1. a. Starting from the nowhere (apart from at $z = 0$) convergent Taylor expansion of the Stieltjes function $f(z) = \int_0^\infty \frac{e^{-t}}{1 + z t} dt$, use the code `t2cf` below to generate from this expansion a sequence of leading continued fraction (CF) coefficients. Identify the CF coefficient pattern that emerges, and then use this pattern to evaluate $f(2)$ as accurately as you can.

Note: When starting from the integral formulation, everything is well conditioned, and Mathematica readily provides its value to any desired level of precision, for ex.

$$\text{N}\left[\int_0^\infty \frac{e^{-t}}{1 + z t} dt \bigm/ z \to 2, 30 \right]$$

gives the result 0.461455316241865234416424687914

b. Same problem as above, but consider instead the function $f(z) = \frac{\log(1 + z)}{z}$.

Hint: Matlab's built-in function "rat" can be very helpful for converting floating point numbers to rational form.

c. Consider the function $f(z)$, given by the beginning of its Taylor expansion, as follows:

$$f(z) = 1 + z - z^2 + \frac{4}{3} z^3 - \frac{5}{4} z^4 + \frac{12}{15} z^5 - \frac{122}{45} z^6 + \frac{1088}{315} z^7 - \frac{227}{63} z^8 + \frac{15872}{2835} z^9 - \frac{101042}{14175} z^{10} + O(z^{11}).$$

Convert this expansion to its CF form, and attempt to spot a closed form expansion for its CF coefficients. Produce a plot that compares, over $z \in [-3, 3]$, (i) direct evaluation of the truncated Taylor series, (ii) a high order CF version, and (iii) the function $f(z) = 1 + \frac{1}{1 + \cot(z)}$ (which the given Taylor expansion in fact was obtained from).

Matlab codes for problem 1:

```matlab
function cf = t2cf(c)
    % Converts a truncated Taylor series (given as row vector in c) into a
    % continued fraction expansion of same size. This algorithm can fail
    % in some cases, notably if the Taylor expansion has any zero coefficients.
    n = size(c,2); a(:,1) = c.'; b = [1 zeros(1,n-1)]';
    for k=2:n
        a(1:n-k+1,k) = b(2:n-k+2)-a(2:n-k+2,k-1)/a(1,k-1);
        b(1:n-k+1)   = a(1:n-k+1,k-1)/a(1,k-1);
    end
    cf = a(1,:);
end

function y = cf2y(x,cf)
    % Evaluates a continued fraction expansion (in row vector cf) for the x-values
    % given in x (which may be a scalar, vector or array of any size/shape).
    y = zeros(size(x));
    x = x(:);
    len = size(cf,2);
    r = zeros (length(x),len+1); % Loop through the cont. fraction expansion.
    s = zeros (length(x),len+1);
    r(1,:) = cf(1); s(1,:) = 1;
    for k=2:len+1
        r(:,k) = r(:,k-1)+cf(k-1)*x.*r(:,k-2);
        s(:,k) = s(:,k-1)+cf(k-1)*x.*s(:,k-2);
    end
    y(:) = r(:,len+1)./s(:,len+1); % Result gets here re-arranged from column vector
end
```
2. A Gaussian quadrature formula for weight function $w(x) \geq 0$ takes the form

$$\int_a^b f(x) w(x) \, dx \approx \sum_{i=1}^n w_i f(x_i)$$

and is exact for all polynomials $f(x)$ of degree $2n-1$ or less. Show that all the weights w_i are non-negative.

Hint: By considering some suitable test functions $f(x)$, the result follows very quickly.

3. Atkinson's Example 3 on pages 262-263 concerns $\int_0^{2\pi} e^{\cos(x)} \, dx \approx 7.95492652101284$. One way to understand the extremely high rate of convergence of the trapezoidal rule (and - to a lesser extent - Simpson's rule) for a periodic function such as this one starts by noting that the integrand can be Fourier expanded. In the present case

$$e^{\cos(x)} = \sum_{n=0}^{\infty} a_n \cos(nx) \quad \text{where} \quad a_0 = \frac{1}{2\pi} \int_0^{2\pi} e^{\cos(x)} \, dx \quad \text{and} \quad a_n = \frac{1}{\pi} \int_0^{2\pi} e^{\cos(x)} \cos(nx) \, dx, \quad n > 0.$$

By asymptotic analysis (the topic of APPM 5480), one can readily show that $\lim_{n \to \infty} a_n 2^{n-1} n! = 1$. Assuming (quite correctly) that this limit result also provides good approximations at low values of n, use this to derive approximations for the trapezoidal and Simpson errors when the original integral is discretized at $x_i = 2\pi i/8, \quad i = 0, 1, \ldots, 8$. Compare what you obtain against the values for this case that are quoted in Atkinson Table 5.7. Also tell how many nodes n you would need for trapezoidal rule to give the very high accuracy of 10^{-60}.

Hint: Simpson's rule can be seen as the Richardson extrapolation of two trapezoidal evaluations based on steps h and $h/2$, respectively, i.e. linearly combining the results so that the leading $O(h^2)$ error term vanishes.

4. Gaussian quadrature is mostly used for accurate evaluation of integrals. One useful generalization is to instead apply it to evaluate infinite (or finite) sums:

Determine the nodes x_1, x_2 and weights w_1, w_2 so that the formula

$$\sum_{n=0}^{\infty} \frac{f(n)}{n!} = w_1 f(x_1) + w_2 f(x_2)$$

becomes exact for polynomials $f(x)$ of as high degree as possible.

Hint: Sums of the form $\sum_{n=0}^{\infty} \frac{e^x}{n!}$ can be evaluated in closed form by considering derivatives of $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ at $x = 1$.