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Fig. IO.  The noisy image for Example 4. obtained from the noi\y projec- 
tion\ of the Shepp-Logan phantom 

Fig. I I .  MMSE image obtained by constraining the wavelet coefficients 
of the noisy image: Example 4. 

threshold is used to set the finest-scale coefficients to zero. The 
resulting MMSE image is shown in Fig. I 1  The noise power has 
been reduced by 20.3% in the whole image. while still preserving 
the edges. 
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Multiresolution Representations Using the Auto- 
Correlation Functions of Compactly Supported 

Wavelets 

Naoki Saito and Gregory Beylkin 

Abstract-We propose a shift-invariant multiresolution representa- 
tion of signals or images using dilations and translations of the auto- 
correlation functions of compactly supported wavelets. Although these 
functions do not form an orthonormal basis, their properties make them 
useful for signal and image analysis. Unlike wavelet-based orthonor- 
mal representations, our representation has 1) symmetric analyzing 
functions, 2) shift-invariance, 3) associated iterative interpolation 
schemes, and 4) a simple algorithm for finding the locations of the multi- 
scale edges as zero-crossings. 

We also develop a noniterative method for reconstructing signals 
from their zero-crossings (and slopes at these zero-crossings) in our 
representation. This method reduces the reconstruction problem to that 
of solving a system of linear algebraic equations. 
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I. INTRODUCTION 

By analyzing the growth or decay from scale to scale of the coef- 
ficients of the orthonormal wavelet expansions, it is possible to 
estimate the local behavior of signals. However, since the coeffi- 
cients of the orthonormal wavelet expansions are not shift-in- 
variant, redundant representations (without subsampling at each 
scale, e.g., [ 3 ] ,  [20]-[22],  or the continuous wavelet transforms 
[ 131) are being used in order to simplify the analysis of coefficients 
from scale to scale. In particular, the orthonormal wavelet expan- 
sion of a vector of length N without subsampling is not only shift- 
invariant but also contains all the wavelet coefficients to represent 
N circularly-shifted versions of the original signal [ 2 ] ,  [2 I ] ,  [22] .  

The asymmetric shape of the orthonormal compactly supported 
wavelets presents another difficulty for the analysis of signals. The 
symmetric basis functions are preferred since, for example, their 
use simplifies finding zero-crossings (or extrema) corresponding to 
the locations of edges in images at later stages of processing. There 
are several approaches for dealing with this problem. The first ap- 
proach consists in  constructing approximately symmetric ortho- 
normal wavelets and gives rise to approximate quadrature mirror 
filters [14] .  The second consists in using biorthogonal bases [ 4 ] ,  
[23] ,  so that the basis functions may be chosen to be exactly sym- 
metric. 

Alternatively, a redundant (shift-invariant) representation using 
dilations and translations of the auto-correlation functions of com- 
pactly supported wavelets (rhe auto-correlation shell), may be used 
for signal analysis instead of the wavelets per se. The exact filters 
for the decomposition are the auto-correlations of the quadrature 
mirror filter coefficients of the compactly supported wavelets and, 
therefore, are exactly symmetric. The recursive definition of the 
auto-correlation functions of compactly supported wavelets leads 
to fast iterative algorithms to generate the shift-invariant multi- 
resolution representations. 

One of the interesting features of this representation is its con- 
vertibility to the redundant expansion (without subsampling) by the 
corresponding orthonormal wavelets on each scale, independently 
of other scales. An algorithm for this conversion is discussed in 
detail in 1211. 

As an application of the proposed representation, we will also 
consider the reconstruction of signals from zero-crossings (and 
slopes at zero-crossings), i .e.,  the conversion of the auto-correla- 
tion shell representation into the zero-crossing-based representa- 
tion. Such a representation is useful for nonlinear manipulation of 
signals; for example, edge-preserving smoothing and interpolation 

There is also a simple relation between the auto-correlation shell 
representation and the continuous wavelet transform [ 131 which will 
be reported elsewhere. 

(see 1151, [161, [181, L191). 

