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Abstract. Multiresolution analysis in multiwavelet bases is being inves-
tigated as an alternative computational framework for molecular elec-
tronic structure calculations. The features that make it attractive in-
clude an orthonormal basis, fast algorithms with guaranteed precision
and sparse representations of many operators (e.g., Green functions). In
this paper, we discuss the multiresolution formulation of quantum chem-
istry including application to density functional theory and developments
that make practical computation in three and higher dimensions.

1 Introduction

Chemists are familiar with the range of length-scales that are present in molec-
ular electronic wave functions. There is a sharp cusp at the nucleus; atoms have
core and valence regions; molecules also possess inter-atomic bonding regions;
and both atoms and molecules have a long exponential tail. By capturing the
essence of molecules as being composed of perturbed atoms, the linear com-
bination of atomic orbitals (LCAO) approximation has proven tremendously
successful. Part of this success stems from effective management of the length
scales present in the problem. The atomic orbital basis functions naturally incor-
porate both the short- and long-range behavior. However, the non-local nature of
atomic wave functions, especially in high-precision calculations, gives rise to in-
efficiencies, non-physical density matrices, and numerical problems due to severe
linear dependence. Furthermore, the atomic orbital basis sets must be carefully
designed and calibrated [1]. If used out of context (e.g., in charge-fitting [2] or
resolution-of-the-identity methods [3,4]) uncontrolled errors can be introduced.

Multiresolution analysis in multiwavelet bases [5,6,7,8] is an alternative ap-
proach that is potentially very attractive for computational chemistry. Our ap-
proach closely follows that described by Alpert et al. [5]. Among the notable
features are
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– a fully orthonormal basis with high-order convergence even in the presence
of singularities,

– an algorithm for adaptive refinement,
– sparse representations of many operators including the Hamiltonian and

Green functions, and
– fast algorithms with guaranteed precision for many common operations.

The high-order, orthonormal basis with adaptive refinement enables robust high-
precision computation. The separation of length scales implicit in the multires-
olution formulation provides sparse representation of operators which enables
fast computation. Although the orthonormal multiwavelet basis may be used
in standard matrix (i.e., Hamiltonian) formulations of quantum problems, it is
often much more effective to reformulate the problem as an integral equation.

In the following, we use the Poisson equation to introduce the essential details
of multiresolution in multiwavelet bases and how they result in fast algorithms.
Subsequently, we discuss an essential component for efficient computation in
many dimensions, which is accurate separated representations of integral opera-
tors. This is done in the context of an integral formulation of density functional
theory (DFT). Finally, we briefly describe our prototype implementation.

2 Sparse Representations and Fast Algorithms

Much of our discussion is, for simplicity, in one dimension, but the generalization
to higher dimensions is straightforward, except where otherwise noted.

We map the problem to the unit interval. This is recursively divided by two,
so that on each level n = 0, 1, 2, . . . there are 2n boxes. In each box, we define
basis functions that are the first k normalized Legendre polynomials inside the
box and are zero outside. Smooth functions may be represented with an error
O(2−nk). By construction, the basis on a level is orthonormal and the functions
associated with different boxes do not overlap each other. This last property
of disjoint support is the most important advantage of multiwavelet bases. If
boundaries or discontinuities are located at the nodes, high-order convergence
may be maintained.

The basis at a given level of refinement is of dimension k2n and is labeled
V k

n . It satisfies
V k

0 ⊂ V k
1 ⊂ · · · ⊂ V k

n ⊂ · · · . (1)

The multiwavelet subspace (W k
n ) is defined as the orthogonal complement of V k

n

in V k
n+1

W k
n = V k

n+1 − V k
n (2)

which then leads to an alternative decomposition of our basis

V k
n = V k

0 +W k
0 +W k

1 + · · · +W k
n−1. (3)

Beylkin et al. give fast (O(N)) algorithms for converting between the two rep-
resentations. Adaptive local refinement while maintaining a global norm-wise
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error is accomplished by discarding small wavelet coefficients [5]. We presently
use Alpert’s definition of the multiwavelet basis [7].

Since V k
n is the space of polynomials on level n, the first k moments vanish

for functions in W k
n (since they are by construction orthogonal to V k

n ). This
property gives rise to sparse representations of smooth functions and operators.
We use the Poisson equation in three dimensions

∇2u = −4πρ (4)

with free-space boundary conditions (u(∞) = u′(∞) = 0) as an example of how
this enables us to replace iterative solution of differential equations with fast
application of integral operators.

