn 0 TU n 0 CO nBH n Å LnUn , (4.9)

and set T̂n Å Ln and T̃n Å Un . We summarize our results as

ALGORITHM 4.1 (Multiresolution LU Factorization). Given the NS- form T0 Å
{{Aj, Bj , Cj}1°j°n , Tn} , we perform the multiresolution LU factorization T0 Å T̂0rT̃0 ,
where T̂0 Å {{ Âj , Ĉj}1°j°n , T̂n} , and T̃0 Å {{ Ãj , B̃j ,}1°j°n , T̃n} are lower and upper
NS- forms, using the following steps:

1. Initialization: set AV 1 Å BV 1 Å CV 1 Å TV 1 Å 0.
2. For j Å 1 , 2 , . . . , n compute

(a) AV j , BV j , CV j , and TV j (j x 1) via (4.4) ,
(b) Âj and Ãj via (4.5a) ,
(c) B̃j via (4.5b) ,
(d) Ĉj via (4.5c) .

3. At the last scale compute T̂n and T̃n via (4.6) .

We consider the computational cost of Algorithm 4.1 in Section 5.5.
Remark 4.1. Although we have just described LU factorization, we may replace

it with Choleski factorization provided that the matrix is symmetric positive definite.
In fact, in some of the examples of Section 9 we used multiresolution Choleski
factorization of NS-forms.

4.3. Direct Construction of Factored NS-Forms

A variant of the algorithm described in Section 4.2 may be used to construct the
multiresolution LU factorization of the usual matrix representation in V0 . Instead of
constructing the NS-form of T0 first and then computing its LU factorization, it is
possible to combine decomposition and factorization.

First we recall that blocks of the NS-form are computed for j Å 1, . . . , n via (2.9) ,

Tj01 Å Aj / Bj / Cj / Tj . (4.10)

This recursive procedure may easily be incorporated into multiresolution LU factoriza-
tion by combining projection operations at each scale. To illustrate, let us again assume
that computations are complete for scales 1 ° j ° k 0 1 and show the necessary
steps for scale k .

We note that the projections of matrix Tk01 from scale k 0 1, as in (4.10), and
projections prescribed by the multiresolution LU factorization algorithm (Eq. (4.4)) ,
may be combined as

Tk01 0 (CO k01BH k01 / TU k01)

Å (Ak 0 AU k) / (Bk 0 BU k) / (Ck 0 CU k) / (Tk 0 TU k) , (4.11)

which is the projection equation for the direct construction of factored NS-forms.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

172 GINES, BEYLKIN, AND DUNN

FIG. 4. The lower NS-form for Example 1 of Section 9. All entries whose absolute values are larger
than 1007 are shown in black.

To proceed, we compute the LU factorization at scale k . We note that the governing
equations for this procedure are the same as those in Section (4.2) , and thus, factoriza-
tion proceeds as in (4.7) and (4.8) . We have:

ALGORITHM 4.2 (Direct Construction of Factored NS-Forms). Given an operator
T0: V0 r V0 , we perform the simultaneous wavelet decomposition and multiresolution
LU factorization T0 Å T̂0rT̃0 , where T̂0 Å {{ Âj , Ĉj}1°j°n , T̂n} , and T̃0 Å {{ Ãj ,
B̃j ,}1°j°n , T̃n} are lower and upper NS-forms, using the following steps:

1. Initialization: set AV 1 Å BV 1 Å CV 1 Å TV 1 Å Ĉ0 Å B̃0 Å 0 .
2. For j Å 1 , 2 , . . . , n compute

(a) (Aj 0 AV j) , (Bj 0 BV j) , (Cj 0 CV j) , and (Tj 0 TV j) using (4.11) ,
(b) Âj and Ãj via (4.5a) ,
(c) B̃j via (4.5b) ,
(d) Ĉj via (4.5c) .

3. At the last scale compute T̂n and T̃n via (4.6) .

Remark 4.2. In Section 5 we demonstrate that the NS-forms of T̂0 and T̃0 are sparse
for a wide class of operators. Under such conditions, the fast NS-form decomposition
algorithm described in [1] may be combined with sparse LU factorization. The result
is a fast algorithm for computing T̂0 and T̃0 (see Algorithm 5.3). To illustrate that
such operators may be sparse, we display in Fig. 4 the lower NS-form of Example 1
in Section 9. The original matrix in this example is dense.

4.4. An Alternative Algorithm and the Reduced Operator

In Sections 4.2 and 4.3 we computed the terms Âj , and Ãj using LU factorization,
whereas we computed B̃j and Ĉj using forward and backward substitution. All of these
blocks may be computed in one step, using LU factorization. The approach also allows
us to introduce the notion of the reduced operator.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

173LU FACTORIZATION OF NS-FORMS

Let us organize the blocks (Aj 0 AV j) , (Bj 0 BV j) , (Cj 0 CV j) , and (Tj 0 TV j) , as in
(2.12)) , and compute a partial LU factorization,

F AO j 0

CO j IGF AH j BH j

0 Rj
G Å F (Aj 0 AU j) (Bj 0 BU j)

(Cj 0 CU j) (Tj 0 TU j)
G . (4.12)

We halt factorization after eliminating the first Nj/2 columns, where Nj/2 is the
dimension of Aj , and observe that (4.12) is equivalent to (4.5) (by direct examination).
We note that an additional term, Rj , satisfies

Rj Å Tj 0 (TU j / CO jBH j) (4.13)

and already contains the matrices in (4.11) to be projected to the next scale. Thus,
equation (4.11) is satisfied by computing projections of Rj . The operator Rj is called
the reduced operator at scale j [12]. Using (4.5) , Rj may also be written as the Schur’s
complement

Rj Å (Tj 0 TU j) 0 CjA
01
j Bj . (4.14)

In this context, multiresolution LU factorization may be viewed as a recursive algo-
rithm where the Schur’s complement is computed at each scale j and then projected
to scale j / 1.

5. COMPRESSION OF OPERATORS AND FAST ALGORITHMS

In this section we demonstrate that the algorithms described in this paper require
O(N) operations for a wide class of operators. We show that for strictly elliptic
operators all steps of the algorithms employ sparse (banded) matrices. However, the
actual class of operators for which these algorithms are fast is somewhat wider.

As was shown in [1], the NS-forms of a wide class of operators are sparse in
wavelet bases. In Section 5.2 we demonstrate that for a class of operators associated
with strictly elliptic problems, the lower and upper NS-forms introduced in Section
4 are compressible. Thus, the sparsity is maintained during factorization. Although
the usual LU factorization is an O(N 3) procedure, we show in Section 5.5 that
multiresolution LU factorization requires only O(N) operations if operators satisfy
the conditions in Sections 5.1 and 5.2. We also show in Section 6 that multiresolution
forward and backward substitutions require O(N) operations. Thus, we obtain an
O(N) procedure for solving linear systems of equations.

In Section 7 we demonstrate that when matrices satisfy the conditions in Sections
5.1 and 5.2, matrix equations may also be solved in O(N) steps. In particular, the
inverse of an operator may be obtained in O(N) steps.

The complexity estimates O(N) imply that the operation count is crN , where c is
a constant. Typically, c is proportional to the bandwidth w or w 2 of the matrices
involved. The bandwidth, in turn, is typically proportional to the desired number of
accurate digits, 0log e. In some applications (notably in numerical PDEs) the size

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

174 GINES, BEYLKIN, AND DUNN

of the matrix and the selection of accuracy are connected and, thus, c cannot be
considered a constant. We prefer not to mix the choices of size and accuracy in our
estimates so as to encompass a wider range of applications, and this remark should
be sufficient to avoid any confusion.

Finally, we note that in this paper we provide only an outline of the proofs and
refer to a companion paper [13] for additional details.

5.1. Compression of Operators

The compression of operators, or, in other words, the construction of their sparse
representations in orthonormal bases, has been proposed in [1] . The standard and non-
standard forms of operators described in [1] may be viewed as compression schemes
for a wide class of operators frequently encountered in analysis and applications,
namely, Calderón–Zygmund and pseudo-differential operators.

Let us briefly state the results of [1] . Although in what follows we consider matrix
representations of these operators, we note that any appropriate discretization proce-
dure may be used, such as the Nyström method or the method of moments. In such
cases the wavelet transform is simply a linear algebra tool.

