Problem #1 (24 points): Find all the singular points (be sure to check z_∞) for the following functions:

(a) \(\frac{e^{z^2} - 1}{z^2} \),
(b) \(\frac{e^{2z} - 1}{z^2} \),
(c) \(e^{\tan z} \),
(d) \(\frac{z^3}{z^2 + z + 1} \),
(e) \(\log(1 + z^{1/2}) \),
(f) \(\text{sech} \ z \).

Then classify them as either isolated or non-isolated and by type (such as removable, pole of order N and strength c_∞, essential, branch point, cluster point, or natural barrier).

Solution:

(a) The point $z = 0$ is a removable singularity because we need $f'(0) = 1$ in order for this function to be analytic for $|z| < \infty$. Also,

\[
\frac{e^{z^2} - 1}{z^2} = 1 + \frac{z^2}{2} + \frac{z^4}{2!} + \frac{z^6}{3!} + \ldots - 1 = 1 + \frac{z^2}{2!} + \frac{z^4}{3!} + \ldots \quad \text{and so } z = \infty \text{ is an essential singularity as shown in the book.}
\]

(b) Since

\[
\frac{e^{2z} - 1}{z^2} = \frac{2z}{z^2} + \frac{2^3}{3!} z + \frac{2^4}{4!} z^2 + \ldots \quad \text{and thus } z = 0 \text{ is a simple pole. Let } z = 1/t \text{ so that } \frac{e^{2z} - 1}{z^2} = t^2 (e^{2/t} - 1). \text{ As } t \to 0, e^{2/t} \text{ has an essential singularity. Therefore, the point } z = \infty \text{ is an essential singularity.}
\]

(c) As was shown in the book (pg. 146) we can represent the tangent function as

\[
\tan z = -\frac{1}{z - (\pi/2 + n\pi)} + \frac{1}{3} (z - (\pi/2 + n\pi) + \ldots
\]

for $n \in \mathbb{Z}$. Since we can expand $e^{\tan z}$ in a Taylor series about $\tan z$,

\[
e^{\tan z} = \sum_{n=0}^{\infty} \frac{(\tan z)^n}{n!}
\]

the points $z = \pi/2 + n\pi$ are essential singularities. Let $z = 1/t$ and consider the

(b) The roots of $z^2 + z + 1$ are $z = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$ and so these are simple poles. Let $z = 1/t$ Then

\[
\frac{z^3}{z^2 + z + 1} = \frac{1}{t(1 + t + t^2)}
\]

From this we see $t = 0$ is a simple pole and so $z = \infty$ is a simple pole.

(e) We have branch points at $z = 0, \infty$. Now, let $z = t + 1$ and then we have two branches of the square root function $z = \pm \sqrt{t + 1}$, now, recall the Taylor series for the square root function,

\[
\sqrt{1 + t} = 1 + t/2 + t^2/8 + \ldots \quad \text{and so for the positive branch we have } 1 + \sqrt{t + 1} = 2 + t/2 + t^2/8 + \ldots\n\]

On the negative branch we have

\[
1 - \sqrt{1 + t} = -t/2 - t^2/8 - \ldots \quad \text{And so } t = 0 \text{ is a branch point as well, that is, } z = 1.
\]

(f) We want to find the singularities of \(\text{sech} \ z = \frac{1}{\cosh z} \) or when $\cosh z = 0 = e^z + e^{-z}$, or when $e^{2z} = -1$ Letting $-1 = e^{i\pi + 2\pi n}$ for $n \in \mathbb{Z}$ we find $z = i(\frac{\pi}{2} + n\pi)$ are simple poles. Now let $z = 1/t$ and now we look at when $\cosh(1/t) = 0$ This occurs when $e^{2/t} = -1$ and we need $t = \frac{1}{i(\pi/2 + n\pi)}$. So, along the imaginary axis the singularities cluster around $t = 0$ and thus $t = 0$ is a cluster point, that is, $z = \infty$ is a cluster point.

Problem #2 (20 points): Evaluate the integral $\oint_C f(z) \, dz$, where C is a unit circle centered at the origin, for the following functions:

(a) \(\frac{g(z)}{z - \omega} \), where $g(z)$ is entire,
(b) \(\frac{z}{z^2 - \omega^2} \),
(c) \(ze^{1/z^2} \),
(d) \(\cot z \),
(e) \(\frac{1}{8z^2 + 1} \).

