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We describe a multiresolution solver for the all-electron local density approximation Kohn-Sham
equations for general polyatomic molecules. The resulting solutions are obtained to a user-specified
precision and the computational cost of applying all operators scales linearly with the number of
parameters. The construction and use of separated forms for operators~here, the Green’s functions
for the Poisson and bound-state Helmholtz equations! enable practical computation in three and
higher dimensions. Initial applications include the alkali-earth atoms down to strontium and the
water and benzene molecules. ©2004 American Institute of Physics.@DOI: 10.1063/1.1791051#

I. INTRODUCTION

We describe a multiresolution solver for the all-electron
local density approximation~LDA ! Kohn-Sham1 equations
for molecules. The objective of this work is to provide a
practical approach for computation on general polyatomic
systems without basis set error and with the computational
cost of applying all operators scaling linearly with the num-
ber of parameters. Besides using a multiresolution approach,
a critical step in attaining this objective has been the devel-
opment of separable representations for kernels of Green’s
functions.2 We describe a prototype, orbital-based implemen-
tation with test application to closed-shell systems including
the alkali-earth atoms down to strontium, and the water and
benzene molecules. We consider that a demonstration of a
practical approach for solution of one-electron methods is an
essential precursor to direct numerical solution of two- and
many-electron problems.

With only a few notable exceptions,3,4 mainstream mo-
lecular quantum chemistry is performed with the linear com-
bination of atomic orbitals~LCAO! approximation most
commonly using atom-centered Gaussian functions. These
methods date back 50 years to the work of Roothaan,5,6

Hall,7 and Boys,8 and many of the successes of modern
quantum chemistry can be attributed to this framework. By
capturing the essence of molecules as interacting atoms, the
LCAO approximation provides a very compact representa-
tion of molecular orbitals and yields analytically smooth po-
tential energy surfaces. Judicious use of carefully designed
atomic orbital~AO! basis sets can yield accurate energy dif-
ferences~e.g., binding energies! despite large errors in the
total energy due to cancellation of the intraatomic error. The
use of a Gaussian basis enables efficient computation of the
necessary two-electron integrals8,9 and makes feasible com-
putations for general polyatomic molecules. In addition,
atomic orbitals formed from contractions of primitive Gaus-
sians effectively eliminate the high frequencies in the vicin-
ity of the nucleus. The resulting matrix representation of the
kinetic energy operator is better conditioned than that in the

primitive basis. The second-quantized form of quantum
theory has been especially successful in formulating post-
Hartree–Fockab initio methods. It is developed by projec-
tion of the differential equations into a fixed, finite basis,
yielding a purely algebraic problem.

However, the LCAO approximation gives rise to severe
problems for the accurate treatment of large systems. These
problems include the expense of computation with high pre-
cision, basis set superposition error,10 linear dependence
problems in high quality calculations, and the fact that AO
basis has still to be designed manually for many problems.
The second-quantized formulation contributes indirectly to
these problems by obscuring the physical interpretation of
expressions involving two-electron integrals.

Intuitively, it is clear that a multiresolution approach can
address many of these concerns. A systematic approach to
multiresolution constructions started with the development
of wavelet bases; see Ref. 11 and references therein. For
numerical applications, the results in Ref. 12 pointed out a
practical approach to reducing the computational cost. One
of the results of Ref. 12 was the introduction of the non-
standard form~NS form! for representing operators in mul-
tiresolution bases. However, the straightforward generaliza-
tion of the NS form~or for that matter, the standard form! to
multiple dimensions is too expensive for practical applica-
tions. Our approach is based on using NS form and separated
representations of operators which was first used in Ref. 13
and significantly extended in Ref. 2. The basic point of Ref.
2 is that many apparently nonseparable operators are, in fact,
separable with a finite but arbitrary precision. Moreover, the
number of terms necessary for such representations is re-
markably small.

In this paper, we construct and use separable representa-
tions of Green’s function for the Poisson and bound-state
Helmholtz equations. These constructions, combined with
multiresolution representations, make our approach practical.

In our approach, we chose to use multiwavelet bases.
This selection has been motivated by a number of contradic-
tory requirements for the basis~see Ref. 14!. In particular,
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we require orthonormality, the interpolating property, and the
ability to accommodate boundary conditions while maintain-
ing both accuracy and the order of convergence. It turns out
that there are no smooth bases that satisfy all of these con-
ditions. Unexpected positive consequences of using multi-
wavelets with disjoint supports include a family of derivative
operators with analogs of forward and backward differences
and a useful connection to the so-called discontinuous finite
~or spectral! elements methods.

We note that the Green’s functions for the Poisson and
bound-state Helmholtz equations can be applied efficiently
using the fast multipole method~FMM! ~see Ref. 15 and
references therein! or using multigrid~see Refs. 16–18!. Al-
though there are similarities between the key representations
used in the FMM and our separated representations, there are
also significant differences. In particular, the separated rep-
resentations can be used in higher dimensions~for example,
in computing six-dimensional integrals! and, after making
the approximation, we are still left with analytic expressions
for further use. We have not yet made any comparison of
speed between these methods.

Previous applications of wavelets and multiresolution
analysis to quantum chemistry19–28 have almost exclusively
employed single-component smooth wavelets and have pri-
marily focused upon periodic systems with pseudopotentials.
Prior investigations employing multiwavelets for electronic
structure have been limited in scope.20,29 Limited applica-
tions of wavelets have been made to molecules including all
electrons, and the largest prior such calculation that we are
aware of is to the oxygen molecule21 employing a large unit
cell in a periodic code. More extensive application has been
made of multigrid approaches4,30–32 and, most significantly,
the numerical approach of Becke.4,33,34

The features that distinguish the current work from pre-
vious related efforts are primarily the use of~1! separated
representations of integral operators;~2! multiwavelet bases
with disjoint support;~3! the nonstandard form of operators
and functions in three dimensions with full local adaptive
refinement; and~4! fast application of integral operators to
eliminate the iterative solution of differential equations.

In the following, we first present some of the mathemati-
cal and numerical methods, and describe in more detail sepa-
rated representations for operators. A detailed introduction to
multiresolution analysis in multiwavelet bases is deferred to
an appendix. Subsequently, we briefly describe the Kohn-
Sham density functional theory~DFT! equations and present
their integral formulation that has several desirable charac-
teristics. Next, we discuss computation of analytic deriva-
tives of the energy with respect to a parameter in the external
potential, and describe the iterative solution scheme and our
prototype implementation. Finally, we analyze results of cal-
culations on several atoms and molecules.