11. WAVELETS A N D  T H E I R  AUTO-CORRELATION FUNCTIONS 

The auto-correlation functions of compactly supported scaling 
functions were first studied (as the so-called fundamental func- 
tions) in the context of the Lagrange iterative interpolation scheme 
by Dubuc [ I O ]  and Deslauriers and Dubuc [9]  before compactly 
supported wavelets were developed in [ 7 ] .  Later, applications of 
the auto-correlation functions of compactly supported scaling func- 
tions and wavelets for signal representation and analysis were de- 
veloped by Ansari et al. [ I ]  and Shensa [22] ,  and, indepen- 
dently, in [21] .  

Let @(I) be the auto-correlation function. 
+m 

@(XI = 5 ~ ( y )  P ( Y  - 4 dy. (2.1) 
-m 

where p(x) is the scaling function which appears in the construc- 
tion of compactly supported wavelets in [7]. The function @(x) is 
exactly the "fundamental function" of the symmetric iterative in- 
terpolation scheme introduced in [9], [ 101. Thus, there is a simple 
one-to-one correspondence between iterative interpolation schemes 
and compactly supported wavelets [ l ] ,  [21] ,  [22] .  In particular, the 
scaling function corresponding to Daubechies's wavelet with two 
vanishing moments yields the scheme in [lo]. In general, the scal- 
ing function corresponding to Daubechies's wavelet with M van- 
ishing moments leads to an iterative interpolation scheme which 
uses the Lagrange polynomial of degree 2 M  - 1 [ 9 ] .  Additional 
variants of iterative interpolation schemes may be obtained using 
the compactly supported scaling functions (e.g., "coiflets") de- 
scribed in [ 8 ] .  

Let us outline the derivation of the two-scale difference equation 
for the function +(x). Let mo(.$) and ml( ( )  be the 2~-periodic  func- 
tions, 

1 L-7' 

mo(5 + a) (2.2) 
1 L - '  m,(,c) = - c g h e i Q  = e"'+")- 

mo([) = - L h,e',', & k = O  

& h = O  

satisfying the quadrature mirror (filter) condition, 

Imo(0l2 + Im1(OI2 = 1. (2.3) 

If we consider trigonometric polynomial solutions of (2 .3) ,  then 
from (2 .2)  and (2.3) i t  follows that 

where { a k }  are the auto-correlation coefficients of the filter H = 

{h,}o c l  c L -  I I  

L -  I - h  

U,, = 2 h/h/+,,,  k = 1, . . . , L - 1 ,  
I = O  

and 

a,, = 0 ,  k = 1, . . . , L / 2  - 1. (2.5) 

Using the two-scale difference equation for the scaling function p, 

1 - 1  

p(x) = & C h , p ( 2 x  - k )  
h = 0 

it is easy to verify that 
1 LIZ 

+ ( x )  = + ( 2 x )  + - C a z l - , ( + ( 2 x  - 21 + 1 )  
2 / = 1  

+ + ( 2 x  + 21 - I ) ) .  

Introducing the auto-correlation function of the wavelet $ 
+m 

'I.W = 5 $ ( Y ) $ ( Y  - x) dy 
-m 

where 
L -  I 

$ ( x )  = & c gkpp(2x - k )  
I = 0 

we also have 
1 LIZ 

~ ( x )  = + ( 2 x )  - - C a 2 / - , ( + ( 2 x  - 21 + I )  
2 / = I  

+ + ( 2 x  + 21 - I ) ) .  (2.10) 
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By direct examination of (2.7) and (2 .10) .  we find that both cf, 

Finally, cf,(x) and q ( x )  have vanishing moments, 
and q are supported within the interval [ - L  + I ,  L - I]. 

+ m  

m~ = j' x ' " q ( x )  c.tx = 0 f o r o  5 m 5 L,  (2.11) 
-m 

and 

+m j' @(x) dx = 1 .  (2.13) 
-cc 

It is easy to verify (see [2]) that even moments of the coefficients 
q k  - I from ( 2 . 5 )  vanish, namely 

L / 2  

a2 , - , (2k  - l)zm = 0 for 1 5 m 5 M - 1 (2.14) 
k =  I 

where M = L / 2  (for wavelets in (71). Since L consecutive mo- 
ments of the auto-correlation function * (x) vanish (2. l l ) ,  we have 
for small I(E1 

@((E) = W L )  (2.15) 

where @((E) is the Fourier transform of *(x). Thus, @((E) may be 
viewed as the symbol of a pseudo-differential operator which be- 
haves like an approximation of the derivative operator ( d / d ~ ) ~ .  
Therefore, the operator of convolution with 9 (x) behaves essen- 
tially like a differential operator in detecting changes of spatial in- 
tensity. We display functions cf, (x), p (x), * (x), $ ( x ) ,  and the mag- 
nitudes of their Fourier transforms in Figs. 1 and 2.  