Given an NS-form T0 , the operators Aj , Bj , Cj , Tj are represented by the matrices
a j , b j , g j , s j , where

a j
k ,k = Å ** K(x , y)cj,k(x)cj,k =(y)dxdy , (5.1a)

b j
k ,k = Å ** K(x , y)cj,k(x)fj,k =(y)dxdy , (5.1b)

g j
k ,k = Å ** K(x , y)fj,k(x)cj,k =(y)dxdy , (5.1c)

s j
k ,k = Å ** K(x , y)fj,k(x)fj,k =(y)dxdy , (5.1d)

for j Å 1, 2, . . . , n . The function f(x) is the scaling function and its translates and
dilates {fj,k(x)Å 20j /2f(20j x0 k)}k√Z form an orthonormal basis of Vj . The function
c(x) is the wavelet and {cj,k(x) Å 20j /2c(20j x 0 k)}k√Z forms an orthonormal basis
of Wj . We will require that the function c(x) have M vanishing moments,

*
`

0`

c(x)xmdx Å 0, (5.2)

for m Å 0, . . . , M 0 1.
We label the coefficients a j

k ,k = , b
j
k ,k = , and g j

k ,k = in (5.1) by the intervals I Å I j
k and

I * Å I j
k = denoting the supports of the basis functions. If the kernel K Å K(x , y) is

smooth on the square I 1 I *, then we have the estimate

ÉaII =É / ÉbII =É / ÉgII =É ° CÉIÉM/1 sup
(x ,y)√I1I =

(ÉÌM
x KÉ / ÉÌM

y KÉ) . (5.3)

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

175LU FACTORIZATION OF NS-FORMS

The right-hand side of (5.3) is small whenever either ÉIÉ or the derivatives involved
are small. The estimate in (5.3) allows us to obtain sparse representations of integral
operators by discarding the coefficients that are smaller than a chosen threshold.

Let us assume that the kernel K satisfies the conditions

ÉK(x , y)É ° C0Éx 0 yÉ01 , (5.4)

ÉÌM
x K(x , y)É / ÉÌM

y K(x , y)É ° C1Éx 0 yÉ0M01 , (5.5)

and, in addition, assume that the kernel K defines a bounded operator on L 2 or satisfies
a substantially weaker condition (the so-called ‘‘weak cancellation condition’’) ,

Z*
I1I

K(x , y)dxdyZ ° CÉIÉ, (5.6)

for all dyadic intervals I . Under these assumptions we have

THEOREM 5.1. If the wavelet basis has M vanishing moments, then for any kernel
K satisfying the conditions (5.4) , (5.5) , and (5.6) the matrices a j , b j , g j satisfy the
estimate

Éa j
k ,lÉ / Éb j

k ,lÉ / Ég j
k ,lÉ ° CM(1 / Ék 0 lÉ)0M01 , (5.7)

for all integer k, l.

In particular these considerations apply to pseudo-differential operators. Let T be
a pseudo-differential operator with symbol s(x , j) defined by the formula

T(f)(x) Å * e ixjs(x , j) fO (j)dj Å * K(x , y) f (y)dy , (5.8)

where K is the distributional kernel of T .

THEOREM 5.2. If the wavelet basis has M vanishing moments, then for any pseudo-
differential operator with symbol s of T and s* of T* satisfying the standard conditions

ÉÌa
j Ìb

x s(x , j)É ° Ca,b(1 / ÉjÉ)l0a/b (5.9)

ÉÌa
j Ìb

x s*(x , j)É ° Ca,b(1 / ÉjÉ)l0a/b , (5.10)

the matrices a j , b j , g j of the non-standard form satisfy the estimate

Éa j
i ,lÉ / Éb j

i ,lÉ / Ég j
i ,lÉ ° 2ljCM(1 / Éi 0 lÉ)0M01 , (5.11)

for all integers i, l.

If we approximate the operator TN
0 by the operator TN ,B

0 obtained from TN
0 by setting

to zero all coefficients of matrices a j
i ,l , b

j
i ,l , and g j

i ,l outside of bands of width B ¢
2M around their diagonals, then it is easy to see that

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

176 GINES, BEYLKIN, AND DUNN

FIG. 5. A matrix representing the NS-form of the matrix of Example 1. All entries whose absolute
values are larger than 1007 are shown in black.

\TN ,B
0 0 TN

0 \ ° C

BM
log2N , (5.12)

where C is a constant determined by the kernel K . In most numerical applications,
the accuracy e of calculations is fixed, and the parameters of the algorithm (in our
case, the bandwidth B and order M) have to be chosen in such a manner that the
desired precision of calculations is achieved. If M is fixed, then B has to be such that
\TN ,B

0 0 TN
0 \ ° C /BMlog2N ° e, or, equivalently, B ¢ (C /e log2N)1/M .

The estimate (5.12) is sufficient for practical purposes. It is possible, however, to
obtain

\TN ,B
0 0 TN

0 \ ° C

BM (5.13)

instead of (5.12) (see [1]) .
Finally we note that strictly elliptic operators and their Green’s functions are com-

pressible in the wavelet bases and the decay of the elements of the blocks of the non-
standard forms away from the diagonal may be controlled by choosing appropriate
number of vanishing moments of the wavelet.

As an illustration, we display in Fig. 5 the NS-form of the matrix in Example 1 of
Section 9. Using periodized wavelets with 6 vanishing moments and setting to zero
all entries whose absolute values are smaller than 1007 , we display the remaining
non-zero elements in black in Fig. 5. This matrix is dense in the usual representation.

Remark 5.1. Truncating all elements of the matrix below a certain threshold (re-
lated to the desired accuracy) involves the matrix norm. We have

\dx\

\x / dx\
° \T01\ \T \

\dT \

\T \
. (5.14)

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

177LU FACTORIZATION OF NS-FORMS

The condition number k Å \T01\ \T \ may be viewed as an amplification factor for
the relative error. Thus, (5.14) implies that if thresholding has been performed using
\dT \ ° e\T \, then the relative error of the solution will not exceed ke.

Let us denote by T̂e and T̃e approximations to T̂ and T̃ obtained by setting all entries
that are less than e to zero, and assuming (without a loss of generality) \T̂\ Å \T̃\ Å
1. We obtain \T̂ 0 T̂e\ ° e, \T̃ 0 T̃e\ ° e, and therefore, \T̂T̃ 0 (T̂eT̃e)e\ ° e / e(1
/ e) / e(1 / e)2 . The right side is dominated by 3e. Thus, for truncating the factors
T̂ and T̃ , we use a threshold which is one-third of the threshold used for T .

5.2. Compression of Lower and Upper NS-Forms

In Section 4.4 we introduced the recursively defined reduced operator

Rj Å Tj 0 (TU j / CO jBH j) . (5.15)

Let us denote by ARj
, BRj

, and CRj
the blocks obtained from the projections of Rj .

These blocks have the same rate of decay as the blocks Aj , Bj , and Cj of the NS-form
as shown in the following theorem from [13].

THEOREM 5.3 (Preservation of Structure over Finitely Many Scales) . Let us as-
sume that the operator T and the wavelet basis satisfy conditions of Theorem 5.1 . In
addition, we assume that T is a self-adjoint, strictly elliptic operator.

Let Rj be the reduced operator on some scale j, where reduction started on subspace
V0 and 1 ° j ° n, and let ARj

, BRj
, and CRj

be its blocks. Then the bi-infinite matrices

a r, j , b r, j , and g r, j representing these blocks satisfy

Éa r , j
k ,l É / Éb r , j

k ,l É / Ég r , j
k ,l É ° CM(1 / Ék 0 lÉ)0M01 , (5.16)

for all integers k, l.

In order to prove Theorem 5.3 [13], it is necessary to consider bi-infinite matrices
{mk ,l }k ,l√Z such that

Émk ,lÉ õ C(1 / Ék 0 lÉ)0r , (5.17)

where r ú 1 is a parameter. We note that matrices a j , b j , g j of the NS-form satisfy
this estimate (see Theorems 5.1 and 5.2) where r Å M / 1. Considering the algebra
of invertible matrices {mk ,l }k ,l√Z , the following theorem (an enhancement of the result
presented in [14] following [15]) is used to prove Theorem 5.3.

THEOREM 5.4. If the matrix {mk,l }k,l√Z is invertible on l 2 , then

Ém01
k ,l É õ C *(1 / Ék 0 lÉ)0r . (5.18)

The proof uses relations between commutators of unbounded operator X on l 2

defined by X (yk) Å {kyk} and operators M Å {mk ,l }k ,l√Z and M01 Å {m01
k ,l }k ,l√Z .

The proof is quite elaborate and we refer to [14] for the details.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

178 GINES, BEYLKIN, AND DUNN

From Theorem 5.3 it follows that entries of the blocks ARj
, BRj

, and CRj
have the

same rate of decay as blocks of the original NS-form. Similar to Theorem 5.1, Theorem
5.3 does not give sharp estimates for the constants. We provide numerical examples
in Section 9 to show that the constant in the decay estimate in Theorem 5.3 is not
significantly different from that in Theorem 5.1 since the sparsity (after applying
accuracy cutoff) of the multiresolution LU factors is almost the same as that of the
original NS-form.

In order to prove that all multiresolution LU factors are sparse, we note that both
ARj

and A01
Rj

have a fast rate of decay away from the diagonal as stated in theorems
of this section. Let us now select an e, the desired accuracy, and truncate both ARj

and A01
Rj

independently so that the error (in the operator norm) is e. Using results in
[16] (i.e., Proposition 2.1 therein) , we observe that the banded bi-infinite matrix A01

has banded Choleski factors (or LU factors) . Since computing BH Rj
and CO Rj

involves
the product of two banded matrices, we conclude that all blocks of NS-forms in the
multiresolution LU factorization are banded for a given accuracy e.

We note that in actual computations truncation is performed by restricting computa-
tions to a band (which is selected to accommodate all the entries up to a certain size)
and that matrices are finite rather than bi-infinite.