II. MATHEMATICAL BACKGROUND

The multiresolution constructions employed in this paper
are now fairly standard within the mathematical literature
~see, e.g., Refs. 11, 14, 35! but since they may not be familiar
to most chemists, we provide a nonrigorous description of

the approach in an appendix provided online within
EPAPS.36 Here we just summarize the most salient points.

Many objectives of this paper are accomplished, at least
in one dimension, by a few central features of the multireso-
lution representations. However, additional features are nec-
essary to achieve efficient algorithms in higher
dimensions:2,13

~1! Multiresolution wavelet and multiwavelet expan-
sions organize functions and operators efficiently in terms of
proximity on a given scale and between the length scales.

~2! Simple and efficient algorithms exist to transform
between representations at different scales@O(N) decompo-
sition and reconstruction#.

~3! There is a simple truncation and adaptive refinement
mechanism to maintain the desired accuracy.

~4! A large, physically significant class of differential
and integral operators is sparse in wavelet/multiwavelet
bases. High-order convergence is achieved for solving partial
differential and integral equations.

~5! Multiwavelet bases with disjoint support maintain
high-order convergence in the presence of boundary condi-
tions or singularities.

Numerical algorithms using wavelet bases are similar to
other transform methods, e.g., Fourier methods, in that vec-
tors and operators are expanded into a basis and the compu-
tations take place in the new system of coordinates. As in all
transform methods, availability of a fast algorithm for de-
composition and reconstruction is critical. However, unlike
the globally defined functions of the Fourier basis, the
wavelet/multiwavelet bases have localized support, thus per-
mitting adaptive decomposition of functions and operators
and efficient accommodation of boundary conditions. More-
over, due to the vanishing moment property, a large class of
operators~which includes those considered in this paper! ad-
mit a sparse representation. Using multiwavelets~or discon-
tinuous multiwavelets!,35 we achieve a good balance of prop-
erties needed for solving partial differential equations
~PDEs! and integral equations.14

Although we have developed a straightforward imple-
mentation of multiwavelet bases in dimension 3 for compari-
son purposes, we use a separable representation of integral
kernels~in addition to multiresolution representations! as the
main tool to achieve improved performance in three and
higher dimensions.2

Separable representation of integral kernels
in multiple dimensions

We use a numerical generalization of separation of
variables2 to avoid the computational cost of the straightfor-
ward extension of the multiresolution approach to multiple
dimensions. For a given error,e, we represent an operatorT
with the kernel

K~xj 1
,xj

18
;xj 2

,xj
28
;...;xj d

,xj
d8
!

in dimensiond as

(
l 51

M

slK1
l ~xj 1

,xj
18
!K2

l ~xj 2
,xj

28
!¯Kd

l ~xj d
,xj

d8
!, ~1!
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wheresl is a scalar,s1>¯>sM.0, andKi
l(xj i

,xj
i8
) are ker-

nels of normalized~norm one! operatorsTi
l in dimensiond

51. We require the error to be less thane, namely,

IT2(
l 51

M

slT1
l

^ T2
l

^¯^ Td
l I,e. ~2!

We call the scalarssl separation values and the integerM the
separation rank. The smallestM that yields such a represen-
tation for a givene is the optimal separation rank. We do not
necessarily need the optimal separated representation, but it
is essential to obtainM close to the optimal.

In this paper, we consider operators in space of the di-
mensiond53; however we plan to use the same approach
for d56 in the future. In dimensiond52, the separated
representation~1! reduces to a form similar to the singular
value decomposition, but with an unusual pairing of indices.
Instead of separating the input coordinate (xj

18
,xj

28
) from the

output coordinate (xj 1
,xj 2

), we separate direction (xj 1
,xj

18
)

from direction (xj 2
,xj

28
).

An immediate question arises as to how to obtain and
work with representations~1!. In Ref. 2 it was shown that a
number of important operators have a small separation rank.
In fact, a multidimensional numerical calculus of operators
of this form is possible and Ref. 2 provides a brief descrip-
tion of algorithms for this purpose. In this paper we need Eq.
~1! to represent two operators, the Poisson kernel and the
Green’s function for the bound-state Helmholtz operator. Im-
portantly, we combine Eq.~1! with multiresolution multi-
wavelet representations.

Another question is the number of terms in Eq.~1! since
it directly affects the efficiency of algorithms. Theoretically,
for operators we are interested in, the separation rank grows
as the logarithm of the range of validity of approximation2

and, in fact, the actual separation ranks we obtain are merci-
fully small.

We consider convolutions with kernels

Gm~x!5
1

4p

e2muxu

uxu
, m>0, ~3!

represented in multiwavelet bases. The functionGm satisfies

~2D1m2!Gm~x!5d~x!, xPR3. ~4!

If m50, thenG0[G in Eq. ~3! is the Poisson kernel. For
m.0, Gm is the kernel of the bound-state Helmholtz opera-
tor.

In order to construct the representation ofGm in multi-
wavelet bases, we need to compute the integrals

r ii 8, j j 8,kk8
n; l,l8 5E Gm~x2y!f i ,l 1

n ~x1!f i 8,l
18

n
~y1!f j ,l 2

n ~x2!

3f j 8,l
28

n
~y2!fk,l 3

n ~x3!fk8,l
38

n
~y3!dx dy, ~5!

wherex5(x1 ,x2 ,x3), y5(y1 ,y2 ,y3), l5( l 1 ,l 2 ,l 3), and l8
5( l 18 ,l 28 ,l 38). The integration in Eq.~5! is over the support of
the scaling functionsf i ,l

n (x)52n/2f i(2
nx2 l ), where i

50,...,k21, andk is the order of the basis.
Taking advantage ofGm being a convolution, we obtain

r ii 8, j j 8,kk8
n; l,l8 5r ii 8, j j 8,kk8

n; l2 l8

and

r ii 8, j j 8,kk8
n; l

5223nE
21

1 E
21

1 E
21

1

Gm„2
2n~x1 l!…

3F i i 8~x1!F j j 8~x2!Fkk8~x3!dx1dx2dx3 , ~6!

where

F i i 8~x!5E f i~x1y!f i 8~y!dy, i ,i 850,...,k21, ~7!

are cross-correlation functions of the scaling functions.
In order to explain our approach, let us first consider the

Poisson kernel,m50. Since the Poisson kernel is homoge-
neous, it is sufficient to setn50 in Eq. ~6! and we obtain

r ii 8, j j 8,kk8
0;l

5E
21

1 E
21

1 E
21

1 1

ux1 lu
F i i 8~x1!F j j 8~x2!Fkk8~x3!

