Adaptive Quadrature

Basic idea

Split in subintervals: Do each with two schemes estimate difference/error if ok, done. Else split again.

Singular integrals

Either infinite interval or singularities of function.

Previous methods need functions to be polynomials like.

Note: $\int_a^b f(x) \ln(x) dx$ No problem if

infinite, or singularly in $W(x)$

Need to be 'polynomial-like.'

A few ideas:

1) Change variables: (Ex: Atkinson p305)

$$\int_0^{\infty} \frac{\ln(x)}{x^2} dx = 2 \int_0^{\infty} \frac{\ln(u^2)}{u^2} du$$

2) Integrate by parts
→ Subtract function with same type of singularity but with known integral

→ Taylor expand locally around singularity

\[\lim_{t \to 0^+} \frac{1}{\sqrt{t}} \frac{1}{\sqrt{t}} = 5 \]

\[\sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \ldots \]

→ IMT A method (Special case of change of variable) (Atkinson p306-307)

\[I = \int_{a}^{b} f(x) \, dx \]

Tri: Teruguchi
Takasawa

→ Choose some \(C > 0 \)
→ Define \(y(t) = \exp \left(\frac{-c}{1-t^2} \right) \)

→ Define \(y(t) = a + (b-a) \cdot \frac{\int_{c}^{t} y(u) \, du}{\int_{c}^{1} y(u) \, du} \)

Again, all derivatives zero at \(t = \pm 1 \) by choice of \(C \).
Use \(y(t) \) for change of variable in original integral:

\[
I = \int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(y(t)) \frac{dy}{dt} dt
\]

Change
\(x = \psi(t) \)

New integrand has all derivatives zero at ends
\(\Rightarrow \) Trap. rule now excellent
(even if \(f(x) \) has algebraic singularity at ends).
Summation of infinite series

Slowly convergent: Two main cases:

Positive

Alternating

Euler–Maclaurin

\[
\sum_{n=N}^{\infty} f(n) = \int_{N}^{\infty} f(x) \, dx + \frac{1}{2} f(N) + \frac{1}{12} f'(N) + \frac{1}{720} f''(N) - \frac{1}{30240} f'''(N) + \cdots
\]

Expansion usually 'asymptotic'

Partial sums in Taylor expansion

Very often true value bound between successive partial sums. So one can reach very high accuracy before divergence.

Another 'perspective': Typical error as function of \(N \) and \# terms.
Ex: Evaluate numerically
\[\gamma = \lim_{N \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{N} - \ln(N) \right) \]

Very slow convergence as it stands:
\[\text{Error} \approx \frac{1}{N} \implies \text{Error} \approx 10^{-10} \text{ requires } N \approx 10^{10} \]

Step 1: Rewrite as summing an infinite series:
Note: \(\ln(k-1) - \ln(k) = \ln \frac{k-1}{k} = \ln(1 - \frac{1}{k}) \)
\[\gamma = 1 + \sum_{k=2}^{\infty} \left(\frac{1}{k} + \ln(1 - \frac{1}{k}) \right) \]
\[= \frac{1}{1!} - \frac{1}{2!} - \frac{1}{3!} - \ldots \]
So sum converges

Step 2: Apply Euler-Maclaurin:
Choose \(n \) to start summing nine terms explicitly; i.e. \(N = 10 \).
\[1 + \sum_{k=2}^{5} \frac{1}{k} \approx 0.6317436767 \]
\[\frac{\xi}{12} = -0.0617553591 \]
\[\frac{\eta f^{(10)}}{12} = -0.0026802578 \]
\[\frac{\zeta f^{(10)}}{12} = -0.0000925926 \]
\[\frac{\gamma_{20} f^{(10)}}{12} = 0.000001993 \]
\[\frac{\gamma_{240} f^{(5)}}{12} = -0.000000005 \]
\[\sum = 0.5772156650 \]
I should be 0.58

5 terms gives 10^{-10} accuracy,
(rather than 10^{10} terms!)}
Subtract Known Series

Ex: \(S = \sum_{n=1}^{\infty} \frac{1}{1+n^2} \) (Exact: \(= \frac{\pi \coth \pi - 1}{2} \),

Say we happen to know
\(S_1 = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \).