Combining previous results, we obtain

THEOREM 5.5. Let us assume that the operator T and the wavelet basis satisfy
conditions of Theorems 5.1 and 5.3 . Let T0 be the projection of T on the subspace V0 .

For such operators the NS-form of T0 , T̂0 , the lower, and T̃0 , the upper NS-forms
(T0 Å T̂0rT̃0) have banded blocks for any accuracy e.

Although we demonstrate the sparsity of the lower and upper NS-forms only for
representations with bi-infinite blocks, we observe an excellent confirmation of such
behavior in finite-dimensional numerical experiments in Section 9.

5.3. Fast Decomposition of NS-Forms

As was observed in [1] , an approximation (to arbitrary precision) of the NS-form
of a dense matrix may be constructed in O(N) operations provided that the location
of discontinuities of the kernel is known beforehand. A typical case is where the
blocks of NS-forms are banded and have O(N) non-zero entries. Following the deriva-
tion presented in [1] , we present a fast algorithm for construction of a banded approxi-
mation to the NS-form.

We recall that operators {Aj , Bj , Cj , Tj} are constructed by recursively computing

Tj01 Å Aj / Bj / Cj / Tj , (5.19)

using one step of the discrete wavelet transform (see Remark 2.1) . To construct
the fast algorithm, we limit use of the wavelet transform to computing entries inside
the bands.

We note that blocks Tj do not have rapid decay away from the diagonal and may
not be truncated accurately. However, in regions outside these bands the kernel is
smooth (well represented locally by polynomials of degree less or equal to M , where

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

179LU FACTORIZATION OF NS-FORMS

M is the number of vanishing moments of the wavelet basis) . Thus, coefficients of
the scaling function at coarser scales may be computed without the wavelet transform
using a quadrature formula. The simplest (one-point) quadrature formula is obtained
if we require f(x) to have M 0 1 (shifted) vanishing moments. Using such wavelets,
the coefficients si ,l at any scale may be approximated by

s j
i ,l É 2 js 0

2 j(i01/t)0t/1,2 j(l01/t)0t/1 (5.20)

where s 0 is the original matrix and t is the shift parameter,

t Å *
`

0`

f(x)xdx . (5.21)

The shift parameter t may be chosen to be an integer. We note, however, that for
any wavelet basis a quadrature formula (with M terms) may be constructed and used
instead of (5.20) (see [1]) .

We describe now how to use quadrature formulas in constructing the banded NS-
form. Let us begin by filling the matrix for T0 within a band of width 2w . We then
compute the banded approximate operators A1 , B1 , C1 , T1 using the wavelet transform.
We note that A1 , B1 , C1 , T1 will have a bandwidth w , since the procedure of wavelet
decomposition down-samples the result by a factor of 2.

To proceed to the next scale, we use the quadrature formula (5.20) to extend the
bandwidth of T1 to 2w . We then compute the banded approximate operators {A2 , B2 ,
C2 , T2} from T1 using the wavelet transform. These operators will have a bandwidth
of w . The process is repeated at each scale, j Å 1, 2, . . . , n .

Remark 5.2. Let us provide an additional explanation on the use of the quadrature
formula in constructing approximations to Tj , 0 ° j ° n within a band of width w .
On the first scale, the matrix for T0 is constructed explicitly within a band of 2w .
Consequently, T1 can be constructed explicitly only within a band of w (due to
subsampling) and in general, the operator Tj can be constructed explicitly only within
the band of width w /2 j01 . Obviously, we have to fill bands to the width w on all
scales.

In the algorithm, the bandwidth of operators Tj is extended to 2w on each scale
using the approximate quadrature formula. In doing so, we effectively interpolate the
matrix for T0 as follows: for T1 , we compute interpolated entries of T0 within the
band [2w , 4w] . For T2 , we compute interpolated entries of T0 within the band [4w ,
8w] , and so forth on each scale. However, we reduce the sampling rate by a factor
of two on each scale (which is consistent with the assumptions regarding the smooth-
ness of T0) . Thus, the amount of work to fill in a band of width 2w remains constant
on each scale.

Therefore, although blocks Tj are ‘‘truncated’’ to a bandwidth of 2w , the operator
T0 is sampled well beyond this bandwidth.

ALGORITHM 5.1. (Fast Construction of NS-Form). Given an operator T0: V0 r

V0 , a banded approximation to its NS- form (to arbitrary precision) may be computed
in a fast manner using the following steps:

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

180 GINES, BEYLKIN, AND DUNN

1. Compute entries of T0 within a band of width 2w.
2. For j Å 1 , 2 , . . . , n,

(a) compute Aj , Bj , Cj , and Tj via (5.19) ,
(b) extend the band of Tj to 2w via (5.20) .

Computational cost. Step 1 is computed in O(N) steps. The cost of Step 2a is
O(wNj), where Nj is the size of Tj01 . The cost of Step 2b is O(wNj). The total computa-
tional cost is O((0log e)N) since the bandwidth w is proportional to 0log e.

5.4. Fast Reconstruction of NS-Forms

Let us now show how to reconstruct a banded version of the operators Tj from an
operator in the NS-form. That is, given the operators {{Aj , Bj , Cj}1°j°n , Tn}, we wish
to compute the operators {Tj}1°j°n01 . We note that if T0 satisfies the conditions of
Section 5.1, then the blocks {{Aj , Bj , Cj}1°j°n , Tn} are banded, with bandwidth w .
The operators {Tj}1°j°n01 , however, are represented using a bandwidth 2w (see above).

At each scale j , the operator Tj01 may be reconstructed from the blocks Aj , Bj , Cj ,
and Tj via the inverse wavelet transform (see Remark 2.1) . Let us demonstrate the
process of reconstructing operators Tj beginning at the final scale, j Å n .

We compute Tn01 from operators An , Bn , Cn , Tn using the inverse transform. We
note that the bandwidth of Tn01 will be 2w . To proceed, we first truncate Tn01 to a
bandwidth of w . Next, we reconstruct Tn02 from the operators An01 , Bn01 , Cn01 , Tn01

using the inverse transform. We note that Tn02 will have a bandwidth of 2w . The
process is repeated at each scale, where in general Tj01 is computed by first truncating
Tj to a bandwidth of w , and then computing the inverse transform.

ALGORITHM 5.2. (Fast Reconstruction of NS-Forms). Given the banded NS- form
T0 Å {{Aj, Bj , Cj}1°j°nTn} with width w, the banded operators {Tj}1°j°n01 may be
computed using the following steps:

1. For j Å n, n 0 1 , . . . , 1 ,
(a) truncate Tj to a bandwidth w,
(b) compute Tj01 via (2.15) .

Computational cost. The cost of Step 1b is O(wNj01) , where Nj01 is the size of
Tj01 . The total computational cost is O((0log e)N) since the bandwidth w is propor-
tional to 0log e.

5.5. Sparse Multiresolution LU Factorization

Let us consider the number of operations necessary for computing multiresolution
LU factorization for sparse NS-forms. We assume that T0 and its factors T̂0 , T̃0 are
compressible. Under these conditions, we show that multiresolution LU factorization
may be performed in O(N) steps. We note that sparse data structures are required to
achieve this result. To represent an operator in a sparse format, we truncate matrix
entries below a threshold, related to the desired accuracy.

5.5.1. Sparse Factorization

We begin by computing operators Âj , and Ãj , as described in Section 4. Using
standard LU factorization, we compute

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

181LU FACTORIZATION OF NS-FORMS

Aj 0 AU j Å LjUj , (5.22)

and set Âj Å Lj and Ãj Å Uj . If the matrix representing Aj 0 AV j is sparse, then the
factors in (5.22) are computed using sparse LU factorization, where computations are
restricted to non-zero entries. For banded matrices, the computational cost is reduced
from O(N 3

j) to O(w 2Nj) where Nj is the dimension of Aj 0 AV j and w is its half-
bandwidth.

According to Theorem 5.5, operators B̃j and Ĉj are compressible and may be repre-
sented by banded matrices. Thus, these operators may be obtained efficiently using
sparse forward and backward substitutions. We note that fill-in may naturally occur
during this process, but the banded structure is maintained by truncating values below
the threshold. For this reason, the entire procedure may be viewed as an incomplete
factorization scheme. We note, however, that unlike standard incomplete factorization
schemes, which are generally used within an iterative method, multiresolution LU
factorization may be used to solve the problem directly (see Section 6).

The computational cost of this procedure is O(ww *Nj) , where Nj is the dimension
of matrices, w is the bandwidth of Bj 0 BV j and Cj 0 CV j , and w* is the bandwidth of
B̃j and Ĉj .

5.5.2. Sparse Projections

In this section we consider the projections used during multiresolution LU factoriza-
tion. First, we compute the product of Ĉj01 and B̃j01 , each with bandwidth w . The
product Ĉj01 B̃j01 is obtained using sparse matrix multiplication and has bandwidth
2w . The cost is O(w 2Nj) . Next, we compute the projections AV j , BV j , CV j , TV j , which are
also banded, with width w . These are computed using the fast methods developed in
Section 5.3.