3dx1dx2dx3 . ~8!

The total number of coefficients in Eq.~8!, namely,O(k6)
for each shift indexl, is too large for a practical method since
then the nominal cost of applying matricesr ii 8, j j 8,kk8

0;l is pro-
portional toO(k6).

However, for anye.0, the integral in Eq.~8! has an
approximation with a low separation rank,

Ur ii 8, j j 8,kk8
0;l

2 (
m51

M

smF
ii 8

m,l 1F
j j 8

m,l 2F
kk8

m,l 3U<e, ~9!

where M5O(2 ln e). In representation~9! the number of
coefficients isMk2 for each shift indexl. The separated form
of r ii 8, j j 8,kk8

0;l in Eq. ~9! allows us to apply the operator sepa-
rately in each direction, with a nominal computational cost
of O(Mk4). Further reduction of the computational cost is
carried out by reducingM for each shift indexl. Better than
this, the overall computational cost proportional toMk3 may
be obtained if sparse and/or low-rank representations are
used for each of the submatrices which are expected to be of
low rank ~due to vanishing multipole moments! away from
the origin.

The procedure of obtaining Eq.~9! consists of three
steps. First we consider the integral

1

r
5

2

Ap
E

2`

`

e2r 2e2s1sds, ~10!

and discretize it on an interval@smin ,smax# using the trapezoi-
dal rule.37 The choice of the interval@smin ,smax# and the num-
ber of nodes depend on the desired ranged<r<1 and accu-
racye. The interval of integration ins must be chosen so that
at the end points the integrand and a sufficient number of its
derivatives are less thane for all d<r<1. This simple ap-
proach yields a number of nodesM that for useful ranges of
parameters is proportional to2ln d and to2ln e. The result,
however, is not near optimal, especially near the end of the
interval of integration wheres is negative.37
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We then use an algorithm for constructing a nearly opti-
mal representation using Ref. 38, where the authors extend
the approach in Ref. 39. As a result, we find the generalized
Gaussian nodes and weights such that

U1r 2 (
m51

M

vme2pmr 2U< e

r
, ~11!

wheree is the required maximum relative error within the
range and where the number of terms,M, is nearly optimal.
The optimization procedure in Ref. 38 also allows us to ob-
tain an approximation

U1r 2 (
m51

M

vme2pmr 2U< e

r 2
, ~12!

which is sufficient to obtain Eq.~9! and requires fewer terms.
The third step in obtaning Eq.~9! is to substitute the

approximation in Eq.~11! or ~12! into Eq. ~8! and compute
one-dimensional integrals. A detailed derivation of these rep-
resentations will appear separately.40

For instance, a 52-term representation was constructed to
obtain a relative precision of 1028 in the interval@1025,1#
using Eq.~11!. The representation obtained using the trap-
ezoidal rule in Eq.~10! used 3001 terms, which may be
partially reduced through elementary methods.37 The optimal
representations was then formed using Ref. 38, yielding 52
terms for the relative accuracy displayed in Fig. 1.

For m.0, the kernelGm in Eq. ~3! is not homogeneous,
so that the approximation should be constructed for each
scale separately which will yield a compact representation of
the matrix elements@see Eq.~5!# rather than of the kernel as
a whole. Although this is clearly the most efficient approach,
details of which we will present in a sequel, in the prototype
code we used an expansion that spans all length scales. To
generate the separated representation ofGm , mÞ0, we use
instead of Eq.~10! the integral

e2mr

r
5

2

Ap
E

2`

`

e2r 2e2s2m2e22s1sds. ~13!

Due to the superexponential decay at both ends of the range,
the trapezoidal rule may be directly applied to this integral to
obtain the desired separated representation.37 In our compu-
tations withGm , we select the range of validity to include
@0.001/(LZmax),1.0#, where Zmax is the maximum nuclear
charge andL is the simulation cell size.

We note that for isotropic kernels, it is sufficient to com-
pute the transition matrix elements for positive translations
only. Values for negative translations are obtained using
symmetries of the basis functionsf i(x)5(21)if i(12x).
The one-dimensional~1D! transition matrix elements are
computed and a singular value decomposition is performed
for these matrices. Away from the singularity, the matrices
have very low operator rank.

When applying the operator, a test is performed to see if
it is more efficient to use a low-operator-rank form. In 1D,
the break-even point is an operator rank less than half the
matrix dimension. In 3D, if the transformations are done in
order of increasing rank, the break-even ratios are about 3/4,
2/3, and 1/2 for the first, second, and third transformations,
respectively.

Efficient application of the separated kernel requires
screening based upon both the magnitude of the coefficients
of the source function and the coefficients of the nonstandard
form of the three-dimensional operator. We currently esti-
mate thel 2 norm of each block of the operator using the
power method, namely, the rapidly convergent iteration
iAi25 limn→` Axn /xn21, where xn5AtAxn21 . Typically,
two to four iterations provide more than one digit precision
starting from a random initial guess.

III. KOHN-SHAM EQUATIONS

The nonlinear Kohn-Sham equations@e.g., Eqs.~7.2.7-9!
and ~7.4.3! in Ref. 1# result from minimization of the DFT
energy functional with respect to variation of the occupied
orbitals @f i(r ),i 51,...,N# which define the electron density
r ~here for a closed-shell system!,

r~r !52(
i 51

N

uf i~r !u2. ~14!

The occupied orbitals are the lowestN eigenfunctions of the
Kohn-Sham operator~also here casually referred to as the
Fock operator since the Hartree and Hartree–Fock equations
are very similar1! which implicitly depends upon the orbitals
through the density,

@2 1
2¹

21V~r !#f i~r !5e if i~r !, ~15!

V~r !5Vext~r !1Vcoul~r !1Vxc
LDA~r !. ~16!

In this paper, the external potentialVext includes only the
attraction of the electrons to the nuclei,

Vext~r !52(
a

Za

ur 2r au
. ~17!

The Coulomb potentialVcoul(r ) describes the repulsion be-
tween electrons,

Vcoul~r !5E dr8
r~r 8!

ur 2r 8u
. ~18!