Let us briefly review the relation of the auto-correlation func- 
tions in (2.1) and (2.8) to the iterative interpolation scheme. Let 
B, be the set of dyadic rationals m/2", m E Z and n = 0, 1 ,  2 ,  
. . .  . Following [9] and [ lo] ,  let us consider the following prob- 
lem: given values of f ( x )  on Bo, extend f to B , ,  B,, . . . in an 
iterative manner. For x E B, + B,, Dubuc [ 101 suggested the fol- 
lowing formula to compute the valuef(x), 

9 
f ( x )  = 16 ( f ( x  - h) + f(. + h ) )  

1 
- 16 ( f ( x  - 3h)  + f ( x  + 3h)) (2.16) 

where h = 1 /2" + I .  We illustrate a few steps of this iterative pro- 
cess applied to the unit impulse in Fig. 3. 

This interpolation scheme is generalized further in [9], 

f ( x )  = C F(k/2)f(x + kh) fo rx  E B,+,\B, (2.17) 

where h = 1 / 2 " + ' ,  and the coefficients F(k/2)  are computed by 
generating the function satisfying 

F(x/2) = XzF(k /2 )F(x  - k ) .  

k c Z  

(2.18) 

Using the Lagrange polynomials with L = 2 M  nodes, we have 
M 

f ( ~ )  = C @ i i - ' I ( O ) ( f ( ~  - (2k - 1)h) + f(x + (2k - 1)h)) 
k =  I 

(2.19) 

where {si,-_' - M  + I is a set of Lagrange polynomials of 
the degree L - 1 with nodes { - L  + 1 ,  - L  + 3, . . . , L - 3, L 

Fig. 1. Plots of the auto-correlation function % (x) and Daubechies's scal- 
ing function p ( ~ )  with L = 2 M  = 4. (a) %(x). (b) p ( ~ ) .  (c) Magnitude of 
the Fourier transform of % (x). (d) Magnitude of the Fourier transform of 
v (x). 

I 
1 
-1 0 4 1  

[ ) L A  -2 OL-A 1- - 8  

0 6 
l r  

Oh.  1 : ::: ' 0 2 1  I 4 

0 0 5  0 5 

(c) (d) 
Fig 2 Plots of the auto-correlation function q ( x )  and Daubechies's 
wavelet $ ( x )  with L = 2 M  = 4 (a) (x) (b) $ ( x )  (c) Magnitude of the 
Fourier transform of " ( x )  (d) Magnitude of the Fourier transform of $(x) 

J, 

Fig. 3 .  The Lagrange iterative interpolation of the unit impulse sequence 
with the associated quadrature mirror filter of length L = 4, i.e., a, = 9/8 
and a, = - 1 /8 .  Black nodes at x = 0 indicate I and white nodes at x = 
f 1 have value 0. Shaded nodes have values other than 0 or 1. Note that 
the values of nodes existing at thejth scale do not change at the ( j  - 1)- 
th scale and higher. The result of repeating this procedure converges to 
%(x) as.j -+ -m. 

- I } ,  i .e.,  
M 

(2.20) @ L -  I x - (21 - 1) 
2 k -  I @ )  = rI 

/ = - M + I . I # k  (2k - 1) - (21 - 1)'  
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In this case, (2.18) reduces to 
M 

F ( x )  = F(2x) + C S~;-’I(O)(F(~X - 2k + 1) 
k =  I 

+ F(2x + 2k - 1) ) .  (2.21) 

This special case of (2.17) is called the “Lagrange iterative inter- 
polation.” The original scheme (2.16) of Dubuc corresponds to L 
= 4 in (2.19). 

We have 

F ( x )  = +(4> (2.22) 

where F ( x )  is the fundamental function defined in (2.18) and + ( x )  
is the auto-correlation function of the scaling function ~ ( x ) .  Using 
the two-scale difference equation (2.7), we obtain 

1 
+(k/2) = +(k) + j C a>/-I(@(k - 21 + 1) 

/ E N  

+ + ( k  + 21 - l ) ) ,  (2.23) 

and, therefore, 

+(k/2)  = ak /2 .  (2.24) 

In other words, the two-scale difference equation for the function 
@ in (2.7) may be rewritten as 

9 ( ~ / 2 )  = C + ( k / 2 ) + ( ~  - k). (2.25) 

For any polynomial P of degree smaller than L ,  the Lagrange 
iterative interpolation of the sequence f ( n )  = P ( n ) ,  n E 2, via 
(2.19) is precisely the functionf(x) = P ( x )  for any x E R. 