We now describe an algorithm, which combines the fast projection methods of
Section 5.3, with sparse LU factorization, to obtain an O(N) algorithm for the direct
construction of LU factors.

ALGORITHM 5.3. (Fast Construction of Factored NS-Forms). Given an operator
T0: V0 r V0 , we perform the fast wavelet decomposition and multiresolution LU
factorization T0 Å T̂0rT̃0 , where T̂0 Å {{ Âj , Ĉj}1°j°n , T̂n} and T̃0 Å {{ Ãj , B̃j ,}1°j°n ,
T̃n} are banded lower and upper NS- forms, using the following steps:

1. Initialization: set AV 1 Å BV 1 Å CV 1 Å TV 1 Å Ĉ0 Å B̃0 Å 0 .
2. Compute entries of T0 within a band of width 2w.
3. For j Å 1 , 2 , . . . , n,

(a) compute (Aj 0 AV j) , (Bj 0 BV j) , (Cj 0 CV j) , and (Tj 0 TV j) , as described in
Section 5.3 ,

(b) extend the band of (Tj 0 TV j) to 2w via (5.20) ,
(c) compute Âj and Ãj via (4.5a) using sparse factorization,
(d) compute B̃j , and Ĉj via (4.5b) and (4.5c) using sparse forward and

backward substitution,
(e) compute Ĉj B̃j using sparse multiplication.

4. At the last scale compute T̂n and T̃n via (4.6) using LU factorization.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

182 GINES, BEYLKIN, AND DUNN

FIG. 6. Organization of multiresolution forward substitution.

Computational cost. Step 2 is computed in O(wN) steps. The cost of Step 3a is
O(wN). Step 3b is O(wN). Steps 3c and 3d are O(w2N). Step 3e is O(w2N). The
total cost of this procedure is O((0log e)2N) since the bandwidth is proportional to
0log e.

6. SOLUTIONS OF LINEAR ALGEBRAIC EQUATIONS

In this section we combine the results of previous sections and describe a direct
multiresolution solver for operators described in Section 5. We proceed along the
usual lines of using LU factorization for this purpose.

Given an NS-form T0 Å {{Aj , Bj , Cj}1°j°n , Tn}, and the vector b0 Å {{dj ,}1°j°n ,
sn} in a wavelet basis, we seek to find a vector x0 Å {{dH j ,}1°j°n , s̃n} which satisfies

T0rx0 Å b0 , (6.1)

where (r) is the multiresolution product defined in Section 3.2. We note that solutions
of (6.1) are easily obtained when T0 is a lower or upper NS-form. We refer to the
algorithms in Sections 6.1 and 6.2 as multiresolution forward and backward substitu-
tions, since they share common characteristics with the usual forward and backward
substitutions. Combining these algorithms in Section 6.3, we obtain a direct multireso-
lution solver which may be used to compute solutions to (6.1) .

6.1. Multiresolution Forward Substitution

First, we consider (6.1) where T0 is the lower NS-form T0 Å {{Aj , Cj}1°j°n , Tn}.
The structure of the resulting linear system is shown in Fig. 6. The governing equations
are obtained by combining Eqs. (3.11a) and (3.14). Noting that Bj Å 0 for j Å 1, 2,
. . . , n , we have

AjdH j Å dj 0 dU j (6.2)

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

183LU FACTORIZATION OF NS-FORMS

on all scales j Å 1, 2, . . . , n , and on the last scale

TnsI n Å sn 0 s
V n 0 CndH n . (6.3)

The terms dU j , s
V j are computed via the projection equation obtained from (3.13)

Cj01dH j01 / s
V j01 Å dU j / s

V j . (6.4)

At a given scale k , Eq. (6.2) is satisfied by first computing the projection of vector
Ck01dH k01 / sV k01 on scale k to obtain dU k and s

V k as in (6.4) and then solving (6.2)
for dk using standard forward substitution. On the final scale we compute s̃n by
solving (6.3) .

ALGORITHM 6.1 (Multiresolution Forward Substitution). Given the lower NS-
form T0 Å {{Aj, Cj}1°j°n , Tn} , and the vector b0 Å {{dj}1°j°n , sn} in a wavelet
basis, we solve the system T0rx0 Å b0 , where x0 Å {{dH j}1°j°n , s

H
n} is a vector in the

wavelet basis, by performing multiresolution forward substitution as follows:

1. Initialization: set dU 1 Å s
V 1 Å 0 .

2. For j Å 1 , 2 , . . . , n compute
(a) dU j , (j x 1) , via (6.4) ,
(b) dH j via (6.2) .

3. At the last scale compute s̃n via (6.3) .

Computational cost. For operators with banded lower NS-forms, the above algo-
rithm is O(N) . The projection in Step 2a requires O(N) steps using the pyramid
scheme, while the application of Cj to dH j requires O(wN) steps, where w is the matrix
bandwidth. The cost for Steps 2b and 3 is O(wN) . The total cost is O((0log e)N)
since w is usually proportional to 0log e.

Remark 6.1. It is possible to combine the wavelet decomposition of b0 with multi-
resolution forward substitution, analogous to the method used in Section 4.3 for matrix
factorization.

6.2. Multiresolution Backward Substitution

We now consider (6.1) where T0 is the upper NS-form T0 Å {{Aj , Bj}1°j°n , Tn}.
The structure of the resulting linear system is shown in Fig. 7. We obtain the solution
using a multiresolution backward substitution algorithm.

The governing equations are obtained by combining Eqs. (3.11a) and (3.14). Noting
that Cj Å 0 for j Å 1, 2, . . . , n , we have

AjdH j Å dj 0 BjsI j (6.5)

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

184 GINES, BEYLKIN, AND DUNN

FIG. 7. Organization of multiresolution backward substitution.

on all scales j Å 1, 2, . . . , n , and on the last scale,

TnsI n Å sn . (6.6)

We note that no projections enter into Eqs. (6.5) and (6.6) , since Cj Å 0 in (3.11b)
implies that s̆j Å s

V j Å 0. We show, however, that projections from coarser to finer
scales (i.e., reconstructions) will be required throughout the algorithm.

To demonstrate this, let us begin on the coarsest scale, j Å n , and solve (6.6) for s̃n

using the usual backward substitution. This completes the procedure for j Å n . We now
assume that Eq. (6.5) has been satisfied for j Å n , . . . , k / 1, and reconstruct s̃k ,

sI k Å dH k/1 / sI k/1 , (6.7)

using the inverse wavelet transform (see Remark 2.3) . Next, we compute dH n01 by
solving (6.5) using the usual backward substitution. We have

ALGORITHM 6.2. (Multiresolution Backward Substitution). Given the upper NS-
form T0 Å {{Aj, Bj}1°j°n , Tn} , and the vector b0 Å {{dj}1°j°n , sn} in a wavelet
basis, we solve the system T0rx0 Å b0 , where x0 Å {{dH j}1°j°n , s

H
n} is a vector in the

wavelet basis, by performing multiresolution backward substitution as follows:

1. At the last scale compute s̃n using (6.6) .
2. For j Å n, n 0 1 , . . . , 1 compute

(a) s̃j , (j x n) , via (6.7) ,
(b) dH j via (6.5) .

Computational cost. The computational cost for this procedure is the same as for
forward substitution, namely, O((0log e)N) .

6.3. Multiresolution Direct Solver

We have now developed all the tools necessary to solve the linear system of
algebraic equations

T0rx0 Å b0 , (6.8)

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

185LU FACTORIZATION OF NS-FORMS

for general NS-forms T0 Å {{Aj , Bj , Cj}1°j°n}Tn}. The procedure is analogous to
direct methods based on the usual LU factorization. The only difference is that the
product in (6.8) refers to the multiresolution product defined in Section (3.2) .

We begin by computing the multiresolution LU factorization T̂0rT̃0 Å T0 as outlined
in Sections 4.2, 4.3, and 4.4. We proceed to solve the system T̂0ry0 Å b0 for y0 using
multiresolution forward substitution, as described in Section 6.1. Given y0 , we may
obtain x0 by solving T̃0rx0 Å y0 using multiresolution backward substitution, as de-
scribed in Section 6.2.

We emphasize that for operators which satisfy the conditions of Section (5.2) , the
multiresolution LU decomposition requires O((0log e)2N) operations and multireso-
lution forward and backward substitutions O((0log e)N) operations.

7. SOLUTIONS OF MATRIX EQUATIONS

In this section we present a direct method for solving matrix equations. Specifically,
given the NS-forms T̂0 Å {{ Âj , B̂j , Ĉj}1°j°n , T̂n} and B0 Å {{Aj , Bj , Cj}1°j°n , Tn},
we seek to find a NS-form X̃ 0 Å {{AH j , BH j , CH .j}1°j°n , T̃n} which satisfies

TO 0rXH 0 Å B0 , (7.1)

where (r) is the multiresolution product defined in Section 3.3.
Similar to the usual LU decomposition, we may consider the column vectors of B0

in a wavelet basis and solve for columns of X̃ 0 . Unlike the usual LU decomposition,
however, there is a significant difference between considering columns of B0 separately
and considering B0 as a matrix; namely, the matrix representation of B0 is sparser.
For example, under the wavelet transform the identity matrix does not change, whereas
unit columns of the identity matrix develop bands on all scales.

