Write your name and your professor’s name on the front of your exam. You’re allowed one side of one sheet of letter-sized notes. You are not allowed to use textbooks, class notes, or a graphing calculator, but you may use a scientific calculator. To receive full credit on a problem you must show sufficient justification for your conclusion.

1. The following questions are independent from each other.

(a) Let A be a 2×2 real matrix. Compute the solution to $Ax = \begin{bmatrix} 5 \\ -4 \end{bmatrix}$ if the following are true:

$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ solves } Ax = \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ solves } Ax = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ solves } Ax = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Solution: Since $\begin{bmatrix} 5 \\ -4 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ we have by the Superposition Principle

$$x = x_1 + 2x_2 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

(b) Write down a basis for the space of real symmetric 2×2 matrices. What is the dimension of the space?

Solution: This is the space of all matrices of the form $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ for $a, b, c \in \mathbb{R}$.

There are many choices for a basis for this space, but the simplest is

$$S_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad S_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad S_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Then we can write any arbitrary symmetric 2×2 matrix as

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Since the basis contains three elements the dimension of the space is 3.
2. The following questions are TRUE/FALSE. If your answer is TRUE you must briefly explain why it is true. If it is FALSE you must briefly explain why it is false, or give a counterexample.

(a) TRUE or **FALSE**: If matrix A has all zeros on its main diagonal, then it is singular.

Solution: The statement is false. Consider the counterexample $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

(b) TRUE or **FALSE**: For a square matrix A, if $x \in \ker A^2$ then $x \in \ker A$

Solution: The statement is false. Consider the case when $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Then, for instance, $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \ker A^2$ but $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} \neq 0$

(c) **TRUE** or FALSE: Let A be an $n \times n$ matrix. If $A x_1 = A x_2$, with $x_1 \neq x_2$, then A is not invertible.

Solution: The statement is true. To see this note that

$$A x_1 = A x_2 \iff A (x_1 - x_2) = 0$$

Since $(x_1 - x_2) \neq 0$ the vector is a nontrivial element of $\ker A$ so A is not invertible.

(d) **TRUE** or FALSE: The following vectors span \mathbb{R}^2: $v_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, $v_2 = \begin{bmatrix} -1 \\ -5 \end{bmatrix}$, $v_3 = \begin{bmatrix} -3 \\ -6 \end{bmatrix}$

Solution: The statement is true. Putting the vectors in a matrix and row reducing we have

$$\begin{bmatrix} 2 & -1 & -3 \\ 4 & -5 & -6 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & -3 \\ 0 & -3 & 0 \end{bmatrix}$$

The reduced matrix has two pivots so the vectors span \mathbb{R}^2.
3. Consider the system \(Ax = b \) where \(A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & -2 & -1 \\ -2 & 0 & 0 \end{bmatrix} \) and \(b = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} \).

(a) Find matrices \(L, U \) and \(P \) such that \(PA = LU \).

(b) Use the result of (a) to solve the linear system for \(x \).

(c) Now consider the slightly modified matrix \(B = \begin{bmatrix} 1 & 2 & -1 & 2 \\ -1 & -2 & -1 & 0 \\ -2 & 0 & 0 & -2 \end{bmatrix} \). Find bases for the following:

(i) \(\text{rng} \ B \)
(ii) \(\text{corng} \ B \)
(iii) \(\text{ker} \ B \)
(iv) \(\text{coker} \ B \)

Solution:

(a) To find the LU decomposition of \(A \) we do Gaussian Elimination. We have

\[
\begin{bmatrix} 1 & 2 & -1 \\ -1 & -2 & -1 \\ -2 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1R_1 + R_2 \rightarrow R_2 \\ 2R_1 + R_3 \rightarrow R_3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
\]

So \(PA = LU \) \(\iff \)

\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ -1 & -2 & -1 \\ -2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & -2 \\ 0 & 0 & -2 \end{bmatrix}
\]

(b) We have \(Ax = b \) \(\Rightarrow \) \(PAx = Pb \) \(\Rightarrow \) \(LUx = Pb. \)

Applying our \(P \) to \(b \) we have \(Pb = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \). Then solving \(Ly = Pb \) we have

\[
\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} y = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \Rightarrow y = \begin{bmatrix} 1 \\ 2 + 2(1) = 4 \\ -1 + 1(1) = 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix}
\]

Then solving \(Ux = y \) we have

\[
\begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & -2 \\ 0 & 0 & -2 \end{bmatrix} x = \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} \Rightarrow x = \begin{bmatrix} 1 - 2(1) + 1(0) = -1 \\ 4 + 2(0) / 4 = 1 \\ 0 / 2 = 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = x
\]
(c) We notice that the matrix B is exactly A with an extra column tacked on. Thus, if we did Gaussian Elimination on B we would get the same thing for the first three columns of the reduced system. We just need to apply the same row operations on the last column of B. If we do this we obtain

$$\begin{bmatrix}
1 & 2 & -1 & 2 \\
-1 & -2 & -1 & 0 \\
-2 & 0 & 0 & -2 \\
\end{bmatrix} \sim \begin{bmatrix}
1 & 2 & -1 & 2 \\
0 & 4 & -2 & 2 \\
0 & 0 & -2 & 2 \\
\end{bmatrix}$$

(i) There are pivots in the first three columns of the reduced system. Then a basis for $\text{rng } B$ is made up of the first three columns of the original matrix B:

$$\text{rng } B = \text{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\}$$

(ii) Since there are pivots in the first three rows of the reduced system, these rows make up a basis for $\text{corng } B$:

$$\text{corng } B = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix} \right\}$$

(iii) To find a basis for $\text{ker } B$ we use the reduced system to write the basic variables in terms of the one free variable x_4:

$$x_3 = \frac{-2x_4}{-2} = x_4$$
$$x_2 = \frac{(2x_3 - 2x_4)/4}{0} = 0$$
$$x_1 = \frac{-2x_2 + x_3 - 2x_4}{-2x_2 + x_3 - 2x_4} = -x_4$$

So the kernel element is given by

$$x = x_4 \begin{bmatrix}
-1 \\
0 \\
1 \\
\end{bmatrix} \Rightarrow \text{ker } B = \text{span} \left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

(iv) From the Fundamental Theorem of Linear Algebra we know that $\dim \text{coker } = m - r$ where $r = \text{rank } A = \text{rank } A^T$. Since there are three pivots in the reduced version of A we have $r = 3$. Then, since A has $m = 3$ rows we have

$$\dim \text{coker } B = m - r = 3 - 3 = 0 \Rightarrow \text{coker } B = \text{span} \left\{ 0 \right\}$$
4. This problem is **NOT REQUIRED**. Do **NOT** even think of attempting this problem unless you have completed problems 1-3 to your complete satisfaction.

 (a) Show that if A is $n \times n$, then $\det (-A) = (-1)^n \det A$

 (b) Prove that for odd n, any $n \times n$ skew-symmetric matrix (satisfying $A^T = -A$) is singular.

 (c) Construct a nonsingular skew-symmetric matrix.

Solution:

(a) To change $-A$ to A we have to multiply each row by -1. Each time we multiply a row by -1 the determinant is scaled by -1. Since we have n rows this gives

$$\det (-A) = (-1)^n \det A$$

(b) We have

$$\det A = \det A^T = \det (-A) = (-1)^n \det A = -\det (A) \text{ since } n \text{ is odd}$$

From this we see that

$$\det A = -\det A \iff 2\det A = 0 \iff \det A = 0 \iff A \text{ is singular}$$

(c) We know that we need n even for skew-symmetric A to be nonsingular. The simplest example is

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$