If the number of vanishing moments M = 1 and L = 2 (the Haar 
basis), then we have 

k s Z  

1 + x for -1 5 x 5 0, 

+Haar(x) = 1 - x for 0 5 x 5 I ,  (2.26) 

[o otherwise 

and the interpolation process corresponds to linear interpolation. 

be rewritten as 
Using expressions (3.49)-(3.52) of [2], the relation (2 .4)  may 

M 
COS (2k - l ) (  . c  (2.27) 

k = ~  (2k - l ) ( M  - k)!(M + k - l ) ! .  

If M -+ 00, then 

1 2 - ( - 1 ) k - l  
Imo(E)I2 + - + - C ~ COS (2k - I ) (  (2.28) 

2 T k = l  2 k -  1 

which is the Fourier series of the characteristic function of [ - ~ / 2 ,  
T /2]. This implies that the corresponding auto-correlation func- 
tion is 

sin TX 
@,(x )  = sinc (x)  = -, 

T X  
(2.29) 

and the interpolation process corresponds to band-limited interpo- 
lation. (It turns out that in this case the scaling function coincides 
with its auto-correlation function.) Thus, we have a family of sym- 
metric iterative interpolation schemes parameterized by the number 
of vanishing moments 1 5 M < 00. 

In what follows, we will need to compute the derivatives of the 

auto-correlation functions in (2.1) and (2.8). Note that the deriv- 
ative of the functionf(x) in (2.19) is computed via 

L -  I 

f ’ ( x )  = k =  C 1 r k ( f ( x  + kh) - f ( x  - kh)) (2.30) 

where h = 1/2“,  x E B,, m 5 n ,  and 

(2.31) 

The coefficients rk may be computed (see [2]) by solving 

1 1 L I Z  

r 2 k  f 5 ,cl a 2 / -  l ( r 2 k - 2 / +  I + r 2 k + 2 / -  I )  

and 

C kr, = - 1 ,  (2.32) 
k e Z  

where the coefficients a2 / -  I are given in (2 .5) .  If the number of 
vanishing moments of the wavelet M 2 2,  then equations (2.32) 
have a unique solution with a finite number of nonzero r,, namely, 
rk # 0 for -L + 2 5 k 5 L - 2 and rk = - r - k .  

We will use the iterative interpolation scheme and the procedure 
for computing the derivative in Section IV to find zero-crossings 
of signals and the slopes at the zero-crossings. 

111. AUTO-CORRELATION SHELL: A SHIFT-INVARIANT 
MULTIRESOLUTION REPRESENTATION 

Let us assume that the finest scale of interest is described by the 
N = 2” dimensional subspace Vo C L2(R) and consider only 
circulant shifts on Vo. We refer to the set of functions 
{ * j .k (x)J  I 5 ,  “,,,o k 6 N - 1 and { + n o . k  (x)Jo5 k N -  I as a shell of the 
auto-correlation functions of orthonormal wavelets (an auro-cor- 
relation shell for short), where no ( 5 n)  describes the coarsest scale 
of interest and 

= 2-”*+(2-’(x - k ) ) ,  

* , , k (x )  = 2-”2*(2-J(x - k)). (3.33) 

Let us describe a fast algorithm to expand a funct ionfe Vo = 

span  PO,^; k E Z}, f  = s : ~ ~ , ~ .  Let the coefficients { P k }  and 
{ q k }  be those of the two-scale difference equations (2.7) and (2.10) 
which we write as 

2-112 fork = 0, 

2-3’2a(k, otherwise, 
Pk = [ 

2-‘12 fork = 0, 

-pk  otherwise. 
q k  = [ (3.34) 

We use these coefficients as symmetric filters P = 

{ P k } - L + I s k s L - I  a n d Q  = { q k } - L + I s k s ~ - ~  withonly L/2 + 1 
distinct nonzero coefficients. Although these filters do not form a 
quadrature mirror filter pair, their role and use in the numerical 
algorithms is similar. For the shift-invariance, we now apply P and 
Q without subsampling at each scale, i .e.,  

(3.35) 

(3.36) 
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Starting from the original discrete signal {s : } O  k N -  I, we apply 
(3.35) and (3.36) recursively to obtain the auto-correlation shell 
coefficients { D i }  ,,,,.o k - I and { S ~ } O  k 5 N -  I .  