The algorithms of this section may therefore be viewed as generalizations of multi-
resolution forward and backward substitution for matrix equations. Such a solver may
be used to compute the inverse operator T01

0 .

7.1. Factorization of Blocks Tj

In what follows, we use the lower and upper triangular factors T̂j and T̃j , which
belong to the extended lower and upper NS-forms T̂0 and T̃0 . Since these factors are
not normally computed during the multiresolution LU factorization, we begin by
describing a procedure for their construction. These operators may not be sparse, but
algorithms of this section require only a band around the diagonal.

Combining formulas (3.21d) and (3.26), and eliminating the intermediate variable
T̆j , we obtain

Tj Å TO jTH j / CO jBH j / TU j (7.2)

for j Å 1, 2, . . . , n . We compute the factors T̂j and T̃j on each scale using the usual
LU factorization,

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

186 GINES, BEYLKIN, AND DUNN

FIG. 8. Organization of multiresolution forward substitution for matrices.

LjUj Å Tj 0 CO jBH j 0 TU j , (7.3)

where Lj Å T̂j and Uj Å T̃j .

Remark 7.1. We note that this procedure requires the multiplication of Ĉj and B̃j ,
and the computation of TV j via (4.4) . These computations are a part of the LU factoriza-
tion of T0 (see, e.g., Step 2a of Algorithm 4.1). The results may be stored as Tj 0
Ĉj B̃j 0 TV j at each scale j during LU factorization.

ALGORITHM 7.1. (LU Factorization of Blocks Tj) . Given the extended NS- form
T0 Å {Aj, Bj , Cj , Tj}1°j°n , and its LU factors T̂0 Å {{ Âj , Ĉj}1°j°n , T̂n} and T̃0 Å
{{ Ãj , B̃j , }1°j°n , T̃n} , the lower and upper triangular factors T̂j and T̃j may be computed
using the following steps:

1. Initialization: set TV 1 Å 0 .
2. For j Å 1 , 2 , . . . , n compute

(a) TV j (j x 1) via (4.4) ,
(b) T̂j and T̃j via (7.3) .

Computational cost. We note that operations in this algorithm are performed on
dense matrices. However, since we require only a banded version of the operators, we
may perform computations in a fast manner. Step 2a requires the projection of a banded
matrix on a coarser scale and may be computed in O(wN) steps using the fast algorithm
described in Section 5.3. We also require the matrix multiplication of Cj and Bj which
requires O(w2N) operations, where w is the matrix bandwidth. In Step 2b we compute
the LU factorization of a banded operator, which requires O(w2N) operations. The total
computational cost is O((0log e)2N) since w is proportional to 0log e.

7.2. Multiresolution Forward Substitution

We now consider (7.1) , where T̂0 is the lower NS-form T̂0 Å {{ Âj , Ĉj}1°j°n , T̂n}.
The structure of the resulting matrix equation is illustrated in Fig. 8.

The governing equations are obtained by combining Eqs. (3.21) and (3.24), and
noting that B̂j Å 0 for j Å 1, 2, . . . , n . We have

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

187LU FACTORIZATION OF NS-FORMS

AO jAH j Å Aj 0 AU j , (7.4a)

AO jBH j Å Bj 0 BU j , (7.4b)

TO jCH j Å Cj 0 CU j 0 CO jAH j , (7.4c)

for j Å 1, 2, . . . , n , and at the last scale

TO nTH n Å Tn 0 TU n 0 CO nBH n . (7.5)

The terms AV j , BV j , CV j , and TV j are computed via the projection equation in (4.4)

CO j01BH j01 / TU j01 Å AU j / BU j / CU j / TU j . (7.6)

At a given scale k , Eqs. (7.4) are satisfied by first computing projections of the
matrix Ĉk01 B̃k01 / TV k01 to obtain AV k , BV k , CV k , and TV k , as in (7.6) . Next we use the
usual matrix operations to solve (7.4a) and (7.4b) for Ãk and B̃k . Given Ãk , we obtain
C̃k by solving (7.4c) using the usual forward substitution. We have now satisfied Eqs.
(7.4) for j Å k . On the last scale, we compute the term T̃n by solving (7.5) using the
usual forward substitution.

ALGORITHM 7.2. (Multiresolution Forward Substitution (Matrix Version)) . Given
the extended lower NS- form T̂0 Å { Âj , Ĉj , T̂j}1°j°n , and the NS- form B0 Å {{Aj,
Bj , Cj}1°j°n , Tn} , we solve the system T̂0rX̃0 Å B0 , where X̃0 Å {{ Ãj , B̃j , C̃j}1°j°n ,
T̃n} is a NS- form, using multiresolution forward substitution as follows:

1. Initialization: set AV 1 Å BV 1 Å CV 1 Å TV 1 Å 0 .
2. For j Å 1 , 2 , rrrn compute

(a) AV j , BV j , CV j (j x 1) via (7.6) ,
(b) Ãj via (7.4a) ,
(c) B̃j via (7.4b) ,
(d) C̃j via (7.4c) .

3. At the last scale compute T̃n via (7.5) .

Computational cost. The projection in Step 2a requires O(wN) operations using
the fast algorithm described in Section 5.3. The matrix multiplication of Cj with Bj

may be computed in O(w 2N) steps, where w is the matrix bandwidth. Steps 2b, 2c,
and 2d require O(w 2N) operations. The total computational cost is O((0log e)2N) ,
since w is usually proportional to 0log e.

7.3. Multiresolution Backward Substitution

We now consider (7.1) , where T̂0 is the upper NS-form T̂0 Å {{ Âj , B̂j}1°j°n , T̂n}.
The structure of the resulting matrix equation is illustrated in Fig. 9. We obtain the
governing equations by combining Eqs. (3.21) and (3.24) and noting that Ĉj Å 0 for
j Å 1, 2, . . . , n . We have

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

188 GINES, BEYLKIN, AND DUNN

FIG. 9. Organization of multiresolution backward substitution for matrices.

AO jAH j Å Aj 0 BO jCH j , (7.7a)

AO jBH j Å Bj 0 BO jTH j , (7.7b)

TO jCH j Å Cj , (7.7c)

for j Å 1, 2, . . . , n , and at the last scale

TO nTH n Å Tn . (7.8)

We note that no projections enter into Eqs. (7.7) and (7.8) , since Cj Å 0 in (3.21c)
implies that AV j Å BV j Å CV j Å TV j Å 0.

We start at the scale jÅ n and compute T̃n by solving (7.8) using the usual backward
substitution. Let us now assume that (7.7) has been satisfied for j Å n , . . . , k / 1.
We first reconstruct T̃k via (2.9) ,

TH k Å AH k/1 / BH k/1 / CH k/1 / TH k/1 , (7.9)

using the inverse wavelet transform (see Remark 2.1) . We next compute C̃k by solving
(7.7c) using the usual backward substitution. Given T̃k and C̃k , we may obtain Ãk and
B̃k by solving (7.7a) and (7.7b) using the usual backward substitution.

ALGORITHM 7.3. (Multiresolution Backward Substitution (Matrix Version)) .
Given the extended upper NS- form T̂0 Å { Âj , B̂j , T̂j}1°j°n , and the NS- form B0 Å
{{Aj, Bj , Cj}1°j°n , Tn} , we solve the system T̂0rX̃0 Å B0 , where X̃0 Å {{ Ãj , B̃j ,
C̃j}1°j°n , T̃n} is a NS- form, using multiresolution backward substitution as follows:

1. At the last scale compute T̃n using (7.8) .
2. For j Å n, n 0 1 , . . . , 1 , compute

(a) T̃j (j x n) via (7.9) ,
(b) C̃j via (7.7c) ,
(c) B̃j via (7.7b) ,
(d) Ãj via (7.7a) .

Computational cost. The computational cost for this algorithm is the same as for
forward substitution, namely, O((0log e)2N) .

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

189LU FACTORIZATION OF NS-FORMS

FIG. 10. Organization of multiresolution forward substitution for finding the inverse.

7.4. Multiresolution Direct Solver for Matrix Equations

We now consider the solution to matrix equations of the type in (7.1) for general
NS-forms T0 Å {{Aj , Bj , Cj}1°j°n}Tn}. This procedure is completely analogous to
the multiresolution direct methods developed for linear systems in Section 6.3.

We begin by computing the multiresolution LU factorization T̂0rT̃0 Å T0 as outlined
in Sections 4.2, 4.3, and 4.4. In addition, we store the banded versions of the blocks
T̂j and T̃j as described in Section 7.1. We then solve the system T̂0rY0 Å B0 for Y0

using multiresolution forward substitution for matrices, as described in Section 7.2.
Given Y0 , we may obtain X0 by solving T̃0rX0 Å Y0 using multiresolution backward
substitution for matrices, as described in Section 7.3.

Each of these algorithms is O((0log e)2N) , where operators satisfy the conditions
in Section 5.2. We thus have a direct, O((0log e)2N) method for computing solutions
to matrix equations.