The current work considers only the standard LDA
approximation,1,41 for which the exchange-correlation poten-
tial Vxc

LDA is a scalar function that depends only uponr(r ).
The Hartree–Fock equations are of similar form, but instead
of the local exchange correlation potentialVxc(r ) include the

FIG. 1. Relative error of approximating 1/r via Eq. ~11! in the interval
@1025,1# using an optimal expansion of 52 Gaussians.
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nonlocal exchange potential@Eq. ~2.5.12! in Ref. 1#. Imple-
mentation of gradient-corrected functionals, Hartree–Fock
exchange, and hybrid potentials will be discussed in future
publications.

The eigenvaluese i are also referred to as the orbital
energies and will be negative for the occupied orbitals. The
asymptotic form of the LDA occupied orbitals is obtained by
substituting the formr b exp2ar into Eqs.~15! and collecting
terms at long range. The result is, for a neutral system,a i

5A22e i andb i51/a i21. The nonlocal exchange potential
causes the asymptotic behavior of the Hartree–Fock
orbitals42 to differ from that of the LDA orbitals, but the
actual iterative solutions of the LDA and Hartree–Fock
equations are very similar.

A. Integral equation formulation

In 1962, Kalos43 used the following Lippmann–
Schwinger integral formulation to determine via Monte
Carlo sampling the ground state wave functionc and corre-
sponding eigenvalueE,

c522GmVc, ~19!

whereGm is an integral operator with the kernel being the
Green’s function defined by

~2¹21m2!Gm~r ,r 8!5d~r 2r 8! ~20!

and m5A22E. For one particle in three dimensions with
free-space boundary conditions,

Gm~r ,r 8!5~2p!23/2K1/2~mur 2r 8u!~mur 2r 8u!21/2

5
e2mr

4pr
. ~21!

To determine the wave function, the integral equation is it-
erated and the eigenvalue adjusted to conserve the norm of
the wave function. In combination with deflation~Sec. VI!, it
may be used to extract the eigenvectors of the three-
dimensional Hamiltonian. Away from the origin, the bound-
state Helmholtz Green’s function is smooth and decays more
rapidly than the Green’s function for the Poisson equation. It
is therefore very efficiently represented in the multiwavelet
basis. This integral formulation of the DFT equations is also
commonly used in band structure calculations.44 However, it
is important to point out that the scattering-state~positive
energy! Green’s function does not have a sparse representa-
tion in wavelet bases since the function is oscillatory at long
range and its higher derivatives do not decay rapidly.

Beyond providing a simple and rapidly convergent itera-
tion to compute the eigenfunctions, this integral equation is
of interest because it does not require the use of derivative
operators to determine the wave function. In principle, even
the total energy may be computed using only integral opera-
tors.

In eigenvalue problems a small perturbation of the ma-
trix bounds only the absolute error of the eigenvalues and,
thus, for small eigenvalues the relative precision is worse
than it is for the large ones. In using the differential operators
we are always concerned with subspaces corresponding to
the~relatively! small eigenvalues, whereas for integral opera-

tors ~inverses of the differential operators! we are concerned
with the large eigenvalues, and, thus, capable of maintaining
a better relative precision. Also the integral operator in Eq.
~19! can be viewed as a preconditioner to improve the rate of
convergence.

Additional improvements are expected by using alterna-
tive bases that are being developed by one of us~G.B.! to
provide a more effective representation of band limited
functions.39

B. Boundary conditions

The derivative operator can employ both periodic and
zero Dirichlet boundary conditions.14 The Green’s function
@Eq. ~21!# used in the integral equation iteration@Eq. ~19!# is
for free-space boundary conditions, which are that the wave
function and its derivative are zero at infinity. It is important
to enforce these boundary conditions during the iterative pro-
cess, otherwise nonphysical solutions may be amplified. To
enforce these conditions, we multiply all trial molecular or-
bitals by a simple mask which is a tensor product of the
following function:

m~x!5H s~x/t!, 0<x<t

1, t<x<12t

s~~12x!/t!, 12t<x<1 ,

~22!

where

s~x!5x2~322x!.

The polynomials(x) is the firstb function which is zero at
x50, 1 atx51, and also has zero first derivative atx50, 1.
We currently chooset51/16.

The above approach to enforce the boundary conditions
requires that the box be large enough for the orbitals or wave
function to become negligble. If the box is not large enough,
it is not possible to converge the equations to a precision
greater than the implied truncation of the wave function; the
energy is less affected. Although the multiresolution decom-
position can efficiently treat a large box, it may be yet more
efficient to use a smaller box and either match with an
asymptotic form or to include the boundary terms in the
integral equation. If the wave function and the bound-state
Helmholtz Green’s function are substituted into Green’s
theorem, then the integral iteration is modified as follows:

c522E
V

dsGm~r ,s!V~s!c~s!

1E
]V

ds@G~r ,s!¹sc~s!n̂2c~s!¹sG~r ,s!,n̂#, ~23!

wheren̂ is an outward unit vector normal to the surface. The
first integral is over the finite simulation volume and the
second integral is over the surface. The additional terms cor-
respond to single and double layer contributions. We have
not yet implemented this approach.
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IV. ANALYTIC ENERGY DERIVATIVES

Derivatives of the variational Hartree–Fock or DFT en-
ergy with respect to the nuclear coordinates~or any param-
eter in the external potential! are straightforwardly evaluated
since the Hellman–Feynman theorem is obeyed up to the
truncation threshold:

]E

]q
5 K ]Vext

]q L 1O~e!, ~24!

whereVext is the external potential@usually the sum of the
electron-nuclear and nuclear-nuclear potentials, Eq.~17!#,
andq is a parameter~e.g., a nuclear coordinate!. The energy
for variational models is quadratic in the error in the wave
function due to approximate solution of the equations, and
the gradient is linear in this error. However, both the energy
and the gradient are linear in the basis truncation error.

V. SMOOTHED NUCLEAR POTENTIAL

If the nuclei are located at dyadic points, the multiwave-
let basis can efficiently represent the cusps in orbitals at
nuclei—the accuracy and high-order convergence are main-
tained. This is also the case for the singular nuclear potential,
except in the vicinity of the nucleus, where many levels of
refinement may be necessary for high~normwise! precision.
The ability of the polynomial basis to attain high values at
the interval endpoints is beneficial in representing the singu-
larity, and the integrals used to project the potential into the
polynomial basis are satisfactorily evaluated by Gauss–
Legendre quadrature. Moreover, since the type of singularity
is known, it is possible to develop quadratures that take the
singularity into account, thus reducing further the number of
refinement levels.