Then consider
\(S - S_1 = \sum_{n=1}^{\infty} \left(\frac{1}{1+n^2} - \frac{1}{n^2} \right) = \sum_{n=1}^{\infty} \frac{1}{n^2(1+n^2)} \)

Converges so fast
that it can be
summed over

If one does not happen to know a similar series with known sum, one can always create one

Ex: \(S = \sum_{R=N}^{\infty} f(k) \) Can start at \(N = 1 \), or somewhere higher

Suppose \(F'(x) = f(x) \).

Then \(F(k+\frac{1}{2}) - F(k-\frac{1}{2}) \) is close to \(f(k) \).

Also:
\(S_2 = \sum_{R=N}^{\infty} \left\{ F(k+\frac{1}{2}) - F(k-\frac{1}{2}) \right\} = -F(k-N-\frac{1}{2}) \)

Consider
\(S - S_1 = \sum_{k=N}^{\infty} \left[f(k) - \frac{1}{2} F(k+\frac{1}{2}) - F(k-\frac{1}{2}) \right] \).

Converges faster. Can here use higher order FD approx of \(F'(x) \).
Alternating Series

\[\sum_{n=N}^{\infty} (-1)^n f(n) = \]

\[= \sum_{n=N}^{\infty} \frac{1}{2^n} \left(f(n) - \frac{1}{2} f'(n) + \frac{1}{2^2} f''(n) - \frac{1}{2^4} f'''(n) + \cdots \right) \]

(based on expansion \(\frac{1}{1+e^x} = \frac{1}{2} - \frac{x}{4} + \frac{x^2}{98} - \frac{x^5}{480} + \cdots \))

Very much like Euler-Maclaurin, and integral absent.

Euler's Transform:

Let \(S = \sum_{n=N}^{\infty} \frac{z^n}{n!} f(n) = f(n) + zf(n) + z^2 f''(n) + \cdots \)

\[= (1 + z + z^2 + \cdots) f(n) \]

\[= \frac{f(n)}{1 - e^{-z}} = \frac{f(n)}{1 - x - x\Delta} \]

\[= \frac{1}{1 - z} \cdot \frac{f(n)}{1 - \frac{x}{1 - z}} \]

If \(f \) changes slowly, disappears after few terms.
What about \((\frac{x}{1-x})^n\)?

Decays in shaded region.

Special case \(z = -1\),

\[
\sum_{n=N}^{\infty} (-1)^n f(n) = (-1)^N \sum_{k=0}^{\infty} \frac{(\frac{-1}{2})^k}{k!} \Delta^k f(n)
\]

Both factors decay fast and the sum is smooth.

Very powerful, and needs no derivatives.

Numerical Differentiation

At the end of Section 5.3.

Solution of linear systems of equations

Non-iterative (Direct) methods.
Consider for now only square systems:

\[A x = b \]

1. **Diagonal:**

\[
\begin{pmatrix}
 a_{11} & 0 & \cdots & 0 \\
 0 & a_{22} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix} =
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{pmatrix}
\]

\[x_i = b_i / a_{ii}, \text{ Op count: } n \]

2. **Lower Triangular:**

\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 0 & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix} =
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{pmatrix}
\]

Back-substitute from top \(x_1, x_2, \ldots \to x_n \)

Upper Triangular:

\[
\begin{pmatrix}
 a_{11} & -a_{12} & \cdots & -a_{1n} \\
 0 & a_{22} & \cdots & -a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix} =
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{pmatrix}
\]

Equivalent: Back-substitute from bottom \(x_n, x_{n-1}, \ldots \to x_1 \)