7.5. Computing the Inverse Operator

Let us describe the algorithm to compute the inverse operator in greater detail.
Given the NS-form T̂0 Å {{ Âj , B̂j , Ĉj}1°j°n} T̂n}, we seek to find the inverse NS-
form T01

0 Å {{ Ãj , B̃j , C̃j}1°j°n} T̃n} which satisfies

T0rT01
0 Å I0 , (7.10)

where I0 Å {{Ij}1°j°n , In} is the NS-form of an identity matrix. We note that the
identity blocks Ij occupy the space of Aj and that the block In occupies the space of
Tn , as may be seen in Fig. 10. Although the NS-form T01

0 may be obtained using the
multiresolution direct solver as described in Section 7.4, the algorithm is simpler for
this special case.

7.5.1. Forward Substitution

We first consider the multiresolution forward substitution T̂0rỸ0 Å I0 to obtain Ỹ 0 .
We note that Ỹ 0 represents the inverse of T̂0 and that Ỹ 0 is lower triangular. The latter
is true since the inverse of a lower triangular matrix is also lower triangular. Since
Ỹ 0 is lower triangular, B̃j Å 0 on all scales, and AV j Å BV j Å CV j Å TV j Å 0 for j Å 1, 2,

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

190 GINES, BEYLKIN, AND DUNN

FIG. 11. Organization of multiresolution backward substitution for finding the inverse.

. . . , n , and no projections need be computed. Thus, operations on each scale may be
performed independently. From (7.4) and (7.5) we obtain the simplified equations

AO jAH j Å Ij , (7.11a)

TO jCH j Å 0CO jAH j , (7.11b)

for j Å 1, 2, . . . , n , and at the last scale

TO nTH n Å In . (7.12)

7.5.2. Backward Substitution

We next consider the multiresolution backward substitution, T̂0rX̃0 Å Y0 , to obtain
X̃ 0 , as illustrated in Fig. 11. Using (7.7) and (7.8) , we have

AO jAH j Å Aj 0 BO jCH j , (7.13a)

AO jBH j Å 0BO jTH j , (7.13b)

TO jCH j Å Cj , (7.13c)

for j Å 1, 2, . . . , n , and at the last scale

TO nTH n Å Tn . (7.14)

8. LU DECOMPOSITION OF STANDARD FORMS

The LU factorization of matrices represented in the standard form (S-form) is the
usual LU factorization in a wavelet system of coordinates. Although such representa-
tion is less efficient than the multiresolution LU factorization of NS-forms, we show
that if lower and upper NS-forms T̂0 and T̃0 are compressible in a wavelet basis, then
the corresponding S-forms are also compressible.

The S-form may be obtained by applying the wavelet transform to each row and
column of the matrix representing T0 . Alternatively, in [1] it was demonstrated that

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

191LU FACTORIZATION OF NS-FORMS

S-forms may be obtained by first constructing the NS-form and then converting it to
an S-form using the following algorithm:

ALGORITHM 8.1. (Computing the S-Form from the NS-Form). Given the NS- form
T0 Å {{Aj, Bj , Cj}1°j°n , Tn} , the S- form may be obtained at each scale j using the
following steps:

1. Recursively apply the wavelet transform to each row in Bj for k Å j, j / 1 ,
. . . , n.

2. Recursively apply the wavelet transform to each column in Cj for k Å j, j /
1 , . . . , n.

3. Place the blocks {Aj, Bj , Cj} in the space occupied by Tj01 . (This step returns
the system to its original dimension.)

We now use Algorithm 8.1 to construct the S-form of lower and upper NS-forms.
We have

THEOREM 8.1. Let T0 Å T̂0rT̃0 be the multiresolution LU factorization of the NS-
form for T0 , and let T0 Å LU be the standard LU factorization of the S-form for T0 .
Then T̂0 is the NS-form of L, and T̃0 is the NS-form of U. Therefore, sparsity of lower
and upper NS-forms implies sparsity of lower and upper factors of the standard form.

Remark 8.1. We note that since S-form representations also admit a sparse struc-
ture, standard LU factorization may be used to compute the factors L and U . However,
such approach is less efficient than that of using the NS-forms. The loss of efficiency
may be clearly seen from Theorem 8.1. Single bands of Ĉj and B̃j are expanded into
several bands to account for interaction between scales, thus reducing the sparsity of
corresponding matrices by a significant factor.

9. NUMERICAL EXAMPLES

In this section we present numerical examples to demonstrate the performance of
the algorithms of this paper. The programs were written in C and all calculations were
performed on an HP 735/125 computer. As far as the raw speed is concerned, the
code was not optimized. The goal of these examples is to illustrate the behavior of
the algorithms as the size of matrices increases.

In Examples 1 through 4 we compute solutions to linear systems of the type Ax Å
b , where A is an N 1 N matrix, using the fast direct solver described in Section 6.3.
In Example 5 we compute the S-form of a matrix and then perform standard LU
decomposition using sparse data structures to illustrate Theorem 8.1 in Section 8. In
Example 6 we compute the inverse of a matrix using a sparse version of the algorithm
described in Section 7.5. In all cases, the experiments were performed for N Å 128,
256, 512, 1024, and 2048, and in all figures the matrices are depicted for N Å 256.

Accuracy estimates are obtained by first computing the r.h.s. b as b Å Ax , where
x is a random vector with \x\2 Å 1. We then compute the solution x * using the
specified method. Finally, the L2 and L` norms of the error vector e Å x 0 x * are
evaluated. In the examples the number of vanishing moments of wavelet coefficients
was chosen to achieve roughly the single precision accuracy.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

192 GINES, BEYLKIN, AND DUNN

FIG. 12. The NS-form of LU factors for Example 1. The factors are combined together as T̂0 & T̃0

and entries above the threshold 1007 are shown in black.

Let us describe organization of the tables. Column 1 indicates the size of the matrix,
N . Column 2 contains CPU time tf act required to compute the factored NS-forms T̂0

and T̃0 using Algorithm 4.2 of Section 4.3. The time tf act includes the matrix fill,
wavelet decomposition, and multiresolution LU factorization. Column 3 contains the
time tsub necessary to compute the solution of the linear system using sparse multireso-
lution forward and backward substitution of Section 6. Columns 4 and 5 contain the
L` and L2 errors of the computations. Column 6 contains the compression ratio for
T0 , the NS-form of the operator. The compression ratio is defined as the ratio of N 2

to Ns , where Ns is the number of significant entries in the matrix after truncation.
Finally, column 7 contains the compression ratio for the lower and upper NS-forms
T̂0 and T̃0 . This compression ratio is computed for the matrix obtained by placing
both the lower and upper factors into the same matrix (this is how we store the
factors) . We denote this combination T̂0 & T̃0 and note that this matrix contains all
significant entries of the multiresolution LU factorization. We display the combination
T̂0 & T̃0 for various examples to illustrate the sparsity of the LU factors.

EXAMPLE 1. We consider the matrix

Aij Å HC / tan(p(i 0 j) /N) , i x j

1, i Å j ,
(9.1)

where i , j Å 1, . . . , N and C Å 1/N . The constant C is chosen so that Aij É 1/(p(i 0
j)) for small Éi 0 jÉ. Multiresolution LU factorization was performed using periodized
wavelets with six vanishing moments. Operations were restricted to a half-bandwidth
of 20, and elements of absolute value less than 1007 were truncated. In Fig. 12 we
show the truncated matrix T̂0 & T̃0 . Timing and error results are given in Table 1.

We include in Table 1 a comparison of CPU times with usual direct methods.
Column 4 contains the time necessary to compute the usual LU factorization of the
original matrix, which requires O(N 3) operations since the original matrix is dense.
Column 5 contains the time used for dense forward and backward substitution, which

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

193LU FACTORIZATION OF NS-FORMS

TABLE 1
Numerical Results for Example 1

MultiR. LU Dense LU Errors Comp. ratios

N tfact tsub tfact tsub L` L2 T0 T̂0 & T̃0

128 0.46 0.01 0.05 0.01 2.75 1 1007 1.31 1 1007 2.53 2.22
256 1.15 0.02 0.47 0.01 3.50 1 1007 1.35 1 1007 4.76 4.09
512 2.57 0.05 9.93 0.02 2.46 1 1006 4.43 1 1007 9.25 7.85

1024 5.66 0.12 97.05 0.11 3.54 1 1006 7.33 1 1007 18.22 15.41
2048 13.27 0.28 776.4a 0.4a 3.67 1 1006 7.45 1 1007 36.19 30.55

a Estimated values.

is O(N 2) . Columns 6 and 7 contain the L` and L2 errors of the sparse multiresolution
computations.