If the nuclei are displaced away from dyadic points, the
high-order convergence for the wave function breaks down
near the nucleus, and additional levels of refinement are nec-
essary both for the orbitals and the potential. Maintaining
precision in the wave function near the nucleus is important
for computation of accurate analytic gradients and other
properties. Also, the Gauss–Legendre quadrature can fail, for
instance, if a nucleus coincides with a quadrature point.

Since we have not yet implemented adaptive subdivision
of boxes~i.e., division by factors other than 2! we have cho-
sen to smooth or band-limit the nuclear potential. Modifying
the potential, so that both the potential and the resulting or-
bitals are smooth near the nucleus, eliminates unnecessary
fine length scales, which improves the efficiency and accu-
racy of calculations especially with the nuclei at nondyadic
points.

The electron-nuclear attraction potential (r 21) has been
smoothed replacing it withu(r /c)/c wherec is a scalar and
the functionu(r ) is

u~r !5
erf r

r
1

1

3Ap
~e2r 2

116e24r 2
!. ~25!

This function is displayed in Fig. 2. Forr .6, u(r ) differs
from 1/r by less than 64-bit machine precision. The first
three moments of the error are zero, i.e.,

E
0

`

drr 21n~u~r !2r 21!50 ~26!

for n50, 1, 2. These zero moments ensure that the expecta-
tion value of the potential is quite accurate, implying that the
error arising from use of the modified potential is mostly
second order. Other forms may be preferable, but this has
proven satisfactory to date.

The parameterc determines the range of the modifica-
tion to the potential and thus the size of the error in the total
energy. From perturbation theory and empirical tests~solving
the one-electron equation to high precision!, we determined
the following relationship between the total error~e! in the
energy and the smoothing parameterc for hydrogenic atoms
of chargeZ,

c5S 0.004 35e

Z5 D 1/3

. ~27!

Tests for the helium isoelectronic Hartree–Fock series
showed almost exactly twice this error, consistent with
double occupation of the orbital.

In Sec. VIII D, we present results comparing the energy
and structure of the oxygen core orbital in water with various
values of the smoothing parameter.

VI. DFT SOLUTION SCHEME

The only necessary inputs are the nuclear coordinates
and charges, the required final precision, and an initial guess
for the orbitals which is currently an STO-3G~Ref. 45! wave
function generated with NWChem.46 In the near future, we
plan to replace the Gaussian LCAO initial guess with a su-
perposition of precomputed numerical or Slater-type atomic
orbitals. An appropriate box size~L! for the simulation is
most readily determined from an estimate of the energy of
the highest occupied molecular orbital~HOMO!, the ex-
pected asymptotic orbital decay of exp(2A22eHOMO), and
the required precision. The smoothing of the nuclear poten-
tial ~Sec. V! is chosen to match the final required precision in
the energy.

For a sequence of thresholds,e51023, 1025,... down to
the required final precision, we select the basis to be an odd
order ~k! of multiwavelets such thate51022k. This empiri-
cally seems the most efficient choice, but this conclusion is
implementation dependent. If the order of wavelets is too
low, then the functions are refined more deeply and the inte-
gral kernels decay less rapidly. If it is too high, then unnec-

FIG. 2. The exact (1/r ) and smoothed@u(r ), Eq. ~25!# Coulomb potentials.
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essary work is done processing matrices that are currently
treated as dense and/or full rank. Odd orders are more effi-
cient due to the superior error in derivatives.14

At each threshold~e!, we project the previous solution
~or the initial guess! into the current basis and also compute
the nuclear potential and mask~Sec. III B!. Then, the integral
equation~Sec. III A! is iteratively solved to a maximum re-
sidual norm in any orbital of max(e,331025). It is neither
useful nor feasible to solve to more than the available preci-
sion, so at each level we solve the equations to a residual
norm of not less thane. Also, if we are only interested in the
energy, there is no need to determine the wave function to
high precision. Therefore, for an energy accuracy of 1025 the
orbitals are determined to a precision of just 331024,
though some results reported in this paper were computed to
a much higher precision for benchmark purposes.

With just one molecular orbital, iteration of the integral
equation converges satisfactorily. Following Kalos,43 we
note that with an exact eigenfunction as input, an incorrect
eigenvalue in the integral equation results in the norm of the
wave function not being conserved. Ifc is the exact wave
function ande is an approximate eigenvalue, we wish to
compute a correctionD to the eigenvalue. Starting from the
integral equation, denoting the kinetic energy operator asT,

c52~T2e2D!21~Vc!, ~28!

we expand the operator in a Taylor series and obtain

c52~T2e!21~Vc!2D~T2e!22~Vc!1O~D2!. ~29!

Left projection withVc and rearrangement yield the follow-
ing update for the energy:

D52
^Vcuc2c̄&

ic̃i2
, ~30!

where

c̃52~T2e!21~Vc!. ~31!

Since the changing norm of the wave function has been ab-
sorbed into the energy update, the wave function correction
~d! is written as follows:

d5
c̄

ic̃i
2c. ~32!

The convergence of this iteration is empirically tested in Sec.
VIII B and a related variational expression is described in
Ref. 44.

For many-electron systems, we must extract multiple
eigenpairs from the Fock operator. Straightforward iteration
of the integral equation does not work because all roots will
collapse to the lowest root unless the initial guesses are very
close to the correct solutions. Two modifications are neces-
sary. First, we use deflation to recast the integral equation for
each orbital as a ground-state problem. LetPi denote a pro-
jector onto the space of the eigenfunctions of lower energy
than orbital i. At convergence, theith occupied orbitalf i

will be the lowest energy solution of

~12Pi !H~12Pi !f i5e if i , ~33!

which may be rearranged as

~H2PiH~12Pi !2~12Pi !HPi1PiHPi !f i5e if i . ~34!

SincePif i50, only the first two terms on the left-hand side
are nonzero. The second term may be included in the poten-
tial, thereby incorporating the effect of deflation into itera-
tion of the integral equation. However, we note that if, prior
to each iteration, the Hamiltonian or Fock matrix is diago-
nalized in the space of occupied orbitals, then the second
term is also zero and the unmodified integral equation may
be used. The second modification is to orthogonalize the up-
dated orbitals in order of increasing energy.