Solution:

(a) For $|\omega| > 1$ the integral is 0 by Cauchy's theorem. Otherwise, since g is entire it has a Taylor series
centered at \(\omega \), that is \(g(z) = \sum_{n=0}^{\infty} a_n (z - \omega)^n \) and we have
\[
\oint_C \frac{g(z)}{z - \omega} \, dz = \oint_C \frac{\sum_{n=0}^{\infty} a_n (z - \omega)^n}{z - \omega} \, dz
\]
\[
= \oint_C \frac{a_0}{z - \omega} \, dz
\]
\[
= 2\pi i a_0 = 2\pi i g(\omega)
\]

(b) If \(|\omega| > 1 \) the integral is 0 by Cauchy's Theorem. Otherwise, expand the function,
\[
\frac{z}{z^2 - \omega^2} = \frac{1}{2} \left(\frac{1}{z + \omega} + \frac{1}{z - \omega} \right)
\]
and it follows
\[
\oint_C \frac{1}{2} \left(\frac{1}{z + \omega} + \frac{1}{z - \omega} \right) \, dz = \frac{2\pi i}{2}(1 + 1)
\]
\[
= 2\pi i
\]

(c) First, find the Laurent series for \(ze^{1/z^2} \),
\[
ze^{1/z^2} = z \left(1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots \right)
\]
\[
= z + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} \cdots
\]

It follows
\[
\oint_C ze^{1/z^2} \, dz = \oint_C z + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} \cdots \, dz
\]
\[
= \oint_C \frac{1}{z} \, dz
\]
\[
= 2\pi i
\]

(d) Here we note that the only singularity of \(\cot z \) in the unit circle is \(z = 0 \) so we can expand about \(z = 0 \) in the usual manner. that is
\[
\frac{\cos z}{\sin z} = \frac{1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots}{\frac{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots}{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots}}
\]
\[
= \frac{1}{z} \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots \right) \left(1 + \frac{z^2}{3!} - \frac{z^4}{5!} + \cdots \right)
\]
\[
= \frac{1}{z} + O(1)
\]
and so the integral is
\[
\oint_C \cot z \, dz = \oint_C \frac{1}{z} \, dz = 2\pi i
\]

(e) The zeros of \(8z^3 + 1 \) are \(z^3 = -\frac{1}{8} = \frac{1}{2} e^{-\pi i + 2\pi n i} \), for \(n = 0,1,2 \). The roots are \(z = \frac{1}{2} e^{\pi i/3} \), \(z = \frac{1}{2} e^{\pi i/3} \) and \(z = -\frac{1}{2} \) and they all lie within the unit circle. Then
\[
\frac{1}{8z^3 + 1} = \frac{1}{(z + 1/2)(z - 1/2 e^{-\pi i/3})(z - 1/2 e^{\pi i/3})}
\]

Using partial fractions you can show
\[
\frac{1}{(z + 1/2)(z - 1/2 e^{-\pi i/3})(z - 1/2 e^{\pi i/3})} = \cdots
\]
\[
\frac{A}{z - z_0} + \frac{B}{z - z_1} + \frac{C}{z - z_2}
\]

where
\[
A = -\frac{1}{4(1 + e^{\pi i/3})(1 + e^{-\pi i/3})}
\]
\[
B = \frac{1}{4(1 + e^{\pi i/3})(e^{-\pi i/3} - e^{\pi i/3})}
\]
\[
C = \frac{1}{4(1 - e^{-\pi i/3})(e^{\pi i/3} - e^{-\pi i/3})}
\]

Computing \(\oint_C f(z) \, dz \) yields
\[
\oint_C \frac{A}{z - z_0} + \frac{B}{z - z_1} + \frac{C}{z - z_2} \, dz = 2\pi i(A + B + C)
\]
\[
= 0
\]

Problem #3 (16 points): Determine if the following functions are meromorphic. And if they’re meromorphic, determine the order, strength, and location of all their poles.

(a) \(\frac{z}{z^4 + 2} \)

(b) \(\frac{z}{\sin^2 z} \)

(c) \(\frac{e^z - 1 - z}{z^4} \)

(d) \(\tan z \)

Solution:

(a) This is a rational function and is meromorphic. It has four simple poles, one for each of the roots \(z^4 = -2 \),
\[
z_0 = 2^{1/4} e^{\pi i/4} = 2^{-1/4} (1 + i)
\]
\[
z_1 = 2^{1/4} e^{3\pi i/4} = 2^{-1/4} (-1 + i)
\]
\[
z_2 = 2^{1/4} e^{5\pi i/4} = 2^{-1/4} (-1 - i)
\]
\[
z_3 = 2^{1/4} e^{7\pi i/4} = 2^{-1/4} (1 - i)
\]
The function $\tan z$ is meromorphic and it's poles and strengths are outlined in the book (pg. 146). The poles are simple with strength -1 at $z = \pi/2 + m\pi$ for $m \in \mathbb{Z}$.