Op count:

\[
\begin{array}{c|c|c}
\text{step} & + & \times/ \\
\hline
1 & 0 & 1 \\
2 & 1 & 2 \\
\vdots & \vdots & \vdots \\
 n & n-1 & n \end{array}
\]

\[
\sum: \frac{n(n-1)}{2} \quad \frac{n(n+1)}{2}
\]

Arithmetic progression; average of \(\sum \) of terms \(x \) is 1st and last term

Total: \(n^2 \) (Exactly)
3. **Full system**

Many variations available:

Regular Gaussian elimination:

Concept:

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{bmatrix}
\]

Assume at first no pivoting needed

Subtract mulit of top row from rows below

\[
\begin{bmatrix}
 1 & 1 & \cdots & 1 \\
 0 & 1 & \cdots & 1 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{bmatrix}
\]

Then mulit of row 2 from rows below

\[
\begin{bmatrix}
 1 & 1 & \cdots & 1 \\
 0 & 1 & \cdots & 1 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{bmatrix}
\]

Arrive at upper triangular system:

Op count

\[
\begin{array}{ccc}
 \text{Step} & \text{Operation} & \text{Count} \\
 1 & n(n-1) & \frac{n(n+1)(n-1)}{6} \\
 2 & \frac{n(n-1)(n-2)}{n(n-2)} & \frac{n(n+1)(n-2)}{6} \\
 \vdots & \vdots & \vdots \\
 n-1 & 21 & 31 \\
 \hline
 \sum & \frac{1}{3}n(n-1)(n+1) & \frac{1}{6}n(n-1)(n+1) \\
 \text{Total} & \frac{1}{6}n^2(4n^2+3n-7) & \frac{2n^3}{3} \\
 & & \text{(round off order)}
\end{array}
\]
Elementary row operations:

First step of elimination can be interpreted as multiplication from left with second row:

\[L_1 = \begin{pmatrix} 1 & a_{21} & \cdots & a_{m1} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \quad L_2 = \begin{pmatrix} 1 & a_{22} & \cdots & a_{m2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \]

\[L_{n-1} L_{n-2} \cdots L_2 L_1 A = U \]

\[A = L_1^{-1} L_2^{-1} \cdots L_{n-1}^{-1} U \]

Two key facts about this product:

1. \[\begin{pmatrix} 1 & a_{12} & \cdots & a_{1m} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -a_{12} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_{1m} & 0 & \cdots & 1 \end{pmatrix} \]

 First swap signs

2. A product

\[\begin{pmatrix} 1 & a_{12} & \cdots & a_{1m} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -a_{12} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_{1m} & 0 & \cdots & 1 \end{pmatrix} \]

Just put the columns below diagonal side-by-side.
Gaussian Elimination has thus in fact produced a LU-factorization of A.

L-part is made up by all the different multiples of rows we used in the elimination.
VARIANTS OF GAUSSIAN ELIMINATION

1. Complete (Total) pivoting
2. Gauss-Jordan
3. Crout
4. Cholesky
5. Iterative improvement

(Iterative methods best covered in context of PDES; over/under-determined systems in context of QR & SVD decomposition, e.g. col. problem)

1. Complete (Total) Pivoting:

Dangers (can be seen from 'backward error analysis' - if we have time, will cover end of this semester)

Elements grow large during elimination.

\[A_0 = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 -1 & 1 & 0 & 0 \\
 -1 & -1 & 1 & 0 \\
 -1 & -1 & -1 & 1 \\
\end{bmatrix} \Rightarrow A_1 = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & -1 & 0 \\
 0 & 1 & -1 & 1 \\
 0 & 1 & -1 & -1 \\
\end{bmatrix} \]

Note: Regular pivoting never called for:

\[A_4 \begin{bmatrix} 2 & 4 & 8 \end{bmatrix} \]

\[A_4 \begin{bmatrix} 2 & 4 & 8 \end{bmatrix} \]

Same structure as \(A_0 \) but last column doubled.