We obtain the following relation between the original discrete 
signal and the auto-correlation shell coefficients: 

Proposition 1: For any function f E V,,, f (x) = s f p  (x - 
k) ,  the coefficients { S i }  and { D i }  computed via (3.35) and (3.36) 
satisfy the following identities 

A -  I N -  I 

Si*O.k = s : * , , k ,  (3.37) 
k = O  k = O  

N -  I N -  I 

(3.38) 

where @,,k and *,,k are defined in (3.33). 

= 

(3.35), we obtain 

Proof: Using the coefficientsp, in (3.34), we write h 1 mo([)/’ 
I PkefkE. Substituting this into the Fourier transform of 

(3.39) 

We then take the Fourier transform of the left hand side o f  (3.37), 
use (3.39) and the identity & ( E )  = IIY, I I mo(2-‘[)I2, to obtain 

I 

I =  1 
$ J ( [ ) & ( ( )  = i0(()2”2 n 1 m,(2‘- ‘ [ ) (2&([)  

= in([) 2’12& (2’[) (3.40) 

which is exactly (3.37) in the Fourier domain. The relation (3.38) 

This proposition plays an essential role in  our approach to the 
reconstruction o f  signals from zero-crossings in Section IV. 

Let us now construct an algorithm for reconstructing the original 
signal directly from the auto-correlation shell coefficients. Since Pk 
= -qk f o r k  # 0 in (3.34), adding (3.35) and (3.36) yields a sim- 
ple reconstruction formula 

may be derived similarly. 

Given the auto-correlation shell coefficients 

Examples of representation of signals in the auto-correlation shell 
are presented in Figs. 4 and 5. 

Remark I :  It is easy to adjust the auto-correlation shell to “life 
on the interval.” (See [5] for a more delicate construction for 
wavelets.) Since our filter coefficients pL are obtained by evaluating 
the Lagrange polynomials at the origin x = 0 [see (2.19)], i t  is 
natural to adjust the filter coefficients for the edges by simply gen- 
erating them by evaluating these polynomials at the desired points. 
For example, for the lowpass filter coefficients 2-’/’{ - 1 / 16, 0, 
9/16,  I ,  9 /16,  0, - l / l 6 }  based on Daubechies’s QMF with L 
= 2 M  = 4, the adjusted lowpass filter coefficients for the left edge 
are 2 -1 /2{5 /16 ,  1 ,  15/16, 0, -5 /16 ,  0, 1/16}. These coeffi- 
cients are convolved with the leftmost 7 points of the signal to 
obtain the 2nd leftmost point of the next scale. 

- 

Fig. 4 

i i 

I--_ I 
n I00 200 300 400 5W 

The expansion of the signal in the auto-correlation shell using the 
auto-correlation functions of Daubechies’s wavelet with L = 2 M  = 4;The 
top row is the original signal. Note that the locations of edges in the orig- 
inal signal correspond to the zero-crossings in this representation. 

- 

Fig. 5 The average coefficients on different scales. (The top row is the 
original signal). 

Remark 2:  Representations using the auto-correlation functions 
of compactly supported wavelets can also be viewed as a way to 
obtain a “continuous” multiresolution analysis. Another approach 
to make the connection between continuous and discrete multires- 
olution analyses is developed in [ 1 I ] ,  where the starting point is a 
continuous version of the multiresolution analysis. 