Problem #4 (8 points): Consider

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{w\, dw}{(w^2 - 2)(w - z)},$$

where C is the unit circle centered at the origin. Evaluate the integral for $|z| < 1$ and then for $|z| > 1$; is one the analytic continuation of the other? If $f(z)$ is meromorphic, then find the location, order, and strength of its poles.

Solution: First, consider the function for $|z| < 1$. Here there are singularities where $z = w$ inside the unit circle (in w). From CIF we have

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(w)}{w - z} \, dw$$

and so in this case $f(w) = \frac{w}{w^2 - 2}$, that is

$$f(z) = \frac{z}{z^2 - 2}.$$

Using a partial fraction decomposition we have

$$f(z) = \frac{1/2}{z - \sqrt{2}} + \frac{1/2}{z + \sqrt{2}},$$

and so there are simple poles at $z = \pm \sqrt{2}$ of strength $1/2$.

For $|z| > 1$ the integral is 0 because there are no singularities inside the unit circle (in w). They cannot be the analytic continuation of each other because there is no open set where they agree, simply the point $z = 0$.

Problem #5 (4 points): How would you redefine

$$f(z) = \begin{cases}
 z^{-2}(1 - \cos z), & z \neq 0 \\
 1, & z = 0
\end{cases}$$

so that it's analytic for $|z| < \infty$.

and

$$\frac{z}{z^4 + 2} = \frac{z}{(z - z_0)(z - z_1)(z - z_2)(z - z_3)}$$

The strength at z_0 is

$$\phi(z_0) = \frac{z_0}{(z_0 - z_1)(z_0 - z_2)(z_0 - z_3)} = -2^{-5/2} i$$

The strength at z_1 is

$$\phi(z_1) = \frac{z_1}{(z_1 - z_0)(z_1 - z_2)(z_1 - z_3)} = 2^{-5/2} i$$

The strength at z_2 is

$$\phi(z_2) = \frac{z_2}{(z_2 - z_0)(z_2 - z_1)(z_2 - z_3)} = -2^{-5/2} i$$

The strength at z_3 is

$$\phi(z_3) = \frac{z_3}{(z_3 - z_0)(z_3 - z_1)(z_3 - z_2)} = 2^{-5/2} i$$

where ϕ is understood to be different depending on which pole we are looking at.

(b) Recall $\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \ldots$. Let $z = z_0 + z'$ for $z = m\pi + z'$. Using an addition formula we have

$$\sin(m\pi + z') = \sin(m\pi)\cos z' + \cos(m\pi)\sin z' = (-1)^m \sin z'$$

and $\sin^2 z = \sin^2 z'$ This allows us to say the following:

$$\frac{z}{\sin^2 z} = \frac{z'}{(z' - \frac{z^3}{3!} + \frac{z^5}{5!} - \ldots)}$$

and so factoring out a z' of each of the sine expansions and using our usual trick for geometric series we have

$$\frac{z}{\sin^2 z} = \frac{z' + m\pi}{z'^2} \left(1 + \frac{z'^2}{2!} - \frac{z'^4}{4!} + \frac{z'^6}{6!} - \ldots\right)$$

and so there are poles of order 2 at $z = m\pi$ and $C_{-2} = m\pi$ for $m \neq 0$ and simple pole at $z = 0$ (i.e. $m = 0$).

(c) $f(z) = e^z - 1 - z = \frac{z^4}{2!} + \frac{z^3}{3!} + \frac{z^4}{4!} + \frac{z^5}{5!} + \ldots$ and so the Laurent series for $f(z)$ is

$$f(z) = \frac{1}{2!z^2} + \frac{1}{3!z} + \frac{1}{4!} + \frac{z}{5!} + \ldots$$

It follows $z = 0$ is a pole of order 2 with strength 1/2. The point $z = \infty$ is an essential singularity as well.
Solution: The function away from \(z = 0 \) is
\[
\frac{1 - \cos z}{z^2} = \frac{1 - \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots \right)}{z^2} = \frac{1}{2} - \frac{z^2}{4!} + \frac{z^4}{6!} - \cdots
\]
and so the point \(z = 0 \) is a removable singularity. In order to be analytic we would need to define \(f(0) = 1/2 \).

Problem #6 (20 points): Let \(a \) be an isolated singular point of \(f \). Prove the following:

(a) If
\[
\lim_{z \to a} (z - a)f(z) = 0,
\]
then \(a \) is a removable singularity.