EXAMPLE 2. We consider the matrix

Aij Å

1, Éi 0 jÉ Å 1, N 0 1

02, i Å j

0, elsewhere

(9.2)

which is a periodized version of the second derivative operator. We note that this
matrix has a one-dimensional nullspace which contains a constant. This nullspace
may easily be removed in the NS-form by computing the decomposition to the last
scale and then eliminating the equations involving Tn . Multiresolution Choleski factor-
ization was performed using periodized wavelets with eight vanishing moments. Oper-
ations were restricted to a half-bandwidth of 22, and elements of absolute value less
than 10010 were truncated. In Fig. 13 we show the truncated matrix T̂0 & T̃0 which

FIG. 13. The NS-form of LU factors for Example 2. The factors are combined together as T̂0 & T̃0

and entries above the threshold 10010 are shown in black.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

194 GINES, BEYLKIN, AND DUNN

TABLE 2
Numerical Results for Example 2

Run times Errors Comp. ratios

N tfact tsub L` L2 T0 T̂0 & T̃0

128 0.61 0.01 3.50 1 1007 3.17 1 1007 2.01 1.60
256 1.53 0.03 9.13 1 1007 9.46 1 1007 3.71 2.83
512 3.46 0.06 2.49 1 1006 2.37 1 1006 7.17 5.38

1024 7.30 0.14 6.52 1 1006 5.94 1 1006 14.11 10.50
2048 17.41 0.33 1.34 1 1005 1.11 1 1005 28.03 20.78

contains the lower and upper NS-forms. Results for this example are summarized in
Table 2.

EXAMPLE 3. We consider the operator Ì /Ìn ln(1/r) (i.e., the normal derivative
of the two-dimensional static Green’s function). We discretize the operator on the
boundary of an ellipse and obtain the matrix I / A where

Aij Å
1
N

cosh(u)sinh(u)
cosh2(u)sin2(uij) / sinh2(u)cos2(uij)

, (9.3)

and uij Å p(i / j) /N , and u is a parameter related to the eccentricity of the ellipse.
The eccentricity of an ellipse is defined as the ratio of the distance between foci to
the length of the major axis. For this example, we use u Å 1.0, which corresponds
to an eccentricity of 0.65.

Multiresolution Choleski factorization was performed using periodized wavelets
with six vanishing moments. Operations were restricted to a half-bandwidth of 10,
and elements of absolute value less than 1007 were truncated. The results for this
example are shown in Table 3. Remarkably, in this case the compressiton ratios are
the same for both the NS-form and the LU factors.

TABLE 3
Numerical Results for Example 3

Run times Errors Comp. ratios

N tfact tsub L` L2 T0 T̂0 & T̃0

128 0.31 0.01 1.08 1 1007 7.14 1 1008 17.73 17.73
256 0.70 0.01 1.43 1 1007 9.21 1 1008 64.38 64.38
512 1.52 0.03 5.69 1 1008 3.36 1 1008 198.29 198.29

1024 3.61 0.06 4.37 1 1008 2.71 1 1008 576.14 576.14
2048 8.16 0.12 3.88 1 1008 2.50 1 1008 1474.79 1474.79

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

195LU FACTORIZATION OF NS-FORMS

FIG. 14. The NS-form of LU factors for Example 4. The factors are combined together as T̂0 & T̃0

and entries above the threshold 1007 are shown in black.

EXAMPLE 4. We consider the matrix

Aij Å

1, Éi 0 jÉ Å 1

01.5, i Å j

0, else

(9.4)

which is similar to the second derivative operator. This matrix, however, is not posi-
tive-definite and does not satisfy the requirements of Section 5.2. We include this
example to demonstrate that some improvement in speed may still be obtained. In
Fig. 14 we show the lower and upper NS-forms T̂0 & T̃0 constructed using periodized
wavelets with 6 vanishing moments. All entries above a threshold of 1007 are shown
in black. The first two scales correspond to a positive definite submatrix, and the
blocks of the LU factors are banded. Beyond scale j Å 3, the matrix is no longer
banded, but some sparsity remains. The algorithm is modified by allowing fill-ins to
be generated outside the bands (the initial half-bandwidth was 15). The effect is that
the bandwidth is allowed to grow and, at j Å 3, the bandwidth equals the size of the
sub-block. Since the matrix is not positive-definite, we use partial pivoting as described
in the Appendix. The results are summarized in Table 4.

TABLE 4
Numerical Results for Example 4

Run times Errors Comp. ratios

N tfact tsub L` L2 T0 T̂0 & T̃0

128 0.37 0.01 1.72 1 1006 1.49 1 1006 2.63 1.97
256 0.94 0.04 5.05 1 1006 4.91 1 1006 5.04 3.31
512 2.60 0.11 7.01 1 1006 6.33 1 1006 9.88 6.09

1024 8.32 0.38 7.68 1 1006 5.91 1 1006 19.62 11.35
2048 30.05 1.40 3.13 1 1005 2.37 1 1005 39.11 20.57

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

196 GINES, BEYLKIN, AND DUNN

FIG. 15. The S-form of LU factors for Example 5. The factors are combined together as L & U and
entries above the threshold 1007 are shown in black.

EXAMPLE 5. We compute the S-form of the operator used in Example 1 and then
perform standard LU factorization using sparse data structures. All elements of abso-
lute value less than 1007 were truncated. We compute the S-form directly (without
computing the NS-form first) and it requires O(N 2) operations. We use this example
to demonstrate that if NS-forms remain sparse during multiresolution LU factorization
(as in Example 1), then the corresponding S-forms will also be sparse (see Section
8 for details) . In Fig. 15 we show the truncated matrix L & U which contains the
lower and upper triangular matrices produced during LU factorization. From Table 5
we observe that the compression ratio for the S-form is worse than that for the NS-
form in Table 1.

EXAMPLE 6. We compute the inverse of the operator used in Example 3 and leave
the result in the NS-form. All operations were performed using periodized wavelets
with six vanishing moments. Operations were restricted to a half-bandwidth of 10,
and elements of absolute value less than 1007 were truncated.

Error analysis for this example was performed by computing the solution vector x *

as x * Å T01
0 b , and then comparing x * to x as previously described. In Fig. 16 we

show the resulting matrix T01
0 . All entries whose absolute value is greater than 1007

are shown in black.

TABLE 5
Numerical Results for Example 5

Run times Errors Comp. ratios

N tfact tsub L` L2 A L & U

128 0.52 0.00 1.86 1 1007 9.52 1 1008 1.84 1.75
256 2.22 0.02 2.49 1 1007 1.18 1 1007 2.87 2.73
512 8.55 0.05 2.70 1 1007 1.30 1 1007 4.82 4.60

1024 31.68 0.18 2.50 1 1007 1.32 1 1007 8.72 8.37
2048 124.53 0.59 2.95 1 1007 1.42 1 1007 16.60 15.95

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

197LU FACTORIZATION OF NS-FORMS

FIG. 16. The NS-form of T01
0 , the inverse for operator in Example 6. Entries above the threshold 1007

are shown in black. We observe that blocks Ĉ and B̃ are zero on several scales.

The results of this test are shown in Table 6. Column 2 contains the total time
required to fill the matrix, compute the multiresolution LU factors, and compute the
inverse. Columns 3 and 4 contain the error in the computed solution, and column 5
contains the compression ratio for the inverse operator. We observe that for this
example, the time required to compute the inverse is roughly a factor of 2 greater
than for computing the LU factorization.

Condition numbers. In Table 7 we present the condition numbers of matrices in
four examples and the condition numbers of blocks which are actually factorized
during the multiresolution LU factorization. The top row shows the condition number
of the original matrix of size N Å 256. In rows 2 through 7 we present the condition
number of blocks Aj of the NS-form at different scales j Å 1, . . . , 7, which are
factorized during multiresolution LU factorization.

The second column of Table 7 (Example 2) is most interesting since it shows
nearly perfect condition numbers on all scales, whereas the original operator has
condition number of O(N 2) , where the size of the matrix is N 1 N .

10. GENERALIZATIONS AND CONCLUSIONS

The sparsity of multiresolution LU factorization algorithms does not depend on
dimension. This is in a sharp contrast with the usual practice, where LU factorization

TABLE 6
Numerical Results for Example 6

Errors Comp. ratioRun time

N tinv L` L2 T01
0

128 0.55 2.14 1 1007 1.88 1 1007 21.90
256 1.44 2.18 1 1007 2.29 1 1007 74.73
512 3.05 2.60 1 1007 2.04 1 1007 222.34

1024 6.83 1.57 1 1007 1.55 1 1007 615.36
2048 15.79 1.53 1 1007 1.48 1 1007 1572.08

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

198 GINES, BEYLKIN, AND DUNN

TABLE 7
Condition Numbers for Blocks Aj (N Å 256)

Examples

Scale (j) 1 2 3 4

0a 1.41 6641b 2.31 1751

1 1.05 2.00 1.00 2.35
2 1.25 3.41 1.00 17.21
3 1.56 3.85 1.00 40.93
4 1.76 3.96 1.00 2.51
5 1.87 3.99 1.00 1.16
6 1.93 4.00 1.01 1.15
7 1.96 4.00 1.14 1.09

a Condition number of original matrix.
b Null space was removed from matrix.

is not recommended as an efficient approach in problems of dimension two or higher.
For example, if we consider the Poisson equation, then LU decomposition is not
considered as a practical option since the fill-ins will yield dense LU factors. We
emphasize that the off-diagonal decay described in Theorems 5.1 and 5.3 is not specific
to dimension one. Thus, multiresolution LU factorization in the wavelet system of
coordinates becomes an option in solving elliptic problems in higher dimensions and
we plan to demonstrate the multidimensional algorithm in a separate paper.