Remark 3: Representations using the auto-correlation functions 
of compactly supported wavelets should be compared with those 
using the approximation of the Laplacian of a Gaussian function 
(the so-called Mexican-hat function) by the Difference of two 
Gaussian functions (the so-called DOG function) as 

(3.43) 
d 2  
- G(x; U) = aG(ax; U) - C(x; a) 
a k 2  

where 

G(x; U) = ~ 1 e-r?/20’ (3.44) 
&U 

and a = 1.6 as was suggested in [17]. It follows from (2.7) and 
(2.10) that 

*(x) = 2*(2x) - @(x) (3.45) 

which should be compared with (3.43). 
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IV. ON RECONSTRUCTING SIGNALS FROM ZERO-CROSSINGS 

Since the auto-correlation functions of compactly supported 
wavelets may be viewed as pseudo-differential operators of even 
order, and essentially behave like derivative operators of the same 
order, the zero-crossings in this representation correspond to the 
locations of edges at different scales in the signal. Dubuc's iterative 
interpolation is naturally associated with such a representation and 
allows us to dejine zero-crossings for multiresolution representa- 
tions of discrete signals. By using the iterative interpolation, we 
locate the zero-crossings and compute slopes at these points within 
the prescribed numerical accuracy. T o  reconstruct the signal, we 
set up a system of linear algebraic equations, where the entries of 
the matrix are computed from the values of the auto-correlation 
function and its derivative at the integer translates of zero-cross- 
ings. The original signal is then reconstructed within the prescribed 
accuracy by solving this linear system. 

Reconstructing a signal from its zero-crossings by solving a lin- 
ear system of equations has been proposed by Curtis and Oppen- 
heim [6]. Their method requires a solution of a linear system where 
the unknowns are the Fourier coefficients and, therefore, the linear 
system is dense. It also requires multiple threshold-crossings rather 
than zero-crossings, and moreover, the quality of the reconstruc- 
tion strongly depends on the choice of the thresholds. We would 
like to note that in our approach we take advantage of the multi- 
resolution properties of  the auto-correlation shell which allows us 
to set the linear system directly for the unknown signal rather than 
the coefficients of its expansion. 

Remark 4:  We note that our approach may be modified to pro- 
duce the maxima-based representation of Mallat and Zhong [16] 
by considering y-, P ( y )  dy  instead of P (x) and the corresponding 
two-scale difference equation. Using the symmetric iterative inter- 
polation, we have better numerical control than by using to the 
approaches developed by Mallat and Zhong [I61 and by Hummel 
and Moniot [12]. 

Remark 5: We would like to emphasize that our zero-crossing- 
based representation is not aimed at data compression. It should be 
used for nonlinear manipulations of signals such as edge-preserv- 
ing smoothing by retaining the zero-crossings whose slopes are sig- 
nificant (see [15]). 

Let us now describe our procedure for the zero-crossing com- 
putation. Using the symmetric iterative interpolation scheme men- 
tioned above, we compute the zero-crossing locations of the set of 
functions { EfZd D$@ (x - k ) }  I ng within the prescribed numer- 
ical accuracy, e.g. ,  E = To compute the location of a zero- 
crossing, we recursively subdivide the unit interval bracketing the 
zero-crossing until the length of the subdivided interval bracketing 
that zero-crossing becomes less than the accuracy E .  The iterative 
interpolation scheme allows us to zoom in as much as we want 
around the zero-crossing. This process requires at most 0 ( - L  log, 
E )  operations per zero-crossing. Once the zero-crossing is found, 
the computation of the slope is merely the convolution of the 
2 ( L  - 2) points around the zero-crossing with the filter coefficients 

We now address the following problem: Given the coarsest sub- 
sampled coefficients {SliiuA}O s s ?,$ ,/,, - I and the zero-crossings and 
the slopes at these zero-crossings {xh, z)!,~} I 5 I  ,lo,o N~ - I, 

where N', is the number of zero-crossings of the function EfId 
D : @ ( x  - k ) ,  reconstruct the original vector { ~ f } ~ ~ ~ ~ ~ - , .  Prop- 
osition 1 provides a simple mechanism for defining a linear system 
which relates the unknown signal { s f }  and the values of the func- 
tion @ (x) and its derivative at the integer translates of zero-cross- 
ings. 

{ ~ I ) - L + Z ~ / ~ L - ~  in (2.30). 