The coupled, nonlinear integral equations are solved us-
ing a Krylov-subspace accelerated inexact Newton method47

which is similar in spirit to direct inversion in iterative
subspace.48 The total residual is formed by concatenating the
residuals in each orbital@Eq. ~31!# and eigenvalue@Eq. ~30!#.

Each iteration involves~1! optionally computing and di-
agonalizing the Fock matrix in the space of occupied orbitals
~the nonlinear equation solver requires a consistent definition
of the variables, so it is necessary to keep track of the maxi-
mum overlap of the input and output orbitals and to keep
phases consistent!; ~2! computing the density as the sum of
the square of the molecular orbitals;~3! computation of the
Coulomb potential by convolution with the separated form of
the Poisson kernel;~4! computation of the exchange-
correlation potential as a local function of the density;~5!
iteration of the integral equation once for each of the orbitals,
which requires multiplication by the potential, and then con-
volution with the separated form of the Helmholtz kernel;~6!
update of the eigenvalues and orbitals via the subspace
solver; and~7! orthogonalize the resulting orbitals.

The iterative solution proceeds in a mostly out-of-core
fashion, so that at any instant only a few numerical functions
are in memory, with this number not depending upon the
number of electrons in the system.

VII. PROTOTYPE 3D IMPLEMENTATION

Our initial implementation uses Python49 for high-level
control and C/C11/Fortran for computationally intensive
operations including matrix transformations, quadratures,
and the innermost loops. At the highest level, we have de-
fined a Function class that includes methods for evaluation,
compression, reconstruction, addition, multiplication by a
function or scalar, differentiation, application of the Laplac-
ian, and other operations. The operator overloading capabili-
ties of Python provide great expressivity and enable very
compact programs. For instance, ifpsi is an instance of the
Function class representing an orbital, and similarlyV rep-
resents the potential, then the following statement applies the
Fock operator to the orbital:

Hpsi 520.5* ~Delsq * psi !1V* psi .

Delsq is an empty class that is never instantiated. If an
instance of Function is multiplied on the right byDelsq , the
function’s Laplacian method is invoked. Evaluation of a
function at a point with the natural semanticspsi(x,y,z)
is accomplished by overloading the function call operator.
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Internally, a compressed function is represented using
the full sparsity of the translations at each level, but currently
not exploiting the sparsity or low rank within a block of
coefficients. The blocks of difference coefficients of a func-
tion in compressed form are stored in a directory~or asso-
ciative array or hash table!, d, which has an entry for each
significant level. Each of these entries,d[n] , is a directory
indexed by the translations. Only the significant~above
threshold! translations are stored. Finally,d@n#@lx ,ly ,lz # is
a Tensor object that stores the multiwavelet coefficientsdl

n .
The sum coefficients are similarly represented in a recon-
structed function. The Python Tensor class is a implemented
in C11. SWIG50 is used for facile integration of Python
with C, C11, and Fortran. Persistent and efficient storage of
functions on disk is straightforwardly accomplished by pro-
viding a Python dictionary-like interface to a directory on
disk.

Addition of a compressed function is straightforward—
the sum coefficients at level zero and the difference coeffi-
cients at all levels are simply added. Addition of a recon-
structed function may be similarly accomplished by adding
the sum coefficients at all levels, noting that the result may
have scaling function coefficients at multiple length scales
which must be correctly accounted for during a subsequent
compression. The Function class provides an operation that
performsa f1bg, wherea andb are scalars andf andg are
functions. Multiplication of two reconstructed functions is
performed as described in Refs. 14 and 51 by reconstructing
the functions on the locally finest level, optionally recurring
down one level to preserve the accuracy of the approxima-
tion, tabulating the functions on the quadrature grid, multi-
plying the values, projecting back into the scaling function
basis, and finally compressing and truncating. Application of
a local function @i.e., g( f (r ))] is similarly accomplished.
Evaluation of a compressed function at a point is performed
by recurring down the tree, accumulating the sum coeffi-
cients until they are reconstructed at the finest level in the
box containing the evaluation point. The scaling functions
~Legendre polynomials! are then evaluated at the point of
interest and contracted with the coefficients. If many points
are to be evaluated, it is more efficient to first reconstruct the
function in the scaling function basis at the locally finest
level.

Differentiation is currently performed using a periodic
central difference approximation as described in Ref. 14. A
zero boundary condition is enforced by embedding the solu-
tion volume in zeroes~i.e., references to coefficients outside
the solution volume are treated as zero!. A negative, self-
adjoint approximation to the Laplacian is formed also as de-
scribed in Ref. 14. The derivatives, for multiwavelets of odd
orderk, are accurate to orderk;14 for even order multiwave-
lets, the order of the error in the derivatives is one less.
Therefore, odd multiwavelets are preferred.

The Function class is able to export a description of the
current basis~i.e., a list of the significant translations at each
level! and also can restrict to a specified basis. This function-
ality is useful during iterative processes, such as diagonaliza-
tion. The class is also able to output a description of the

adaptive mesh and a 3D tabulation of the function in formats
suitable for visualization by Opendx.52

Multiwavelets of any order are supported. The two-scale
coefficients are generated using Alpert’s algorithm53 in ex-
tended precision floating point numbers in Python~e.g., 156-
bit arithmetic is used to generate the two-scale coefficients
for order 10!. The extended precision is necessary only to
generate the coefficients which are stored for subsequent use.
Standard double-precision arithmetic is used for all other op-
erations.

VIII. INITIAL APPLICATIONS

A. Helium isoelectronic sequence

To verify that the results did not depend upon the size of
the simulation cell, and to demonstrate the ability of the mul-
tiresolution representation to accommodate multiple length
scales, we performed high-accuracy Hartree–Fock calcula-
tions upon the helium isoelectronic sequence He, Be21,
Mg101, and Ca201 using simulation cell of sizes of 20, 40,
and 80 a.u.

To attain independence of the cell size, the compression
of the nuclear potential must take into account its depen-
dence upon the cell size. The molecular coordinates are in
the cube@2L/2,L/2# ~in atomic units! and these are mapped
to the unit cube@0,1# for the computation. The transforma-
tion scales lengths byL, so the nuclear potential due to a
nucleus of chargeZ at the origin becomesV(x)52Z/
(Lux21/2u) with 0<x<1. In order to maintain precision
independent ofL, one can either compressLV(x) with the
standard precision~e! and subsequently scale by 1/L, or
compressV(x) with precisione/L. We currently do the lat-
ter. Similarly, as noted above~Sec. II!, the lower limit for the
separated form of the bound-state Helmholtz operator must
also scale correctly with the cell size.