With partial pivoting:

Growth to \(\tilde{f}(n) = 2^{n/2} \) nn matrix.
Total pivoting:

\[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\]

1. Find largest entry in this column.
2. Move to pivot position.

Total pivoting:

Note: Exchange rows and columns. Re-order unknowns.

Best known with \(f(n) < n^{0.5} [2^{0.5}, 3^{0.3}, 4^{0.3}, \ldots, n^{0.5}]^{0.5} \)

No case known with \(f(n) > n \).

See completely safe.

Looks tempting to use, but:

1. Already partial pivoting growth extremely rare.
2. All testing needed in total pivoting brings cost up to \(A = QR \) solution, which is totally safe.
3. Iterative improvement corrects (and gives error estimate) at only \(O(n^2) \) additional cost.
4. Partial pivoting preserves zero-pattern much better.
Gauss-Jordan:

Eliminate both above & below main diagonal, to reach

\[
\begin{bmatrix}
1 & 0 & | & 1 \\
0 & 1 & | & 1
\end{bmatrix}
\]

Then becomes solution

+ No back substitution step needed
+ Cost increased (G.EL. \(\frac{2}{3} n^3 \) vs \(\frac{1}{3} n^3 \) op total)
+ Allows a pretty (but slower) way to calculate matrix inverse

\[
\begin{bmatrix}
A \\
\end{bmatrix}^{-1} \Rightarrow \begin{bmatrix}
E \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
I \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
A^{-1}
\end{bmatrix}
\]

Crout:

First w/o pivoting

\[
\begin{bmatrix}
A \\
\end{bmatrix} = \begin{bmatrix}
W & B \\
\end{bmatrix} \begin{bmatrix}
I & \tau \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
W & B \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

→ Can fill in explicitly \(\begin{bmatrix} 1, 2 \Rightarrow, 3, 4 \Rightarrow \ldots \end{bmatrix} \)

→ Can overwrite \(L \& U \) on top of \(A \)
(convenient when solving by hand!)

→ Can pivot right across composite of \(L \& U \)
→ Operation count identical to G.EL.
Cholesky Decomposition

Requires a symmetric, positive definite matrix. Can then solve $A = LL^T$.

Version 1:

$$\begin{bmatrix} A \\ \end{bmatrix} = \begin{bmatrix} \text{block} \\ \end{bmatrix} \begin{bmatrix} \text{block} \\ \end{bmatrix}^T$$

- Requires n square roots.
- Can show, pivoting never needed.

 Suppose A scaled so $|\text{diagonal}| \leq 1$.

 Then $a_{11}^2 + a_{22}^2 + \ldots + a_{ii}^2 = a_{ii} \leq 1$

 \Rightarrow No element in L can ever become big.

Version 2:

Aim instead for $A = LDL^T$, with ones in diagonal of L.

No square roots needed, else same.

If A is symmetric but not positive definite, we may get complex numbers in L.

However:
- Columns of L can be purely real or purely imaginary.

Bash:
- May need pivoting, destroying symmetry.
- If not symmetric, can start by Cholesky, nothing lost.
ITERATIVE IMPROVEMENT (RESIDUAL CORRECTION)

Assume we have solved $Ax = b$ by LU factorization, obtained approx solution \hat{x}.

Form residual $A\hat{x} - b = \gamma$

\[A \hat{x} - b = \gamma \]

\[A \hat{x} - b = 0 \]

Key idea:

\[A(\hat{x} - x) = \gamma \]

\[x' \text{; correction needed to bring } \hat{x} \text{ to } x, \]

Another linear system to solve, but re-use LU-factorization $\implies O(n^2)$ op. only.

All elements of γ and x' small: floating point takes care of scaling.

Use x' corrects for all errors that might have accumulated during LU back sub.\[\Rightarrow \text{Fast solution in high precision arithmetic} \]

Web notes: Iterative improvement