In multidimensional generalizations it is important to satisfy boundary conditions,
and this implies using non-periodized wavelets. We note that the wavelet transform
appears only as an orthogonal transformation in our approach and thus multiwavelets
[3] or other orthogonal transformations may be used (provided the sparsity is main-
tained). We forsee future work in this direction, where one would try to optimize the
choice of the basis (or coordinate transformation) in an adaptive manner for a given
operator.

An additional feature of multiresolution forward and backward substitution algo-
rithms that we did not address in this paper is adaptivity. Namely, if the right-hand
side of the equation is compressible in wavelet bases, then the solution may be obtained
with the number of operations proportional to the number of significant entries of the
right-hand side.

The multiresolution LU factorization algorithms are intimately related to the idea
of multiresolution homogenization [12]. The development in this direction may be
found in [13], where multiresolution LU factorization algorithms are used as tools
for fast computation. It is shown that these algorithms may be used for computing
small eigenvalues (we note that the approach in [13] is not the power method for the
inverse operator) . It is clear, however, that the power method with inverse iteration
may be used in conjunction with the fast multiresolution LU decomposition to find
small eigenvalues of the original operator.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

199LU FACTORIZATION OF NS-FORMS

We note that it appears possible to generalize our approach to perform fast multireso-
lution QR (or LQ) factorization of NS-forms rather than multiresolution LU factoriza-
tion. The operators for which QR factorization should work have sparse NS-forms,
and thus Householder transformations may be described by sparse vectors. We plan
to develop this algorithm at a later date. Such an algorithm will have a number of
important applications.

Finally, we note that an easy access to inverse operators is very useful in a variety
of situations, e.g., preconditioning, low rank updates of inverse operators, etc. In signal
processing variants of LU algorithms are used in various linear estimation schemes and
we hope that the algorithms of this paper will have an impact on this area as well.

APPENDIX: PIVOTING

In this Appendix we consider linear systems which are not positive-definite. Strictly
speaking, our approach is not guaranteed to work for such systems, as may be seen
in Example 4. However, some improvement has been observed and we describe
the use of partial pivoting with the multiresolution direct methods which have been
developed.

1. Factorization. We consider the effects of partial pivoting on multiresolution
LU factorization described in Section 4. When a row exchange is encountered, we
modify the governing equations in (4.5) using a permutation matrix R which contains
the pivoting information

(RAO jR*)(RAH j) Å R(Aj 0 AU j) , (11.1a)

(RAO jR*)(RBH j) Å R(Bj 0 BU j) , (11.1b)

(CO jR*)(RAH j) Å Cj 0 CU j , (11.1c)

and solve for RÂjR*, RÃj , RB̃j , and ĈjR*. To proceed to the next scale, j / 1, we
require the decomposition of the term Ĉj B̃j . We note that this product may be obtained
from the relation (ĈjR*)(RB̃j) Å Ĉj B̃j , which implies that scale j / 1 is unaffected
by row exchanges at scale j .

2. Forward and backward substitution. We note that multiresolution forward
substitution with pivoting is completely analogous to standard forward substitution
with pivoting. The governing equation (6.2) becomes

(RAjR*)RdH j Å R(dj 0 dU j) , (11.2)

which we solve for RdH j . The projections of CjdH j on the next scale are computed by
noting that (CjR*)RdH j Å CjdH j , which again implies that scale j / 1 is unaffected by
row exchanges. The governing equations for multiresolution back substitution are
unaffected by pivoting.

3. Factorization of Tj blocks. To solve matrix equations of the type in Eq.
(7.1) , we require the factorization of the blocks Tj , as described in Section (7). We

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

200 GINES, BEYLKIN, AND DUNN

denote Rt as the permutation matrix describing the row exchanges in Tj , and let R
describe the row exchanges in Aj . We obtain

(RAO jR*)(RAH j) Å R(Aj 0 AU j) , (11.3a)

(RAO jR*)(RBH j) Å R(Bj 0 BU j) , (11.3b)

(RtCO jR*)(RAH j) Å Rt(Cj 0 CU j) , (11.3c)

(RtTO jR*t)(RtTH j) Å RtTj 0 (RtCO jR*)(RBH j) . (11.3d)

We note that row exchanges in Tj will affect terms Aj/1 , Bj/1 , Cj/1 , and Tj/1 at the
next scale, since these terms are computed as projections of Rt(Tj 0 TV j 0 Ĉj B̃j) ,
instead of those in (4.11). To avoid modifying these terms, we use the direct factoriza-
tion method in Section 4.3, where Aj/1 , Bj/1 , Cj/1 , and Tj/1 are computed after the
factorization of Tj .

4. Forward and backward substitution of matrices. The governing equations
in (7.4) for multiresolution forward substitution for matrices become

(RAO jR*)(RAH j) Å R(Aj 0 AU j) , (11.4a)

(RAO jR*)(RBH j) Å R(Bj 0 BU j) , (11.4b)

(RtTO jR*t)(RtCH j) Å Rt(Cj 0 CU j) 0 (RtCO jR*)(RAH j) . (11.4c)

Again, terms at the next scale, j / 1, are affected by the row exchanges in Tj , since
we require the projection of (RtĈR*)(RB̃j) Å RtĈB̃j instead of Ĉj B̃j . Multiresolution
backward substitution for matrices is unaffected by pivoting.

5. Factorization using alternate algorithm. We now consider the effects of
partial pivoting when using the alternate algorithm described in Section 4.4. We note
that the factorization in (4.12) allows us to interchange rows between Aj and Cj (and,
hence, Bj and Tj) . This provides greater flexibility when choosing the pivots and may
lead to a more accurate solution. We note, however, that since Tj is modified during
the procedure, the terms Aj/1 , Bj/1 , Cj/1 , Tj/1 will be affected. Again, we use the
direct factorization method described in Section 4.3 so that Aj/1 , Bj/1 , Cj/1 , Tj/1 are
computed after Tj .

REFERENCES

1. G. Beylkin, R. R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithms, I,
Comm. Pure Appl. Math. 44 (1991), 141–183.

2. G. Beylkin, R. R. Coifman, and V. Rokhlin, Wavelets in numerical analysis, in ‘‘Wavelets and Their
Applications,’’ pp. 181–210. Jones & Bartlett, Boston, 1992.

3. B. Alpert, G. Beylkin, R. R. Coifman, and V. Rokhlin, Wavelet-like bases for the fast solution of
second-kind integral equations, SIAM J. Sci. Statist. Comput. 14 (1993), 159–174.

4. G. Beylkin, Wavelets, multiresolution analysis and fast numerical algorithms, unpublished manuscript,
INRIA Lectures, available at ftp://amath.colorado.edu/pub/wavelets/papers/INRIA.ps.z.

5. G. Schulz, Iterative Berechnung der reziproken Matrix, Z. Angew. Math. Mech. 13 (1993), 57–59.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

201LU FACTORIZATION OF NS-FORMS

6. A. Ben-Israel and D. Cohen, On iterative computation of generalized inverses and associate projections,
SIAM J. Numer. Anal. 3 (1966), 410–419.

7. T. Söderström and G. W. Stewart, On the numerical properties of an iterative method for computing
the Moore–Penrose generalized inverse, SIAM J. Numer. Anal. 11 (1974), 61–74.

8. I. S. Duff, A. M. Erisman, and J. K. Reid, ‘‘Direct Methods for Sparse Matrices,’’ Clarendon Press,
Oxford, 1986.

9. Multigrid repository, available at http: / /na.cs.yale.edu/mgnet/www/mgnet.html.

10. Y. Meyer, Wavelets and operators, in ‘‘Analysis at Urbana,’’ (N. T. Peck, E. Berkson, and J. Uhl,
Eds.) , Vol. 1, London Math. Society, Lecture Notes Series 137, Cambridge Univ. Press, Cambridge,
UK, 1989.

11. S. Mallat, Multiresolution approximations and wavelet orthonormal bases in L 2(R) , Trans. Amer.
Math. Soc. 315 (1989), 69–87.

12. M. E. Brewster and G. Beylkin, A multiresolution strategy for numerical homogenization, Appl. Comput.
Harmon. Anal. 2 (1995), 327–349; PAM Report 187, 1994.

13. G. Beylkin and N. Coult, A multiresolution strategy for homogenization of elliptic PDE’s and associated
eigenvalue problems, Appl. Comput. Harmon. Anal. 5 (1998), 129–155; PAM Report 270, 1996.

14. P. Tchamitchian, ‘‘Wavelets: Theory and Application’’ (G. Erlebacher, M. Y. Hussaini, and L. Jameson,
Eds.) pp. 83–181, ICASE/LaRC Series in Computational Science and Engineering, Oxford Univ.
Press, New York, 1996.

15. S. Jaffard, Propriétés des matrices bien localisees près de leur diagonale et quelques applications, Ann.
Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 461–476.

16. C. K. Chui, J. D. Ward, and P. W. Smith, Cholesky factorization of positive definite bi-infinite matrices,
Numer. Funct. Anal. Optim. 5 (1982), 1–20.

6118$$0227 03-26-98 15:33:39 achaa AP: ACHA