With these modifications, the energies are found to be
independent of the cell size and agree to at least seven deci-
mal places in atomic units~the requested precision! with the
results of Thakkar.54

The ability to maintain precision independent of the cell
size suggests that calculations on large molecules containing
atoms at least into the third period will maintain the desired
precision. Doubling the simulation cell size adds an addi-
tional level to the simulation or, in general, an additional
43223548 boxes at the highest level, independent of the
number of boxes or length scales already present. In the spe-
cial case of a single atom at the origin, doubling the box size
at most adds eight additional boxes around the origin at the
finest level. Thus, the calculations in larger boxes are only
slightly more expensive.

B. Hydrogen molecular ion and molecule

Initial molecular calculations were performed upon H2
1

and H2 for which accurate Hartree–Fock results are available
in the literature.20,55,56 The results for H2 ~bond length 1.4
bohrs, box sizeL589.6 bohrs) are given in Table I. In con-
trast to the recent three-dimensional, mixed-basis results of
Pahl and Handy,55 no extrapolation was necessary and the
best result is accurate to about 10210a.u.
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The H2 molecule~bond length 1.4 bohrs! was also used
to examine the convergence behavior for iteration of the in-
tegral equation with and without use of the subspace infor-
mation, and with and without the multiscale solution. All
calculations started from the STO-3G orbital generated at a
bond length of 2 bohrs. Simple iteration of the integral equa-
tion, updating the eigenvalue according to Eq.~30!, using a
multiwavelet of orderk59 and a truncation threshold of
1027, converged to a residual norm of 1026 in ten iterations.
Use of the iterative subspace information47 to accelerate con-
vergence reduces the number of iterations. For many-
electron systems, this is essential for reliable convergence.
Repeating these two calculations with the multiscale solver
~Sec. VI! requires a few more iterations overall, but requires
only one iteration at the most accurate, and most expensive,
threshold. Calculations at successive resolutions are approxi-
mately twofold to fourfold more expensive.

C. LDA calculations on atoms

We have implemented the local density approximation1

~LDA; the Dirac–Slater exchange potential with the VWN-5
correlation potential41! for closed shell systems. In order to
verify the implementation and to explore possible issues with
calculations on many-electron atoms, we performed calcula-
tions on the neutral atoms He, Be, Mg, Ca, and Sr. The
results agree with the atomic data from the NIST database,57

which are reported to six decimal places in atomic units.
Figure 3 displays a radial plot of the strontiums orbitals.

The correct asymptotic decay~Sec. III! is observed for each
orbital until the truncation threshold is encountered. Previ-
ously, as described in Sec. VI, for all solution thresholds we
employed diagonalization within the occupied space to in-
corporate the effects of deflation. Since the integral and dif-
ferential forms of the LDA equations are only consistent up
to the truncation threshold, diagonalization inevitably mixed
the orbitals, resulting in less satisfactory asymptotic forms.
The LDA equations were still being solved to the desired
precision and the energy was correct. However, since the
diagonalization does not significantly accelerate convergence
once the eigenfunctions are identified to low precision, and
to avoid mixing the final eigenfunctions of the integral equa-
tion, we presently only diagonalize in the occupied subspace
with the initial solution threshold. This was how displayed
orbitals were obtained.

D. LDA calculations on polyatomic molecules

LDA calculations were performed upon water and ben-
zene near their equilibrium geometries. In Table II, we report
the geometry and other simulation parameters. In Table III,
we report the corresponding energies and other information
for each threshold used in the iterative solution. The best
energies should be accurate to 1027 hartree for both systems,
with each orbital being determined with residual norm of
331025. These results demonstrate that high precision is
attainable for general polyatomic systems.

The chosen geometry and simulation cell size~Table II!
for both water and benzene place the nuclei at dyadic points
at some level of refinement~level 1 for oxygen and level 7
for hydrogen!. Beyond this level of adaptive refinement, the
nuclei will always be at grid nodes. An important advantage
of the multiwavelet basis~Sec. II! is that it can maintain
high-order convergence if singular points~e.g., the cusps in
the wave function! are located at nodes. It is possible to
adaptively refine the grid by unequally dividing boxes~rather
than exactly in two!, which would enable the nuclei to sit
always at grid nodes regardless of the molecular geometry.

FIG. 3. Plot of the numerical strontiums orbitals. The orbitals demonstrate
the correct asymptotic behavior until the truncation threshold is reached and
accurately span about 11 orders of magnitude in value.

TABLE I. Hartree–Fock energy of the hydrogen molecule (r 51.4 bohrs)
computed with various order wavelets~k!. The truncation threshold in each
calculation was 1022k and the nuclear potential smoothing parameter was
chosen@Eq. ~27! and Sec. VI# to yield an energy accurate to at least
1E210. For comparison, the best variational energy we are aware of is
21.133 629 571 456 due to Mitin~Ref. 56! using a very large Gaussian
basis including off-center functions.

k Energy

5 21.133 556 788 8
7 21.133 629 435 3
9 21.133 629 569 8

11 21.133 629 571 3
13 21.133 629 571 4

TABLE II. Geometries and simulation cell size~both in atomic units! for
LDA calculations on water and benzene.

Molecule Atom x y z

Water L536.8
O 0.0 0.0 0.0
H 1.4375 0.0 1.15
H 21.4375 0.0 1.15

Benzene L545.0
C 0.0 62.614 746 093 75 0.0
C 62.263 183 593 75 61.318 359 375 0.0
H 0.0 64.658 203 125 0.0
H 64.020 996 093 75 62.329 101 562 5 0.0
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Since we have not yet implemented this, there is the possi-
bility of the energy or other aspects of the simulation not
being translationally invariant.

To investigate translational invariance of the energy, we
repeated the water calculation, displacing the molecule away
from the origin by 1/9.9~50.101 01...! a.u., thereby ensuring
that the nuclei are not at dyadic points at any level of refine-
ment. The results are also included in Table III. The energy is
observed to be translationally invariant within a precision
controlled by the truncation threshold and convergence of the
orbitals; this is to be expected since it is guaranteed by the
multiresolution algorithm. Also, the orbitals do not differ sig-
nificantly in size from those computed at the dyadic point.
This is perhaps a consequence of two things: First, an addi-
tional few levels of refinement in the immediate vicinity of
the nuclei adds relatively few new coefficients to the overall
simulation. Second, we have constructed the smoothed
nuclear potential~Sec. V! so that the resulting orbitals are
smooth~Gaussian! near the nucleus.