The matrix representation of the Laplacian in either the multiwavelet basis or
standard discretizations is badly conditioned. Moreover, the largest eigenvalues
are associated with the highest frequencies. This leads to the requirement of
good preconditioners for the efficient iterative solution of differential equations.
However, the Green’s function for the Poisson equation is known and we may
immediately write the solution as

u(r) =
∫

ρ(s)
|r − s| ds. (5)

That the multiwavelet representation of this integral operator is sparse can be
readily seen from the multipole expansion of 1/r. Consider the interaction be-
tween two wavelets of order k in two boxes separated by r. Since the first k
moments vanish, the interaction will decay as r−(2k+1). It is also necessary to
consider the interaction between wavelets and polynomials, which will decay at
worst as r−(k+1). We commonly employ wavelets of order 5–13, and, by increas-
ing the order of the wavelets as we increase the required precision, it is never
necessary to include interactions beyond the first 26 nearest neighbors of a box.
This immediately results in an O(N) algorithm with guaranteed precision. Also,
the iterative solution of equations has been replaced with a single, fast, sparse
matrix-vector product.

Some additional insight is provided by the telescoping series [5,6]

Tn = T0 + (T1 − T0) + (T2 − T1) + · · · + (Tn − Tn−1) (6)

where Tn is the projection of an operator (or equivalently a multidimensional
function) onto the polynomial basis at level n. This identity expresses an operator
on the fine scale (level n) in terms of the operator on a coarse scale and successive
differences between length scales. The representation of the operator at all levels
may be dense, as is the case for 1/r. However, if the operator is smooth at
long range, then it will eventually be accurately represented at some scale, and
thereafter the differences between levels will be small. With this awareness, it is
often possible to compute efficiently and accurately without explicit introduction
of the wavelet basis.

Alpert et al. [5] discusses a much wider range of differential and integral
operators, including time dependent problems, for which efficient sparse repre-
sentations may be constructed for arbitrary finite precision.
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3 Integral Formulation of the Schrödinger Equation

The familiar Hamiltonian formulation of the Schrödinger equation
(

−1
2
∇2 + V

)
ψ = Eψ (7)

may be rewritten as an integral equation

ψ = −2
(−∇2 − 2E

)−1
V ψ (8)

where the inverse of the differential operator denotes application of the corre-
sponding Green function. For bound states, the Green function is that of bound-
state Helmholtz equation, which, in three dimensions, is given by

G(r, s, E) =
e−√−2E|r−s|

4π|r − s| . (9)

This kernel is amenable to fast computation in the multiwavelet basis just as
described for the Poisson kernel. Moreover, straightforward iteration of (8) will
converge to the ground state, whereas an iterative, preconditioned eigensolver
must be used to solve the differential form. For DFT models without Hartree-
Fock exchange, the form of the integral operator includes the expected asymp-
totic exponential decay. To extract multiple roots from the integral equation we
use deflation which is discussed elsewhere [8].

4 Practical Application of Integral Operators in Three
Dimensions

Above, the application of integral operators has been informally demonstrated to
be efficient, in the sense of scaling linearly with the number of boxes with signifi-
cant coefficients. However, practical computation also requires a small prefactor.
In three dimensions, the basis within each box on the locally finest level will be
a tensor product of Legendre polynomials. The coefficients associated with the
box will therefore carry three-indices. Similarly, a matrix representation of an
operator will carry six indices; three for the source and three for the result. So
it seems as if cost of both storing and applying the operator scales as O(k6),
where k is again the order of the wavelet. This is prohibitively expensive since
we commonly use wavelets of order 5–13.

Since the basis is orthonormal, the matrix representation of an integral op-
erator with kernel (K) in the scaling function (Legendre polynomial) basis can
be obtained by projection

rn,ll′
pp′,qq′,rr′ =

∫
dxdy dz dx′ dy′ dz′ K(x− x′, y − y′, z − z′)

φnl
p (x)φnl′

p′ (x′)φnl
q (y)φnl′

q′ (y′)φnl
r (z)φnl′

r′ (z′) (10)
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where l and l′ label the result and source boxes, and φnl
i (x) is the i’th Legendre

polynomial in box l on level n. If there existed a separated representation of the
kernel that is accurate to our desired precision ε

K(x, y, z) =
M∑
i=1

σiXi(x)Yi(y)Zi(z), (11)

it is straightforward to see that each dimension may be separately applied. This
reduces the cost of applying the operator to O(Mk4) and reduces the storage
to O(Mk2). The computational cost may be further reduced by using singular
value decomposition to exploit the low operator rank away from the singularity.
The length of the expansion (M) is referred to as the separation rank. It is
critical that this rank be as small as possible, and also that the coefficients in
the expansion be small and of the same sign so as to avoid loss of precision.

Recently [9], it has been shown that many physically significant operators, in-
cluding the Poisson kernel and even the entire many-electron Schrödinger Hamil-
tonian, have low separation rank that increases only logarithmically with both
the precision and dimension. This hints at the possibility of alternative schemes
for efficient computation in many dimensions. In the present context, it ensures
the existence of efficient representations but it does not tell us how to construct
them.

