Problem #1 (8 points): Use the definition of a limit to show the following:

(a) \(\lim_{z \to 0} \frac{z^2}{z} = 0. \)
(b) \(\lim_{z \to 1} [x + i(2x + y)] = 1 + i, \) where \(z = x + iy. \)

Problem #2 (16 points): Evaluate the following limits:

(a) \(\lim_{z \to z_0} z^{-m}, \) where \(m \) is an integer.
(b) \(\lim_{z \to \infty} \frac{z^2}{(3z + 1)^2}. \)
(c) \(\lim_{z \to 0} \frac{\text{Re}(z) \text{Im}(z)}{|z|}. \)

Problem #3 (8 points): Show that \(f(z) = z^{-2} \) is uniformly continuous in \(\frac{1}{z} < \text{Re} z < 1 \) but not in \(0 < \text{Re} z < \frac{1}{2}. \)

Problem #4 (8 points): Prove or disprove:

\(\lim_{z \to 0} z \sin \left(\frac{1}{z} \right) = 0 \)

Problem #5 (8 points): Let \(f(z) \) be continuous and let \(\lim_{z \to 0} f(z) = 0. \) Show that

\(\lim_{z \to 0} \left(e^{f(z)} - 1 \right) = 0. \)

What can be said about

\(\lim_{z \to 0} \frac{e^{f(z)} - 1}{z}? \)

Problem #6 (6 points): Suppose we are given the following differential equations:

(a) \(\frac{d^3 w}{dt^3} - k^3 w = 0 \)
(b) \(\frac{d^6 w}{dt^6} - k^6 w = 0 \)

where \(t \) is real and \(k \) is a real constant. Find the general real solution of the above equations. Write the solution in terms of real variables.

Problem #7 (20 points): Where are the following functions differentiable? Compute \(f'(z) \) where it's defined.

(a) \(f(z) = \sin z. \)
(b) \(f(z) = \tan z. \)
(c) \(f(z) = [(z - 1)z]^{1/3}. \)
(d) \(f(z) = z \text{Re}(z). \)
(e) \(f(z) = x^2 + iy^2. \)

Problem #8 (8 points): Let \(f(z) \) denote the function

\[f(z) = \begin{cases} \frac{z^2}{i} & z \neq 0, \\ 0 & z = 0. \end{cases} \]

Show that the \(f'(0) \) does not exist but \(u_x = v_y \) and \(v_x = -u_y \) at \(z = 0. \)

Problem #9 (18 points): Consider the differential equation,

\[x^2 \frac{d^2 w}{dx^2} + x \frac{dw}{dx} + w = 0, \]

where \(x \) is real.

(a) Show that the transformation \(x = e^t \) implies that

\[x \frac{d}{dx} = \frac{d}{dt}, \quad x^2 \frac{d^2}{dx^2} = \frac{d^2}{dt^2} - \frac{d}{dt}. \]

(b) Use these results to find that \(w \) also satisfies the differential equation

\[\frac{d^2 w}{dt^2} + w = 0. \]

(c) Use these results to establish that \(w \) has the real solution

\[w = Ce^{i \log x} + \bar{C}e^{-i \log x} \]

or

\[w = A \cos(\log x) + B \sin(\log x). \]

Extra-Credit Problem #10 (6 points): Find the sum of the series

\[\sum_{n=0}^{\infty} a^n \cos(n\theta) \quad \text{and} \quad \sum_{n=0}^{\infty} a^n \sin(n\theta) \]

for \(a \in (-1, 1). \)

Extra-Credit Problem #11 (4 points): If \(f(z) \) is holomorphic and \(|f(z)| = (x^2 + y^2)^{\frac{1}{4}}, z = x + iy, \) find \(f(z). \)