To illustrate the effect of the smoothed nuclear potential
~Sec. 5! upon the orbitals, Fig. 4 displays a slice through the

water oxygen 1s orbital for several values of the smoothing
parameter~c in Sec. V!. The molecular geometry was as
given in Table II, which places the nuclei at dyadic points.
The displayed orbitals were computed by self-consistently
solving the LDA equations with the smoothed potential with
a finest truncation threshold of 1025. The resulting orbitals
are smooth at the nucleus until the effect of smoothing falls
below the truncation threshold. At this point there is an ac-
tual cusp that can be exactly represented with the nucleus at
a dyadic point.

Finally, to reflect more routine chemical computations,
the calculations on water and benzene were repeated using
C2v and D2h symmetries, respectively, and with a total en-
ergy precision of 0.05 kcal/mol. The total computational
times, starting from an STO-3G initial guess and using a
single 2.4 GHz Pentium-IV processor, are 91 and 850 s, re-
spectively. With our current prototype code these calcula-
tions are expensive, but we anticipate substantial perfor-
mance improvements in future versions. We note that the
ratio of time for the two calculations~850/9159.3! is close
to that expected from quadratic scaling upon the number of
occupied orbitals@(21/5)2/258.8#.

IX. CONCLUSIONS

We have formulated and demonstrated the fully adap-
tive, multiresolution solution, with guaranteed precision, of
the all-electron density functional equations for general poly-
atomic molecules. The most significant development of this
work is the application of efficient, accurate, low-separation
rank representations of integral operators which enable prac-
tical computation with multiwavelet bases in three dimen-
sions and lay the foundation for computation in even higher
dimensions. Adaptive local refinement~which is different for
each orbital! is combined with the nonstandard form of op-
erators for efficient computation with a low memory require-
ment since all required operators are Toeplitz. The multi-
wavelet bases with disjoint support provide high-order
convergence and can maintain this order even in the presence
of singularities and boundaries located at dyadic points.
These bases also enable efficient computation on modern
cached-based processors since many computations are
phrased as small~often low-rank! matrix-matrix operations.
The fast~i.e., with a computational cost scaling linearly with
respect to the number of coefficients and logarithmically
with the simulation volume and required precision! applica-
tion of integral operators replaces the iterative solution of
poorly conditioned differential equations with the solution of
well conditioned integral equations.

This paper has focused on practical details of the fast
algorithms, but it is important to note that underlying this
apparent complexity is a standard, well-understood orthogo-
nal basis set—Legendre~or interpolating! polynomials. As a
consequence, most standard quantum mechanical methods
and interpretations are immediately applicable, and most
physical operators fit automatically into theO(N) frame-
work with the computation of simple matrix elements over
Legendre polynomials with standard numerical quadrature.
Interpretation of densities and orbitals in terms of atomic

FIG. 4. Slices through the water oxygen 1s orbital for values of the nuclear
potential smoothing parameter~Sec. V! c50.05, 0.016 67, 0.005 56,
0.001 85, and 1026. The corresponding energies are276.919 073,
276.914 719,276.913 599,276.913 530, and276.913 533, respectively.
The smoother orbitals correspond to larger values of the smoothing param-
eter, and the lines for the smallest two values are indistinguishable at the
resolution of the plot.

TABLE III. Energies for calculations on water~at dyadic and nondyadic
geometries! and benzene at various thresholds~the wavelet order being ad-
justed as described in the text!. The maximum size of any orbital is given in
Mwords ~i.e., the number of coefficients stored!. All calculations were per-
formed with an energy precision of 1027 hartree.

Molecule Threshold Energy
Max. orbital

size ~Mwords!

Water ~dyadic! 1023 275.910 585 6 0.11
1025 275.913 532 5 0.58
1027 275.913 555 7 5.1
1029 275.913 556 3 50

Water ~nondyadic! 1023 275.911 011 9 0.11
1025 275.913 547 4 0.57
1027 275.913 555 9 5.2
1029 275.913 556 3 51

Benzene 1023 2230.184 463 0 0.26
1025 2230.201 642 4 1.5
1027 2230.201 702 8 12
1029 2230.201 704 8 156

11596 J. Chem. Phys., Vol. 121, No. 23, 15 December 2004 Harrison et al.

Downloaded 30 Nov 2004 to 128.97.46.193. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



populations can be readily accomplished by projection into a
minimum atomic basis.58

The quantum chemical algorithms are written at a very
high level in terms of operators and functions. This should be
compared with the conventional approach in atomic bases
which manipulates explicitly indexed, sparse, multidimen-
sional arrays of matrix elements~one- and two-electron inte-
grals!. This has led to the very rapid and compact implemen-
tation of energies, analytic derivatives, and linear response
theory for excited states of LDA, Hartree–Fock, gradient-
corrected, and hybrid functionals. These developments will
be discussed in future publications.

The performance of the current prototype code is satis-
factory in that it reliably delivers the requested precision, all
of the operations scale correctly~by construction! with the
system size, and the execution time is significantly lower
than that required to obtain similar precision in the total en-
ergy from conventional methods. Currently, the time~91 s!
to determine the energy of a single water molecule to
1025 hartree is expected to be significantly less than a LCAO
calculations yielding the same precision, and the numerical
calculations using canonical orbitals are expected to have a
predominantly quadratic scaling that approaches linearity if
the canonical orbitals are localized and sparse linear-algebra
techniques are adopted. This is much better than the expected
scaling of conventional methods in high-quality bases. How-
ever, chemistry is not primarily concerned with the precision
of total energies, but with that of energy differences. Rela-
tively small atom-centered bases can compute accurate en-
ergy differences if the large, primarily intra-atomic errors
cancel. Incorporating some of these advantages into the mul-
tiresolution approach is a topic of future research. We antici-
pate that a more refined implementation can increase the
speed of the current code about threefold. Faster than this
will require new algorithms for application of the integral
operators and improved basis sets that reduce the amount of
oversampling implicit in the use of polynomials.

Finally, as stated at the beginning of this paper, we re-
gard this solution of one-electron models as the essential first
step in addressing the more significant basis and computa-
tional problems that arise in many-body theories. The devel-
opment of low-separation rank representations2 is central to
this effort.
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