It follows from Proposition 1, that any zero-crossing coordinate 
xj,, satisfies 

N -  I N -  I 

N -  I N -  I c D $ @ ' ( x &  - k )  = c s ;2- /P ; ,k(x9  = U / ,  (4.47) 
k = O  A = O  

where 1 I j I no, 0 I m 5 N'; - 1 .  Similarly, we have 

N - I .v - I 
c s~@o,A(2""/)  = c sf@,,,i,k(2"'i/) = s"" pu, (4.48) 

A = O  I = (1 

f o r /  = 0, 1 ,  . . . , N, - 1 ,  where N, = 2"-"". 
We rewrite (4.46), (4.47),  and (4.48) in a vector-matrix form as 

As = v (4.49) 

where s E RN is a shorthand notation for the original signal { s f } ,  
IS a data vector including the slopes and available 

coarsest subsampled coefficients, i .e . ,  

E R2Y + V $  ' 

v = (0, U;, . . . , 0, z j ,L l - l ,  . ' ' , 0, zp, ' ' . 0 ,  ti;;o - I , 

ST,  s;::,,, ' . . , SS'-*.,,,)7 (4.50) 

and A is a (2 N: + N,) X N matrix and has the following structure: 

(4.5 1) 

and A /  is a 2 N< X N submatrix whose entries are 

and S"" is a N, X N submatrix where 

I = O ; . . , N -  I. (4.53) 

Since the auto-correlation function (x) is compactly sup- 
ported, the matrix A is sparse by construction. It is easy to check 
that the support of the function (x) is 2" ' ( L  - 1) .  Thus, the 
number of NA of nonzero entries of the matrix A is as follows: 

,,I 

NA = c 2N<2'"(L - 1)  + N,2"""(L - 1) 
1 1  

I = 2(L - 1) c 2I2N:. + N I /"I 
(4.54) 

The number of zero-crossings usually decreases as the scale j in- 
creases. As a result, the number of the nonzero entries of the matrix 
A is essentially O(N) .  The sparsity of  this matrix enables one to 
solve the system (4.49) efficiently. 
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Whether we can solve the linear system (4.49) depends on the 
condition number of the matrix (4.51), which is affected by the 
distribution of locations of zero-crossings. If there are very few 
zero-crossings (which means that the signal is zero over a signifi- 
cant part of its support) as, for example, in the expansion of the 
unit impulse {s: = with only 2 L  zero-crossings at each scale, 
then we need to use additional constraints for solving the linear 
system (4.49). There might be several approaches to introduce these 
additional constraints. One approach (which might be sufficient in 
some applications) would be to consider the generalized inverse of 
(4.51). Another possible approach (that we have expermented with) 
is to introduce a heuristic constraint that the distance between the 
adjacent zero-crossings at thej th  scale does not exceed 2 ’ + ’ ( L  - 
1). The latter constraints may be expressed as 

Cd = 0. (4.55) 

where d E RN””+N’ is a vector of auto-correlation shell coefficients 
including the subsampled coarsest averages, i.e.,  

and C is an (Nn,  + N , )  dimensional square matrix of the form 

0 c’ 0 . . .  . . .  i‘ c2 . . .  . . .  1 : :  C“” .O‘ 1) 
. . .  . . .  

O\ /cl 0 . . .  . . .  

(4.57) 

where the submatrix C’ is an N dimensional diagonal matrix as 

1 if D i  must be zero, 
(4.58) 

(4.55) may be expressed in terms of the original signal s by using 
the transformation matrix T E R(N““+ N” from s to d:  

Cd = Bs = 0, (4.59) 

where B E R(N”iI+N~’x and B = CT. 
The problem may now be stated as follows: 

Minimize IIAs - subject to Bs = 0. (4.60) 

Using the method of Lagrange multipliers, we obtain the least 
square solution 

ŝ  = ( A ~ A  + X B ~ B ) - ~ A ~ V .  (4.61) 

We note that our formulation is completely linear except for the 
process of zero-crossing detection. It is clear from (4.49) and 
(4.60), that the slope information is essential for signal reconstruc- 
tion since if there is no slope information, we have only the trivial 
solution, s = 0. Previously, this fact was examined only empiri- 
cally [12]. 

Let us show two examples of the reconstruction using our 
method. The accuracy threshold E has been set to in both 
cases. As a first example, we have used the signal shown in Fig. 4 
in Section 111. The relative L2 error of the reconstructed signal com- 

pared with the original signal is -5 .7  x In this case, there 
was no need to use the constraints. 

Next we have applied our algorithm to the unit impulse 
{ c ? ~ ~ , ~ } , - ,  k 6 3 .  Now the constraints described above play an im- 
portant role: the relative L2 error with the constraints is -7 .4  x 

whereas the error of the solution using the generalized in- 
verse without the constraints is = 3 . 2  x 
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