(b) If there exists an \(m \in \mathbb{N}, m > 0 \) such that
\[
\lim_{z \to a} (z - a)^m f(z) = c_{-m} \neq 0,
\]
then \(a \) is a pole of order \(m \) with strength \(c_{-m} \).

Solution:

(a) Since \(a \) is an isolated singular point of \(f \) it has a Laurent series expansion about \(a \),
\[
f(z) = \sum_{n=-\infty}^{\infty} c_n(z-a)^n
\]
and so
\[
(z-a)f(z) = \sum_{n=-\infty}^{\infty} c_n(z-a)^{n+1}
\]
Taking the limit as \(z \to a \) of this we have
\[
0 = \lim_{z \to a} \sum_{n=-\infty}^{\infty} c_n(z-a)^{n+1} = \lim_{z \to a} \left(\cdots + c_{-2} \frac{1}{z-a} + c_{-1} + c_0(z-a)\cdots \right)
\]
In order for each term in the negative expansion to be 0 we need \(c_n = 0 \) for \(n < 0 \) and so \(a \) is a removable singularity.

(b) We use similar reasoning to part (a). Assume the same Laurent series for \(f(z) \), then
\[
(z-a)^m f(z) = \sum_{n=-\infty}^{\infty} c_n(z-a)^{n+m}
\]
We have
\[
\lim_{z \to a} \sum_{n=-\infty}^{\infty} c_n(z-a)^{n+m} = \lim_{z \to a} \left(\cdots + c_{-(m+1)} \frac{1}{z-a} + c_{-m} + c_{-(m-1)}(z-a)\cdots \right)
\]
and so for this limit to exist it must be the case that \(c_n = 0 \) for \(n < m \) and assuming \(c_{-m} \neq 0 \) we have a pole of order \(m \).

Problem #7 (8 points): Show that the function
\[
f(z) = e^{1/z} + \frac{1}{(z+1)^2(z-2)}
\]
has isolated singularities at \(z = -1 \), 0, and 2.
Specifically, that \(z = 2 \) is a simple pole, \(z = -1 \) is a pole of order 2, and \(z = 0 \) is an essential singularity.

Solution: Using the previous problem we consider
\[
\lim_{z \to -2} (z-2)^2 f(z) = \lim_{z \to -2} ((z-2)^2 e^{1/z} + \frac{1}{(z+1)^2(z-2)}) = \frac{1}{9} \neq 0
\]
and so \(z = 2 \) is a pole of order 1. Also, since
\[
\lim_{z \to -1} (z+1)^2 f(z) = \lim_{z \to -1} ((z+1)^2 e^{1/z} + \frac{1}{z-2}) = -\frac{1}{3} \neq 0
\]
it follows \(z = -1 \) is a pole of order 2.
Since the function \(g(z) = \frac{1}{(z+1)^2(z-2)} \) is holomorphic in some ball centered at 0 it has a Taylor series there, \(g(z) = \sum_{n=0}^{\infty} c_n z^n \) and so in this ball,
\[
f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^n + \sum_{n=0}^{\infty} c_n z^n
\]
and so \(z = 0 \) is an essential singularity.

Extra-Credit Problem #8 (6 points): Show that the series
\[
f(z) = \sum_{n=0}^{\infty} \frac{z+i}{z-i}
\]
converges uniformly in \(|z+i| < 1 \). Then show that
\[
g(z) = \frac{1+i z}{2}
\]
is its analytic continuation to the finite \(z \)-plane. Why doesn’t \(f(z) \) converge uniformly for all finite \(z \) if \(g(z) \) is analytic for all finite \(z \)?
\textbf{Solution:} Since $f(z)$ is a geometric series, it converges whenever
\[
\frac{|z + i|}{|z - i|} < 1,
\]
in particular, since $z - i = z + i - 2i$, when
\[
\frac{|z + i|}{|z - i|} \leq \frac{|z + i|}{|z + i| - 2|} < 1.
\]

The last inequality is true only when $|z + i| < 1$. The circle of convergence cannot be larger because at $z = 0$ ($0 + i = 1$) the series diverges. Summing geometric series for $|z + i| < 1$, one gets
\[
f(z) = \frac{1}{1 - (z + i)/(z - i)} = \frac{z - i}{-2i} = \frac{iz + 1}{2} = g(z)
\]
for $\forall z : |z + i| < 1$. Therefore $g(z)$ is the analytic continuation of $f(z)$ to the finite z-plane.

The sum $f(z)$ is not a Taylor series, so it \textit{not} converging for all finite z doesn't imply that $g(z)$ has a singular point at $z = 0$; since $g(z)$ is analytic for all finite z, a Taylor series of g about any finite z_0 will converge for all finite z.