Beylkin et al. [10] have developed a powerful approach for constructing opti-
mal separated representations of functions over finite ranges, but this is too com-
plicated to discuss here. However, near-optimal representations may be formed
from application of quadrature rules to integral representations of kernels as a
sum of Gaussians

K(r) =
M∑
i=1

cie
−tir

2
. (12)

For instance, we have the standard identity

e−µr

r
=

2√
π

∫ ∞

0
e−r2t2− µ2

4t2 dt (13)

which with the substitution t = es can be transformed to

e−µr

r
=

2√
π

∫ ∞

−∞
e−r2e2s− µ2

4 e−2s+sds. (14)

The advantages of this form are that the integrand dies very rapidly at both
ends of the quadrature range so the trapezoidal rule converges geometrically,
and that the required resolution (bandlimit) is almost independent of r. The
resulting Gaussian exponents form a geometric series ensuring a uniform error
at all length scales. The form of the integrand may be analyzed to establish a
suitable range and empirical tests suffice to find the required resolution for given
precision. The results are

shi = log(T/r2lo)/2 (15)
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slo = − log(4T/µ2)/2 (16)
1/h = .2 + 0.47 log10 ε (17)

where the range of the quadrature is [slo, shi], the expansion has a relative preci-
sion of ε over the range [rlo, 1], and h is the spacing of the quadrature points. The
parameter T is empirically determined to be 5, 10, 14, 18, and 24, respectively
for accuracies 1e-2, 1e-4, 1e-6, 1e-8, and 1e-10. However, because of the super-
exponential decay, the number of quadrature points is only weakly dependent
upon T , so using the optimal value of T saves at most only 1 or 2 points. The
quadrature may be modified to provide compact representations of the Poisson
kernel (µ = 0). To illustrate the automatic procedure, fits were generated for
exp(−30r)/r over [1-e8,1] for accuracies 1e-10, 1e-8, 1e-6, 1e-4 and 1e-2. The
errors are plotted in figure 1.

5 Prototype Implementation

In the current implementation, multiwavelets of any order are supported. The
two-scale coefficients are generated using Alpert’s algorithm [7] in extended pre-
cision floating point numbers in Python (e.g., 156-bit arithmetic is used to gen-
erate the two-scale coefficients for order 10). The extended precision is necessary
only to generate the coefficients which are stored for subsequent use. Standard
double precision arithmetic is used for all other operations.

Our initial implementation uses Python for high-level control and C/Fortran
for computationally intensive operations including matrix transformations,
quadratures and the innermost loops. At the highest level, we have defined a
Function class that includes methods for evaluation, compression, reconstruc-
tion, addition, multiplication by a function or scalar, differentiation, application
of the Laplacian, and other operations. The operator overloading capabilities of
Python provide great expressivity and enable very compact programs. For in-
stance, if psi is an instance of the Function class representing an orbital, and
similarly V represents the potential, then the following statement applies the
Fock operator to the orbital1

Hpsi = -0.5 * (Delsq * psi) + V*psi

Delsq is an empty class that is never instantiated. If an instance of Function
is multiplied on the right by Delsq, the function’s Laplacian method is invoked.
Evaluation of a function at a point with the natural semantics psi(x,y,z) is
accomplished by overloading the function call operator.

6 Conclusions

Multiresolution in multiwavelet bases is an attractive alternative framework for
computation in chemistry. It provides fast algorithms with guaranteed precision.
1 Note that matrix elements of the Laplacian, including evaluation of the kinetic en-

ergy, should employ the variational form < f |∇2|g >= − < ∇f.∇g >.
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Fig. 1. Automatically generated representations of exp(−30r)/r accurate to 1e-10,
1e-8, 1e-6, 1e-4, and 1e-2 (measured by the weighted error r(exp(−30r)/r − fit(r))) for
r in [1e-8,1] were formed with 92, 74, 57, 39 and 21 terms, respectively
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The orthonormal basis enables all of the familiar results of quantum theory to be
used without change, though the greatest benefit is obtained by reformulating
the entire solution scheme to take advantage of the properties of the basis. In
particular, the sparse representation of many integral operators, including many
physically significant Green functions, enables new approaches. Additional tech-
niques are necessary for scattering states for which the corresponding Green
functions do not become smooth at long range. Compact separated represen-
tations are important for efficient computation in higher dimensions, and may
also be of utility in conventional Gaussian-based methods. Finally, although our
current implementation uses orbitals, so cannot attain full linear scaling, it is
well established [11,12,13] that a density-matrix approach in a wavelet basis will
achieve linear scaling while maintaining a guarantee of arbitrary, finite precision.
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